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Preface

The International Conference on Cyber-Physical Systems and Control
(CPS&C’2019) was held in Peter the Great St. Petersburg Polytechnic University,
which in 2019 celebrates its 120th anniversary.

The CPS&C’2019 was dedicated to the 35th anniversary of the partnership
relations between Peter the Great St. Petersburg Polytechnic University and Leibniz
University of Hannover.

This conference draws upon the experience of previous major events that
focused on information technologies, system analysis, engineering, and control and
were hosted by Peter the Great St. Petersburg Polytechnic University in partnership
with leading European and Russian academic institutions. The most significant in
the series of these events were such annual events as the International Conference
on System Analysis in Engineering and Control (since 1998), the Distributed
Intelligent Systems and Technologies Workshop (since 2008), the International
Scientific Symposium on Automated Systems and Technologies (since 2014), and
the International Conference Network Cooperation in Science, Industry and
Education (in 2016), each attended by hundreds of participants.

The cyber-physical systems (CPSs) are a new generation of control systems and
techniques which help promote prospective interdisciplinary research. A wide range
of theories and methodologies are being investigated and developed in this area to
tackle various complex and challenging problems. Therefore, CPSs can be con-
sidered as a scientific and engineering discipline that is set to make an impact on
future systems of industrial and social scale characterised by deep integration of
real-time processing, sensing, and actuation into logical and physical heterogeneous
domains.

The CPS&C’2019 aimed to bring together researchers and practitioners from all
over the world and to reveal cross-cutting fundamental scientific and engineering
principles that underline the integration of cyber and physical elements across all
application fields.

Participants of the conference represented research institutions and universities
from Austria, Belgium, Bulgaria, China, Finland, Germany, the Netherlands,
Russia, Syria, Ukraine, the USA, and Vietnam.
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The book of proceedings includes 75 papers, arranged into five chapters,
namely: Keynote Papers, Fundamentals, Applications, Technologies, and
Education and Social Aspects.

Michael Krommer
Dmitry G. Arseniev
Ludger Overmeyer

Conference Co-chairs
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Seamless Data Integration
in a CPPS with Highly Heterogeneous
Facilities - Architectures and Use Cases

Executed in a Learning Factory

Rudolf Pichler1(&), Lukas Gerhold2, and Michael Pichler1

1 Graz University of Technology, Graz, Austria
{rudolf.pichler,michael.pichler}@tugraz.at

2 Siemens AG, Vienna, Austria
lukas.gerhold@siemens.com

Abstract. Facing the principal challenges of a Cyberphysical System (CPS) in
a manufacturing environment by establishing an appropriate universal and
scalable architecture the paper shows two explicit use cases of successfully
established communication lines (horizontal and vertical) that integrate facilities
derived from highly different domains, this all done at the Learning Factory at
Graz University of Technology. In present time effective Cyberphysical Pro-
duction Systems (CPPSs) live on the pervasive and seamless data integration of
its data generators and receivers mainly facilitated by the Linkage Part of a
CPPS. The connectivity, its semantic interoperability and the scalability need
well-designed concepts and architectures because of the existence of too many
standards and protocols. The challenge increases significantly if the network
should be set up with facilities from many different suppliers and their propri-
etary standards. At the Learning Factory of Graz University of Technology the
integration of most heterogeneous products at the office floor and at the shop
floor is a major part of its research. The paper presents two solutions in form of
“Use Cases,” representing an innovative concept for both the vertical and the
horizontal integration. Usage of an Enterprise Service Bus at the office floor and
the installation of the “KEPServerEX”- middleware at the shop floor are selected
core approaches for creating a representative CPPS.

Keywords: CPS in manufacturing � Cyberphysical production systems �
Learning factory � Heterogeneous IoT � Data capturing � Robot control � OPC
UA � MindSphere � KEPServerEX � PdM WebConnector

1 CPPS – The CPS in Manufacturing Environments

Cyberphysical Systems (CPSs) are engineered systems that are built from and depend
upon the integration of computational algorithms and physical components [19]. CPSs
enable capability, adaptability, scalability, resiliency, safety, security and usability that
will far exceed the simple embedded systems of today [13]. Typical and well-known
applications of CPSs are the arenas of Smart Mobility, Smart Health, Smart Grid, Smart
Cities and Smart Factory. All of them take their technical and economic advantage out
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of the seamless integration and interoperability of their real-world processes and their
computed virtual processes. Such configurations are supposed to lead to higher
transparency, enable a better understanding and end up in a well-grounded and faster
decision taking, this all meant for improving the regarded system.

In concerns of manufacturing, a CPS turns into a Cyberphysical Production System
(CPPS), which more or less carries the same principles and characteristics as a CPS but
concentrates on the specific tasks of fulfilling future-oriented, competitive production
processes. Such CPPS – or Smart Factories – have to regard also the duties of the
whole supply chain, the quality management and many other service-oriented pro-
cesses. A meaningful CPPS need its horizontal integration (shop floor integration) as
well as the link to the commercial and supervising levels of a company with the need of
a vertical integration (office floor integration).

1.1 Typical Setup and Components of a CPPS

The setup of a CPPS always is specific depending on its industrial sector; nevertheless
there always can be detected the same three categories of elements: the Physical Part,
the Cyber Part and the Linkage Part. Undoubtedly, the latter belongs to the most
challenging of them.

Regarding the physical world a CPPS is typically made by tool machines, welding
units, robots, shuttles, presses, tools, sensors, and actuators, as well as means of
metrology and logistics. It is mainly represented and visible at the shop floor but
contains also the IT-infrastructure hardware with computers, servers, monitors, gate-
ways and all kinds of connecting devices.

The cyber part of the CPPS mainly consists of software and assisting tools for
planning, modelling, analyzing, simulating and forecasting the relevant processes.
These are engineering tools CAD, CAM, and CAE, followed by business adminis-
tration tools like PLM, ERP, MES and ending up with high-level software applications
that provide services for data capturing, cloud computing, safety and security utilities.
The “digital twin” – representing either the full process or only an important section out
of it – should be mentioned here as one of the most popular cyber elements of a CPPS.

The last and highly essential part for a successful CPPS, the Linkage Part, is the set
and the match of communication standards and protocols, the usage of appropriate field
busses, middleware and a suitable control system. Only with these enablers based on an
appropriate architecture the whole system can turn into a living and effective CPPS.
“Interoperability goes beyond technology [28].”

1.2 Actual Status and Challenges of a Sound CPPS

Designing the architecture of a CPPS is not bound to the restricted communication lines
of the traditional automation pyramid any longer, decentralization and completely new
control loops can take place ongoing [17]. Nevertheless, the challenges for the
establishment of a well working CPPS did not really decrease. The reasons for this are
manifold, the expectations towards it quite often are over exaggerated [16].
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The brownfield situation, where facilities of older generations cannot even offer any
interface for communication, is not going to be discussed in this paper. However, even
the focus on green field applications, where up-to-date technology promises advanced
communication features and interoperability between systems, the realization of a fully
integrated CPPS likely becomes hard work.

The big variety and complexity of a CPPS already derives from the necessity of so
many different components, devices and facilities and consequently the high variety of
suppliers. So it is no surprise that for all these future elements of the CPPS, the same
standardized programming tools and interfaces are not automatically given. At this
stage, the repeatedly mentioned lack of standards has to be commented on. The reality
shows that it is quite the opposite: there is a much too high number of upcoming
standards that are mainly all incompatible (see e.g.: IEC 61158 with 19(!) different field
busses [18]).

So it is even hard for suppliers of such “things” to decide which communication
standards there should be offered, not to speak about the customers that are confronted
with an uncontrolled growth of possibilities, especially when being at the start of
establishing a CPPS.

In the meantime, selected architectures, communication standards and protocols
including valid and semantic descriptions of the data [6] come out on top (e.g. OPC-
UA, MT-Connect, MQTT). Service-Oriented Architectures (SOAs) have become
powerful tools for creating open and scalable CPPSs in order to integrate so many
foreign worlds. Nevertheless, there is still a lot of work to do in alignments for
achieving the desired full horizontal and vertical integration [29]. Especially the add-
ons of a modern structured cognitive production system – this accompanied with the
demands of increasingly time-critical, safety- and security-oriented processes – turn out
to be more than a challenge [23, 24].

2 Research in the CPPS of a Learning Factory

2.1 Introduction of the Research Field Smartfactory@tugraz

The smartfactory@tugraz (brand name for the Learning Factory at Graz University of
Technology) provides various technological and CPPS-related topics for its researchers
and visitors. There is established a full range production line for producing wave gears
in diverse variants as objects demonstrator. The production of these variants follows a
lot-size-1 sequence in order to show the capabilities of the OT and IT for acting agile.
The fundamental facilities of the smartfactory@tugraz are three tool machines, a tool
measurement device, a coordinate measurement machine, an assembly line with six
robots, one screwing and two pressing units and an AGV for intralogistics services
(Fig. 1).
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2.2 Working with Heterogeneous Facilities and Data Formats

Whilst industrial companies deeply avoid working with heterogeneous vendors of
facilities and IT standards because of high integration and education efforts, the
smartfactory@tugraz intentionally builds up a highly heterogeneous environment for
manufacturing and assembly in order to face exactly these scientific challenges when
going into research and development.

As for the shop floor the three tool machines are equipped with PLCs from Mit-
subishi once and Sinumerik 840D sl twice. Its data protocols are MT-Connect and
OPC-UA. Furthermore, there is a multisource fleet of robots coming from Stäubli,
Fanuc, Kuka and Universal Robots, most of them communicate with “OPC-UA,” but
Fanuc, e.g., carries the drivers for the “GE Ethernet.”

At the office floor, the learning factory is working with three major software
packages also coming from three different suppliers, the PLM from Siemens, the ERP
from proALPHA and the MES from Solidat. Also, in this case there is a confrontation
with the problem: how can a seamless data flow be realized starting from the PLM,
going down to ERP and MES to the shop floor and back? How can data capturing from
such different machinery work? How can these data be transferred to diverse cloud
applications for analysis purposes?

3 IT-Network Architecture of the Learning Factory

In general, the IT network architecture of the smartfactory@tugraz [29] consists of two
major parts: the “Office Floor” and the “Shop Floor”. As a principal for creating a
scalable and expandable solution, the Service-Oriented Architecture (SOA) was set as
the basic approach. As long as both major parts have their specific requirements (e.g.
real time execution and safety options preferably at the shop floor, security and out-
bound connectivity feature more at the office floor), the implementations (see Fig. 2)
will be regarded separately.

Fig. 1. Insight of the Learning Factory smartfactory@tugraz in Graz, Austria
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At the Office Floor an Enterprise Service Bus (ESB) with the name “PdM
WebConnector (PWC)” integrates and conducts the data exchange between the soft-
ware domains of PLM, ERP and MES. This is highly relevant because one of the
commands of the Learning Factory is that any master data is allowed to be put into the
system only once. Going on this master data must be available for all participating
clients in the CPPS in a consistent manner. The PWC enables this required connec-
tivity in executing data mediation, data mapping and data transformation.

At the Shop Floor at a final stage – from the Connectivity Platform upwards –

OPC UA is used as a communication standard. The strengths of OPC UA standard
definitely lie in the modelling of informations for vertical and horizontal communi-
cation by providing semantic interoperability and the advanced data security [4, 18,
22]. Also, at the machine level there are mainly devices with OPC UA protocol but not
only, because the Learning Factory intentionally wants also to show the way of inte-
gration with heterogeneous participants. This all is done via mighty middleware located
at the server of the Connectivity Platform (see Sect. 4.2 for more details).

4 Use Cases of Mastering Heterogeneous Environments

For a Learning Factory the research in finding solutions for a consistent data flow and
the interoperability of all its CPPS “Things” must end up in proven and robust
implementations that could be demonstrated for students and interested industrials.
That is why the smartfactory@tugraz has been setting up a couple of so-called “Use
Cases” that all follow a certain choreography for best didactic transformations.

Fig. 2. General architecture of the Learning Factory
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In this paper there should be introduced two Use Cases that correlate with the topic
“Integration of heterogeneous facilities”. One will be a representative for the horizontal
integration and a second one for the vertical integration. The titles of these Use Cases
are:

• Foreign Domain-Guided Control of Robots;
• Cloud-Oriented Data Capturing at High Diversity.

4.1 Foreign Domain-Guided Control of Robots

When buying a robot companies must pay attention to the programming, operating and
maintenance skills of the inhouse workers in order to keep education, training and
operating efforts low. This consequently leads to a monoculture of infrastructure
instead of decisions for an even better and more appropriate type of machinery.

This Use Case is a specialty for working with robots from different suppliers though
not being educated or experienced in a broad band of knowledge in all these products.
The only requirement for this is to be acquainted with the TIA-Portal (by Siemens) or
the programming of Sinumerik 840D sl. With these skills alone, it is possible to
actually program and run robots of Kuka, Stäubli and Denso types (Yaskawa is in
preparation). Figure 3 shows the set up for achieving the required interoperability with
an example connecting a Stäubli robot.

The interoperability between the Stäubli robot and a standard industrial PLC – in
this case Simatic or Sinumerik – is based on the Stäubli product “uniVAL PLC”.
(Kuka, Denso and Yaskawa provide comparable products). It connects the additional
necessary components like the PLC (S7-1500F), the I/O device (ET 200SP) and both

Fig. 3. Data flow from user interface at tool machine to the robot
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variants of HMI (small, mobile, with emergency switch OR big and multifunctional)
via Profinet. The programming of the working routines is done via either HMI or the
TIA Portal. In case of an off-line programming, the program is directly transferred to
the PLC. One PLC can control up to five different robots.

In case of running the Stäubli robot from the HMI of a tool machine, the principles
and connections are the same. The HMI of the tool machine then is conformed to the
“HMI 1500 comfort panel” of the diagram in Fig. 3. This shown case receives realistic
importance especially when tool machines are going to be equipped with robots for
loading and unloading parts and tools.

4.2 Cloud-Oriented Data Capturing from Facilities with a High Diversity
in Protocols and Drivers

The goal of this Use Case is successful verification of data capturing though meeting
highly heterogeneous data generators at the shop floor and transferring these data into
specified clouds with the purpose for ongoing data analytics. Final output of this
conception of data capturing is the enhancement of production efficiency and main-
tenance processes.

Aside the general challenge of allocation and distribution of correct data in a CPPS,
another central problem is the standardization of data collection [31]. This task par-
ticularly requires new approaches if the addressed data generators are highly hetero-
geneous like it is done at smartfactory @tugraz with intention. Actually the
infrastructure at the shop floor (see Fig. 4) is made up by machinery and robotics with
not only the OPC-UA standard but also an MT-Connect protocol and the Fanuc robots,
which do not run on Profinet but on the GE Ethernet field bus and its proprietary
drivers.

With the target to unify all protocols of the shop floor for the OPC-UA standard
(preferred because of its most flexible, powerful and secure features) before finally
uploading it to diverse cloud applications there could be found a powerful middleware
with the name “KEPServerEX” (see Ref. [11]). It fulfills the desired alignment of data
formats by structuring, renaming and converting the raw data from their former
exchange format. It provides access to more than 150 protocols (proprietary and IT-
protocols) and enables communication with devices and systems from all major
automation vendors. This additionally ensures the important scalability of such an
architecture. With this tool the add-on of any facility of any origin can be done quite
easily without irritation of the existing architecture.

Within the architecture of the smartfactory@tugraz with all this data, there will be
addressed two clouds. First, there is the open IoT platform “MindSphere” that collects
and saves all defined data from the shop floor in a big data table. Before entering the
“MindSphere” cloud all data coming from the “KEPServerEX” Server have to pass a
gate called “Mind Connect Box” (see Fig. 4). Access to the data stored in MindSphere
is operated via certain Apps which do not necessarily need to be of Siemens origin but
can be programmed by any company or user. A second and parallel cloud application
with an Apache Hadoop infrastructure is set up by the partner T-Systems in order to
provide support in terms of Big Data Analytics.

Seamless Data Integration in a CPPS 7



Figure 4 (right side) shows that even data coming from facilities already equipped
with OPC UA protocol run via the KEPServerEX Server though its data would not
need any data transformation anyway. The reason for this preferred routing is, firstly,
the possible use of the additional KEPServerEX functions in managing the defaults and
parameters for the data capturing of the whole shop floor and, secondly, the possibility
to have all (!) devices interconnected for data transfer.

The data flow at the outer left side shows a direct connection to the clouds via short-
cutting the KEPServerEX Server. This application is bound to additional preconditions.
First, the integrated facility must work on Sinumerik 840D sl and, second, there is the
need of an additional Siemens Edge Device, mostly applied directly at the machine.
This Edge Device includes functionalities of the otherwise usual “Mind Connect Box”
as a pre-processor before entering MindSphere. The only reason and advantage of such
a solution is the high possible data transfer rate of only 2 ms instead of normally
100 ms.

5 Conclusions

Effective CPPSs live on the pervasive and seamless data integration of its data gen-
erators and receivers (Things) mainly facilitated by the Linkage Part of a CPPS. The
connectivity, its semantic interoperability and the scalability need well designed con-
cepts and architectures not because of lacking standards and protocols but – just the
opposite – the existence of too many of them. The challenge increases significantly if
the network should be set up with facilities from many different suppliers and their
proprietary standards.

Fig. 4. Middleware “KEPServerEx” for harmonizing and translating diverse protocols
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At the Learning Factory of Graz University of Technology, the integration of most
heterogeneous products at the office floor and at the shop floor is a major part of its
research. The paper presents two solutions in the form of “Use Cases”, one representing
an innovative concept for the vertical and another for the horizontal integration. Usage
an Enterprise Service Bus at the office floor and the installation of the middleware
“KEPServerEX” in the shop floor are the selected core approaches for creating a
representative CPPS.
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Abstract. Control of structurally-complex industrial and technological objects
belongs to the class of problems of intelligent control, which demands making
decisions in states of uncertainty. Further development of this industry will be
associated with technologies of intelligent control based on knowledge. Such
technologies use methods, models, and algorithms extracting and accumulating
knowledge needed to find optimal decisions. Intelligent control theory is based
on learning surrounding world and adapting to changes in the process of
reaching the defined goal. In this paper we consider a cognitive approach to
learning developed following the human cognitive ability and a scientific
method of physics. The cognitive approach opens new wide directions towards
control of industrial objects and situations that are not well structured and
difficult to formalize, especially in real-life circumstances with significant
uncertainty. A class of cognitive model control agents based on the principles of
learning is described in the paper. Cognitive agents are such kind of agents that
are learning from their surrounding and modifying their actions to achieve the
goals; this type of agents enables solving problems in a wide area of control in
the presence of uncertainty.

Keywords: Artificial Intelligence � Theory of control � Cognitive models �
Cognitive agents � Hierarchy of industrial or technical systems � Cyber-physical
system

1 Introduction

Artificial Intelligence (AI) and Intelligent System (IS) are central notions in current
theory of control system [1]. Intelligent system is capable to function autonomously, by
learning its surrounding, adapting to changes, and reaching defined goals [7]. Other
researchers consider as key to intelligence the ability to accumulate knowledge, define
aims, and plan actions [1]. At present, widely used is the notion of cognitive agent, i.e.,
such a kind of agent that is learning the surrounding and modifying its actions to
achieve the goals [7, 15]. Cognitive agents capable of reaching goals in varying situ-
ations are the most perspective class of mathematical models of intelligent control
[1, 11–13].
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A key principle of intelligent control is control based on knowledge [9]. Existence
of knowledge of how to make the best control decisions in the presence of uncertainty
is the foundation of intelligence. Thus learning, or accumulation of knowledge is the
foundation of intelligent control [8, 14].

There are two aspects of knowledge that agents use for making good decisions.
First, the agent must be in a possession of rules for making good decisions. Second,
surrounding circumstances are changing, therefore agents should be able to adapt to
these changes. Future intelligent systems will combine learning from data by estimating
probability densities with learning from a language text. These ideas were previously
discussed in the works of the authors [3–8, 10].

It is assumed that the intelligent control agent receives certain information about the
current state of the surrounding, defined as situation Si, as well as actively uses the data
to interact with the surrounding. Knowledge of regularities, determining the cause-
effect relationship between events in a specific situation and enabling to predict various
situations or controlled objects development, is the base that a control agent uses to
elaborate efficient strategies for making the best – optimal-control decisions. This
information exactly refers to the knowledge or representations of control agent cog-
nitive capacities.

Cognitive control agents key characteristics are the autonomous character and
purposefulness of actions. This means autonomous commands execution based on a
targeted, problem-oriented reasoning. As the main characteristics of a cognitive
intelligent agent are also considered autonomous, in which the intelligence is associated
with autonomous perception and reasoning, with making decisions and actions in the
states of uncertainty of the surrounding. In this case, critical for a cognitive agent
becomes its ability to acquire knowledge through learning: that is, the ability to learn.
Such ability requires the possibility to extract, accumulate and apply knowledge used
for control. Such cognitive agents are able to learn and to be aware of their surrounding
and adapt to it, and change it on the account of knowledge accumulated in the func-
tioning process and acquired skills. A cognitive process is a process by which an
autonomous artificial system perceives the surrounding, gains experience through
learning, predicts the result of the events, acts and adapts to changes in the surrounding.

2 Formulation of the Problem

We consider a cyber-physical system that controls the hierarchy of industrial or
technical systems [5]. Possible system states are estimated by clustering available data
(x1, …, xn), where xn are characteristics of agents and states of technical systems.

A powerful clustering method is dynamic logics (DL), using the Gaussian mixture
model [6]. In this model, every cluster m is characterized by a Gaussian likelihood:

lðnjmÞ ¼ 1
2p

� �0:5d

Cmj j�0:5exp � 1
2
ðxn �MmÞTC�1

m ðxn �MmÞ
� �

:
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Here M and C are the mean and covariance parameters of the Gaussian likelihood.
In addition, every cluster is characterized by its rate:

rm ¼ Nm=N;

where Nm is the number of data points belonging to the cluster and N is the total
number of data points.

DL algorithm for estimating likelihood parameters starts with arbitrary values of
unknown parameters r, M, C.

The next step is to compute association variables:

f ðmjnÞ ¼ rmlðnjmÞP
m0

rm0 lðnjm0Þ :

Using these association variables data points in the cluster and rates are computed:

Nm ¼
X

n
f ðmjnÞ; rm ¼ Nm=N:

Next, the mean value is computed:

Mm ¼ 1=Nmð Þ
X
n

f mjnð Þxn;

as well as the covariance:

Cm ¼ 1=Nmð Þ
X
n

f mjnð Þ xn �Mmð ÞT xn �Mmð Þ:

Having parameters of clusters, it is possible to evaluate the total likelihood of all
defined clusters. The total number of clusters will be defined by maximizing the total
likelihood.

The clusters make up the system states; they are denoted by:

S ¼ \s1; . . .; sm [ :

These estimated states represent one aspect of knowledge. Another aspect of
knowledge consists of selecting control actions u(t) at every moment t.

A control action u(t) transforms the state s(t) into sðtþ 1Þ. Beginning with the
initial state s(1) at the moment t ¼ 1, the system goes to the state uð1Þsð1Þ ¼ sð2Þ.

The results of actions u(t) at every state si are considered to be known; they are
derived from the system model. We also know the system gain g(i, j) derived from
transforming any state si into sj. The system goes through the following states

sð1Þ; uð1Þsð1Þ ¼ sð2Þ; uð2Þsð2Þ ¼ sð3Þ; . . .; uðTÞsðTÞ ¼ sðfinalÞ:

The optimal control, therefore, consists of maximizing the total gain over the time T:
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GðTÞ ¼ gðt ¼ 1; t ¼ 2Þþ gðt ¼ 2; t ¼ 3Þþ . . .þ gðt ¼ T ; t ¼ finalÞ:

This gain is maximized by selecting actions uð1Þ; uð2Þ; . . .; uðTÞ at every moment t.

3 Cognitive Control Agent

Cognition, considered in the context of the agents’ ability to make conclusions about
things and events in the world around them, as well as the ability to learn its sur-
rounding, are the most important characteristics of the intelligent control concept [3].
We suppose that cognitive agents that are capable of automatic accumulation and use of
knowledge for making better control decisions, represent the next step in the devel-
opment of distributed control systems. Such agents have adaptive capabilities that
provide efficient activity of devices and systems in a dynamically changing
surrounding.

An agent’s knowledge represents its awareness of the surrounding and itself. We
consider the knowledge of the i-th agent as its ability to display the current situation St,
defining agent’s interaction with the surrounding or a controlled object, as some
action At:

wi : Si ! Ai;

which, in its turn, is directed to the agent’s (or system of agents) reaching the defined
goal, i.e., target state:

SG ¼ f St;Aið Þ: ð1Þ

The current situation Si is perceived by an agent through its receptors, i.e., sensors,
as a certain set of measured during the time interval ti; ði ¼ 1; 2; . . .;mÞ values, i.e.,
parameters/signs zkðtlÞ; k ¼ 1; . . .;K which are the base for making a certain evaluation
Qt of the current state or the surrounding of the controlled object:

~Qt ffi Si;

where estimation of current state ~Qt may be evaluated by feature vectors Zti as:

~Qt � Zti ¼ z1 tð Þ; . . .; zk tð Þ½ �T ; . . .

In the essence, transition to a new state reflects agent’s achievement of certain
equation u � {Rl}, which is defining the f-transformation operator of the current sit-
uation Si, represented in a specific way of a characteristics of the “agent-surrounding”
state or the “controlled object” Q = {qk}, to the control command U triggering the
controlling rules. In this context, we consider the knowledge of a w agent Ai as a
multitude of rules {R} defining the displays of “signs of situation” (controlled object
states) in action (set of control decisions):
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