

GUIDELINES FOR INHERENTLY SAFER CHEMICAL PROCESSES

A LIFE CYCLE APPROACH

3

THIRD
EDITION

Guidelines for Inherently Safer Chemical Processes:
A Life Cycle Approach
3rd Edition

**Guidelines for Inherently Safer Chemical Processes:
A Life Cycle Approach
3rd Edition**

**CENTER FOR CHEMICAL PROCESS SAFETY
of the
AMERICAN INSTITUTE OF CHEMICAL ENGINEERS
New York, NY**

WILEY

This edition first published 2020

© 2020 the American Institute of Chemical Engineers

A Joint Publication of the American Institute of Chemical Engineers and John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

The rights of CCPS to be identified as the author of the editorial material in this work have been asserted in accordance with law.

Registered Office

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data is available

Hardback ISBN: 9781119529163

Cover Design: Wiley

Cover Images: Silhouette, oil refinery © manyx31/iStock.com; Stainless steel © Creativ Studio Heinemann/Getty Images; Dow Chemical Operations, Stade, Germany/Courtesy of The Dow Chemical Company

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

It is sincerely hoped that the information presented in this document will lead to an even more impressive safety record for the entire industry; however, neither the American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, nor AcuTech Group, Inc. and its employees and subcontractors warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented in this document. As between (1) American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, and AcuTech Group, Inc. and its employees and subcontractors, and (2) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequence of its use or misuse.

Preface

The American Institute of Chemical Engineers (AIChE) has been involved with process safety and loss prevention issues in the chemical, petrochemical, hydrocarbon process and related industries and facilities for more than 50 years. AIChE publications and symposia are information resources for chemical engineers and other professionals on the causes of process incidents and the means of preventing their occurrences and mitigating their consequences.

In 1985, the Center for Chemical Process Safety (CCPS), a Technology Alliance of the AIChE, was established specifically to develop and disseminate technical information for use in the prevention of major chemical process incidents. With the support and direction of the CCPS Advisory and Managing Boards, a multifaceted program was initiated to address the need for Process Safety and Risk Management systems capable of reducing potential exposures to the public, the environment, personnel, and facilities. This program includes:

- developing and publishing Guidelines and Concept Books relating to specific areas of Process Safety and Risk Management
- publishing a monthly newsletter, Process Safety Beacon
- organizing, convening and conducting seminars, symposia, training programs, and meetings on process safety-related matters
- cooperation with other organizations, both internationally and domestically, to promote process safety.

CCPS activities are supported by more than 200 corporations that provide funding and professional expertise. Several government agencies and academic institutions also participate in CCPS endeavors.

In 1989, CCPS published Guidelines for Technical Management of Chemical Process Safety, which presented a model for process safety management characterized by twelve distinct, essential and interrelated elements. These Guidelines were refined over the ensuing years and updated in the Guidelines for Risk Based Process Safety (2007), which

expanded the definition of process safety and risk management into twenty distinct elements.

The previous editions of this book, which were part of the “Concept Series,” supported many of those twenty key elements of process safety, as identified in the Guidelines for Risk Based Process Safety, including process safety competency, workforce involvement, hazard identification and risk analysis, auditing, and management review and continuous improvement. The purpose of this guideline series book is to update the previous 2nd edition concept book in order to demonstrate the on-going and improved application of inherently safer strategies throughout all the stages of the chemical process life cycle, including additional case studies and examples of inherently safer design (ISD) implementation.

Inherently safer (IS) concepts continue to be well-received by industry and there has been significant advancement in the concept since the original version of this book was published in 1996. Both the original 1996 concept book and the 2009 update are frequently cited as authoritative sources on inherent safety, and, as such, it is important that an updated edition be published. The Third Edition will reflect not only the most current knowledge on the subject but will harness the concepts introduced in the first two editions, provide additional examples of IS and provide a guideline for the practical application of inherent safety techniques.

This book encourages engineers, process safety experts, and others involved in analyzing and reducing the risks from chemical processes to make conservative choices that apply the principles and spirit of inherent safety to the extent feasible. The discussion and examples range from the basic process chemistry through the details of the design of hardware and procedures. Inherently safer thinking can be applied at all levels of the process design, from the overall concept through the detailed equipment design and procedure development.

Acknowledgements

The American Institute of Chemical Engineers (AIChE) and its Center for Chemical Process Safety (CCPS) thank the subcommittee members and their CCPS member companies for their generous efforts and technical contributions to this book. CCPS also thanks the members of the CCPS Technical Steering Committee for their advice and support.

Guidelines for Inherently Safer Chemical Processes

A Life Cycle Approach, 3rd edition

The Chair of the subcommittee was John Wincek, originally of Croda, Inc. and currently of Dekra. The CCPS staff consultant was Dan Sliva.

The Subcommittee members were:

Steve	Arendt	<i>ABS Group</i>
Susan	Bayley	<i>Linde Process Plants, Inc.</i>
Prashanti	Bhupathi	<i>Reliance</i>
Wayne	Chastain	<i>Eastman</i>
Oliva	Cheng	<i>Chevron Corporation</i>
Robert	Coover	<i>Praxair</i>
Carolina	Del Din	<i>PSRG</i>
Jonas	Duarte	<i>Lanxess</i>
Emmanuelle	Hagey	<i>Nova chemicals</i>
Scott	Haney	<i>Marathon Petroleum Company</i>
Dennis	Hendershot	<i>CCPS</i>
Reyyan	Koc Karabocek	<i>ExxonMobil</i>
Nicole	Loontjens	<i>Americas Styrenics</i>
Dan	Miller	<i>CCPS Emeritus</i>
Jitesh	Patel	<i>New Jersey DEP</i>
Katherine	Prem	<i>Arkema</i>
Sabrina	Petruele	<i>Pluspetrol</i>
Morgan	Reed	<i>MMI Engineering</i>
Sonny	Sachdeva	<i>PSRG</i>
Randy	Sawyer	<i>Contra Costa Health Services</i>
Dallas L.	Singleton	<i>Jacobs</i>
Scott	Wallace	<i>Olin</i>
Bob	Weber	<i>PSRG</i>

This manuscript was written by AcuTech Group team of Rich Santo, Dave Moore, Cara Hamel, Mike Hazzan, Dave Heller, Marty Rose. It was copy edited by Megan Fennell under the direction of Anil Gokhale of CCPS.

Peer Reviewers

Before publication, all CCPS books receive a thorough peer review. CCPS gratefully acknowledges the thoughtful comments and suggestions of the following peer reviewers. Their work enhanced the accuracy and clarity of these guidelines.

Denise	Chastain-Knight	<i>Exida</i>
Alan	Evankovich	<i>AVAN Engineering</i>
Graffar	Keshavarz	<i>NovaChem</i>
Beverly	Perozzo	<i>NovaChem</i>
Gill	Sigmon	<i>Advansix</i>
Ken	Tague	<i>ADM</i>
Rob	Savarese	<i>EmeraldMaterials</i>

Contents

Preface	vii
Acknowledgements	ix
Figures	xxiii
Tables	xxvi
1. Introduction	1
1.1 Objectives, Intended Audience, and Scope of this Book	1
1.1.1 Objectives	1
1.1.2 Intended Audience	2
1.1.3 Scope	2
1.2 Integration of this Guidance with Other CCPS Guidance	2
1.3 Organization of this Book	3
1.4 History of Inherent Safety	4
1.5 References	9
2. The Concept of Inherent Safety	12
2.1 Inherent Safety and Process Risk Management	12
2.2 Inherent Safety Defined	15
2.3 Shared characteristics	16
2.4 Inherently Safer Strategies	18
2.5 Inherent safety throughout the process Life cycle	22
2.6 Inherently Safer Approaches	24
2.6.1 Orders of Inherent Safety	27
2.7 Layers of Protection	30

2.8 Integrating Inherent Safety in Process Risk Management Systems	32
2.9 Summary	40
2.10 References	40
3. Minimize – An Inherently Safer Strategy	44
3.1 Minimize	44
3.2 Reactors	47
3.3 Continuous Stirred Tank Reactors	48
3.4 Tubular Reactors	49
3.5 Loop Reactors	49
3.6 Reactive Distillation	51
3.7 Storage of Hazardous Materials	54
3.8 Process Piping	57
3.9 Process Equipment	58
3.10 Limitation of Effects	60
3.11 References	61
4. Substitute – An Inherently Safer Strategy	64
4.1 Reaction Chemistry	64
4.2 Green Chemistry	72
4.3 Solvents	73
4.4 Refrigerants	75
4.5 Firefighting Agents	76
4.6 Heat Transfer Media	76
4.7 Informed Substitution	77
4.8 References	83
5. Moderate – An Inherently Safer Strategy	87

5.1 Dilution	87
5.2 Refrigeration	88
5.3 Less Energetic Process Conditions	91
5.4 Secondary Containment - Dikes and Containment Buildings	94
5.5 Segregation	98
5.6 References	100
6. Simplify – An Inherently Safer Strategy	103
6.1 Leaving Things Out	104
6.2 Eliminating Unnecessary Spares	105
6.3 Inherently Robust Process Equipment	107
6.4 Preventing Runaway Reactions	110
6.5 Simplifying Heat Transfer	113
6.6 Simplifying Liquid Transfer	114
6.7 Reactor Geometry	116
6.8 Optimizing Catalyst Selectivity	116
6.9 Separation of Process Steps	116
6.10 Limitation of Available Energy	119
6.11 Simplification of the Human-Machine Interface	120
6.11.1 Overview	120
6.11.2 Equipment Layout, Accessibility, and Operability	121
6.11.3 Maintainability	121
6.11.4 Error Prevention	123
6.11.5 Design of Equipment and Controls – Making Status Clear	123
6.12 Summary	124
6.13 References	124
7. Applying Inherent Safety Strategies to Protection Layers	126

7.1 Operating Procedures	128
7.2 Maintenance Procedures	129
7.3 Relocation	129
7.4 Containment	130
7.5 More Robust Process Equipment and Design	131
7.6 Simplified Process Equipment and Design	132
7.7 Distributed Control Systems	133
7.8 Summary	134
7.9 References	134
8. Life Cycle Stages	136
8.1 General Principles Across All Life cycle Stages	136
8.2 Concept	137
8.3 Research	139
8.3.1 Inherently Safer Synthesis	141
8.3.2 Types of Hazards Associated with Research	142
8.3.3 Hazards Identification Methods	148
8.4 Design Development	159
8.4.1 Unit Operations - General	160
8.4.2 Unit Operations - Specific	161
8.5 Detailed Engineering Design	169
8.5.1 Process Design Basis	170
8.5.2 Equipment	171
8.5.3 Process Controls	175
8.5.4 Utility & Supporting Systems	179
8.5.5 Batch Processes	180
8.5.6 Other Design Considerations	182

8.6 Procurement, Construction, and Commissioning	183
8.7 Operations & Maintenance	185
8.7.1 Preservation of Inherent Safety	185
8.7.2 Inherent Safety - Continuous Improvement	187
8.8 Change Management	191
8.9 Decommissioning	192
8.10 Transportation	195
8.10.1 Location Relative to Raw Materials	197
8.10.2 Shipping Conditions	198
8.10.3 Transportation Mode and Route Selection	199
8.10.4 Improved Transportation Containers	200
8.10.5 Administrative Controls	201
8.10.6 Management of Transportation Containers On-site	202
8.11 References	203
9. Inherent Safety and Security	212
9.1 Introduction	212
9.2 Chemical Security Risk	213
9.3 Security Strategies	217
9.4 Countermeasures	219
9.5 Assessing Security Vulnerabilities	220
9.6 Inherent Safety and Chemical Security	221
9.7 Limitations to Implementing IS Concepts in Security Management	226
9.8 Conclusion	228
9.9 References	229
10. Implementing Inherently Safer Design	230
10.1 Introduction	230

10.2 Management System Approach for IS	231
10.3 Education and awareness	232
10.3.1 Making IS a Corporate Philosophy	232
10.3.2 IS in Education	233
10.4 Organizational culture	234
10.4.1 Multiple Demands of IS in the PSM program	235
10.4.2 Incorporating IS into Normal Design Process	236
10.5 Inherent Safety Reviews	241
10.5.1 Inherent Safety Review Objectives	242
10.5.2 Good Preparation is Required for Effective Inherent Safety Reviews	243
10.5.3 Inherent Safety Review Timing	244
10.5.4 Inherent Safety Review Team Composition	246
10.5.5 Inherent Safety Review Process Overview	246
10.5.6 Focus of Inherent Safety Reviews at Different Stages	250
10.5.7 Stage in the Process Life Cycle	252
10.6 Reactive Chemicals Screening	256
10.7 Inherent Safety Review Training	258
10.8 Documentation of the Inherently Safer Design Features of a Process	260
10.8.1 IS Review Documentation	261
10.8.2 Time Required for an Inherent Safety Review	263
10.9 Summary	264
10.10 References	265
11. Inherent Safety & the Elements of a RBPS Program	268
11.1 Process Safety Culture	270
11.2 Compliance with Standards	271

11.3 Workforce Involvement	272
11.4 Process Knowledge Management	272
11.5 Hazard Identification and Risk Analysis	273
11.6 Safe Work Practices	280
11.7 Asset Integrity and Reliability	282
11.8 Contractor Management	284
11.9 Training and Performance Assurance / Process Safety Competency	285
11.10 Management of Change / Operational Readiness	286
11.11 Conduct of Operations / Operating Procedures	290
11.11.1 Minimization	291
11.11.2 Simplification	294
11.12 Emergency Management	296
11.13 Incident Investigation	297
11.14 Measurements and Metrics / Auditing / Management Review and Continuous Improvement	297
11.15 Summary	299
11.16 References	299
12. Tools for IS Implementation	302
12.1 IS Review Methods - Overview	302
12.1.1 Three Approaches	302
12.1.2 Formal IS Reviews	303
12.1.3 IS Review Methods	304
12.1.4 Research & Development Application	304
12.1.5 PHA - Incorporation into HAZOP or other PHA Techniques	305
12.1.6 "What-If?" Method	307

12.1.7 Checklist Method	308
12.1.8 Consequence-Based Methods	311
12.1.9 Other Methods	312
12.2 Summary	317
12.3 References	318
13. Inherently Safer Design Conflicts	320
13.1 Introduction	320
13.2 Examples of inherent safety conflicts	324
13.2.1 Continuous vs. batch reactor	324
13.2.2 Reduced toxicity vs. reactive hazard	327
13.2.3 Reduced inventory vs. dynamic stability	328
13.2.4 Risk transfer vs. risk reduction	329
13.2.5 Inherent safety and security conflicts	331
13.3 Inherent safety – Environmental Hazards	332
13.3.1 PCBs	332
13.3.2 CFCs	332
13.4 Inherent Safety and Health Conflicts	333
13.4.1 Water Disinfection	333
13.5 Inherent safety and economic conflicts	334
13.5.1 Existing plants – operational vs. re-investment economics in a capital-intensive industry	334
13.5.2 Often more economical, but not necessarily	336
13.6 Tools for understanding and resolving conflicts	337
13.6.1 Tools for understanding and resolving conflicts	339
13.7 Measuring inherent safety characteristics	343
13.7.1 Dow Fire and Explosion Index	344

13.7.2 Dow Chemical Exposure Index	344
13.7.3 Mond Index	344
13.7.4 Proposed Inherent Safety indices	345
13.8 Summary	346
13.9 References	347
14. Inherent Safety Regulatory Initiatives	350
14.1 Inherent Safety Regulatory Developments and Issues	350
14.2 Experience with Inherent Safety Provisions in United States Regulations	351
14.2.1 Inherently Safer Regulatory Requirements – Contra Costa County, California, USA	352
14.2.2 New Jersey Toxic Catastrophe Prevention Act (TCPA) and Prescriptive Order for Chemical Plant Security	370
14.2.3 Inherently Safer Systems Requirements – California Accidental Release Prevention (CalARP) Regulations	378
14.2.4 Safer Technology & Alternatives Analysis – Revised US EPA Risk Management Program (RMP) Rule	380
14.3 Issues in Regulating Inherent Safety	382
14.3.1 Consistent Understanding of Inherent Safety	383
14.3.2 Needed Tools	384
14.4 Summary	385
14.5 References	386
15. Worked Examples and Case Studies	388
15.1 Introduction	388
15.2 Application of an Inherent Safety Strategic Approach to a Process	388
15.3 Case studies from carrithers	394
15.3.1 An Exothermic Batch Reaction	395

15.3.2 Refrigeration of Monomethylamine	398
15.3.3 Elimination of a Chlorine Water Treatment System	399
15.3.4 Reduction of Chlorine Transfer Line Size	400
15.3.5 Substitution of Aqueous Ammonia For Anhydrous Ammonia	400
15.3.6 Limitation of Magnitude of Deviations for Aqueous Ammonia	403
15.3.7 A Vessel Entry Example	408
15.4 Process Route Selection – Early R&D Example	411
15.5 Example of an Inherently Safer Study of a Steam Production Facility	412
15.5.1 Facility Description	412
15.5.2 Initial Design Proposal (Liquid Anhydrous Ammonia)	412
15.5.3 Aqueous Ammonia Design Proposal	413
15.5.4 Final Round of Option Selection	415
15.5.5 Consequence Analysis	416
15.5.6 Conclusion and Action	417
15.5.7 Conclusion	419
15.6 Case Study: Bhopal	419
15.6.1 Minimization	420
15.6.2 Substitution	420
15.6.3 Moderation	420
15.6.4 Simplification	421
15.7 Example: Inherently Safer Process for Production of Trialkyl Phosphate Esters	421
15.8 Summaries in brief: Examples by IS Strategy	422
15.8.1 Minimize	423

15.8.2 Substitute	425
15.8.3 Moderate	427
15.8.4 Simplify	429
15.9 Additional literature giving examples of inherently Safer Operations	430
15.10 References	431
16. Future Initiatives	433
16.1 Incorporating Inherently Safer Design into Process Safety Management	433
16.2 Encouraging Invention within the Chemical and Chemical Engineering Community	434
16.3 Including Inherent Safety into the Education of Chemists and Chemical Engineers	434
16.4 Developing Inherently Safer Design Databases and Libraries	434
16.5 Developing Tools to Apply Inherently Safer Design	435
16.5.1 The Broad View and Life Cycle Cost of Alternatives	435
16.5.2 Benefits of Reliability Analysis	436
16.5.3 Potential Energy	436
16.5.4 A Table of Distances and Consequence/Risk-Based Siting	437
16.5.5 Quantitative Measures of Inherent Safety	437
16.5.6 Other Suggestions	438
16.6 References	439
Appendix A. Inherently Safer Technology (IST) Checklist	442
A.1 IST Checklist Procedure	442
A.2 IST Checklist Questions	444
Appendix B. Inherent Safety Analysis Approaches	455
B.1 Inherent Safety Analysis – Guided Checklist Process Hazard Analysis (PHA)	459

B.2 Inherent Safety Analysis - Independent Process Hazard Analysis (PHA)	464
B.3 Inherent Safety Analysis – Integral to Process Hazard Analysis (PHA)	467
Glossary	469
Index	497

Figures

Figure 2.1: Hierarchy of Controls

Figure 2.2: Application of Inherent Safety Throughout the Process Life Cycle

Figure 2.3: Inherent Safety Considerations in Hierarchy of Controls

Figure 2.4: Layers of Protection

Figure 3.1: A Loop Reactor Production System

Figure 3.2: Conventional process for methyl acetate

Figure 3.3: Reactive distillation methyl acetate process

Figure 4.1: Framework for Assessing Safer Chemical Alternatives

Figure 5.1: A refrigerated chlorine storage system with collection sump with vapor containment

Figure 5.2: A liquefied gas storage facility

Figure 5.3: A diking design for a flammable liquid

Figure 5.4: A chemical process totally contained in a large pressure vessel

Figure 6.1: A traditional methyl acetate process using separate reaction and distillation steps

Figure 6.2: The Eastman Chemical reactive distillation process for methyl acetate

Figure 6.3: Old (a) and new (b) designs for a two-batch reaction system

Figure 6.4: Fluidic pump system

Figure 6.5: A complex batch reactor for a multistep process

Figure 6.6: The same process as Figure 6.5 in a series of simpler reactors

Figure 8.1: Stages in the Life Cycle of a Chemical Process

- Figure 8.2: Process Design Safe Operating Limits
- Figure 8.3: Proper and improper piping design
- Figure 8.4: Operating Ranges and Limits
- Figure 8.5: An example of poor assignment of equipment identification numbers
- Figure 8.6: An illogical arrangement of burner controls for a kitchen stove
- Figure 9.1: Security Layers of Protection or Defense in Depth
- Figure 9.2: Elements in a CCPS Security Vulnerability Assessment
- Figure 10.1: Management leadership is the foundation for process safety management
- Figure 10.2: Inherent Safety Review Preparation
- Figure 10.3: Inherent Safety Review Process
- Figure 10.4: Applicability of inherently safer design at various stages of process and plant development.
- Figure 11.1: Plug Valve Operator
- Figure 11.2: Valve Gearbox Designs
- Figure 11.3: Inherent Safety-Based Management of Change Process
- Figure 11.4: Inherent Safety-Based Incident Investigation Methodology
- Figure 12.1: Example of Potential Design Solutions for Reactor Failure
- Figure 13.1 and 13.2: Examples of batch (top) and continuous (bottom) process
- Figure 13.4: Process safety system design solutions for a heat exchanger failure scenario
- Figure 14.1: Major Chemical Accidents and Releases (MCAR)
- Figure 14.2: ISO Stationary Sources MCARs
- Figure 14.3: County and Richmond ISO MCARs
- Figure 15.1: Initial Process

Figure 15.2: Modified process

Figure 15.3: Original batch reaction system

Figure 15.4: Modified, inherently safer batch reactor system

Figure 15.5: Comparison of centerline vapor cloud concentration

Figure 15.6: Aqueous Ammonia: Limitations of Magnitude of Deviations

Figure 15.7: Nitrogen supply line routed over the vessel manway

Figures 15.8a and 15.8b: Two examples of nitrogen supply lines piped to vessels across the manway

Figure 15.9: Initial ammonia supply proposal: Liquid anhydrous ammonia supply

Figure 15.10: Aqueous Ammonia Supply Proposal

Figure 15.11: Anhydrous ammonia vapor option

Figure 15.12: Alternative route for carbaryl production

Figure 15.13: Dow LaPorte Phosgene Inventory Reduction

Figure 15.14: Use of Chlorine Vapor for Liquid Chlorine

Figure 15.15: Streamlined METEORTM Ethylene Oxide Recovery System

Figure 15.16: Dike and Secondary Containment System

Tables

Table 2.1: Strategies for Inherently Safer Design

Table 2.2: Examples of Process Risk Management Categories

Table 3.1: Effect of Reactor Design on Size and Productivity for a Gas-Liquid Reaction

Table 6.1: Summary of Reaction Testing Methods

Table 8.1: Types of Process Safety Hazards

Table 8.2: Representative Potentially Hazardous Molecular Groupings

Table 8.3: An Example Chemical Reactivity Matrix

Table 8.4: Reactive Combinations of Chemicals

Table 8.5: INSET Toolkit Stages

Table 8.6: Surface Compactness of Heat Exchangers

Table 10.1: Inherent Safety Review Team Composition

Table 10.2: Focus of Different Inherent Safety Reviews

Table 11.1: Inherent Safety Checklist for PHAs

Table 11.2 MOC IS Checklist

Table 12.1: Guideword Matrix

Table 12.2: Inherent Safety Guidewords

Table 12.3: Examples of Potential Accident Consequence Analysis as a Measure of Inherent Safety

Table 12.4: Summary of INSET Tools

Table 13.1: Comparison of ISD attributes of air travel and automobile travel

Table 13.2: Some inherent safety advantages and disadvantages of alternative process solvents

Table 13.3: Process Safety System Design Solutions for a Heat Exchanger Failure Scenario

Table 13.4: An example of a Weighted Scoring Decision Matrix

Table 14.1: Summary of Contra Costa County IST Measures Implemented from 2002 - Present

Table 14.2: Summary of IST Measures Implemented or Scheduled by Sector

Table 15.1: Effect of Refrigeration on Distance to ERPG-3 Concentration for a 2-inch (5.1 cm) Monomethylamine Pipe Rupture

Table 15.2: Effect of Reduction of Line Size on Hazard Zone from Potential Failure of a Chlorine Transfer Line

Table 15.3: Total vapor pressure of aqueous ammonia

Table 15.4: Mass Comparison for Ammonia Transfer Options

Table A.1: IST Checklist Substitute Questions

Table A.2: IST Checklist Minimize Questions

Table A.3: IST Checklist Moderate Questions

Table A.4: IST Checklist Simplify Questions

Table A.5: IST Checklist Location/Siting/Transportation Questions

Table B.1: Generic Risk Matrix (R)

Table B.2: Generic Severity (S) Rankings

Table B.3: Generic Likelihood (L) Descriptors

Table B.4: Case summary: Inherent Safety Analysis--Checklist Process Hazard Analysis (PHA)

Table B.5: Inherent Safety Analysis--Independent Process Hazard Analysis (PHA)

Table B.6: Inherent Safety Analysis--Integral Process Hazard Analysis (PHA)

