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Preface

The subject of the book is the theory and practical applications of dynamic 
temperature sensing (DTS) in the context of high voltage (HV) power cables. 
The book is addressed to cable system design engineers, cable manufacturers, 
electric power system operators, engineering students, and scientists. This is 
the first book addressing a subject of the application of the DTS in HV power 
cables. DTS systems are used to obtain the temperature readings from the fiber 
optic sensors either built‐in within the cable or placed on its surface or in close 
vicinity. Great majority of new HV cables are manufactured today with the 
fiber built‐in. However, in order to take full advantage of this technology, the 
owner of the cable needs to familiarize himself/herself with the possibilities it 
offers. Hence, the book explains the physics of the DTS measurements and 
offers plenty of practical information about the costs, installation procedures, 
maintenance, and various applications – focusing on dynamic cable ratings.

The book is aimed as a primary source about the new area of temperature 
measurements for many different groups. The first group are cable 
manufacturers, who not only produce the cables with fiber optic links but also 
often offer the DTS and real time thermal rating (RTTR) systems themselves. 
The second group will be the DTS manufacturers. There are many companies 
around the world offering this technology. They usually understand the physics 
of the temperature sensing but have a limited knowledge of the utility practices, 
test and quality requirements, and possible rating applications.

The book is also addressed to the cable engineers. These will be utility 
personnel, contractors, and cable system designers. They usually understand 
the need for such systems, their output, and test requirements. However, they 
may lack the knowledge of the physics involved and the book will help them in 
understanding the opportunities and the limitations of the technology.

Another important group of readers will be comprised of the university 
students and their teachers. The book will help them appreciate the utility 
perspective in the application of the DTS technology. The book also has the 
classroom potential. It would particularly be useful for all the courses related to 
cable technology. This would include courses on cable construction, heat 
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transfer phenomena in power cables, calculation of current ratings of electric 
power cables, and also design of ac and dc submarine cables that are being 
increasingly used to interconnect export from off-shore wind parks.

Considering the advantages that fiber optic sensors have to offer, it is not 
surprising their proliferation in a wide variety of modern industries. This book 
concentrates on the application of this technology in the electric power sys-
tems. It is organized as follows:

Chapter 1 contains introduction to fiber optic sensing with examples of sev-
eral application fields not related to the power systems.

Chapter 2 provides a brief overview and talks about the distinction between 
single point and distributed measurements and discusses the advantages and 
disadvantages each of such systems offer.

Chapter  3 discusses the concept of distributed temperature sensing and 
describes what constitutes such a system as well as its architecture as used in 
the electrical power industry.

Chapter  4 introduces the reader to the optical fibers, connectors, optical 
cable construction, and provides some illustrations of these systems.

Chapter 5 provides examples of how optical fibers are incorporated into the 
land and submarine cables. It also discusses the advantages and disadvantages 
of various fiber locations inside and outside the power cable.

Chapter 6 discusses the DTS system requirements and reviews the standards 
for the electromagnetic compatibility. It presents the architecture of a DTS 
system and how it is integrated into a utility environment. Some of the chal-
lenges with this integration and data interpretation are also discussed.

Chapter 7 provides information of the importance of site testing of a DTS 
system and challenges that a utility may face with the site commissioning tests.

Chapter 8 discusses the relevance and importance of the DTS system calibra-
tors. It also reviews the benefit of such systems and talks about the mainte-
nance issues.

Chapter 9 illustrates how the temperature data may be utilized by the asset 
owner to optimize the use of their resources and discusses the dynamic circuit 
ratings of power cables with the data provided by a DTS system.

Chapter 10 Provides several examples of application of DTS systems in a 
utility environment. It includes a description of retrofitting of the fiber optic 
cables into existing cable circuits.

Chapter 11 provides some examples of potential future uses of the distrib-
uted fiber optical cable system for strain measurement and acoustic applica-
tions in power cables.

A large part of the material covered in this book was derived from various 
projects conducted by British Columbia Hydro (BCH) and from the work per-
formed by various CIGRE and IEEE Working Groups of which the authors of 
this book were the members. The authors are indebted to Landry Molimbi and 
Masaharu Nakanishi, members of the CIGRE WG B1.45, who provided 
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background material used in Chapters 4, 7, and 8 of this book. Frequent discus-
sions with DTS vendors contributed greatly to the development of many pro-
cedures described herein. In addition, we could have not written this book 
without an involvement and close association with several individuals who 
contributed their ideas and took the time to read the manuscript. We are par-
ticularly indebted to Dr. M. Ramamoorty and Chris Grodzinski, who have 
reviewed the entire manuscript and provided several helpful comments.

We would also like to acknowledge the support the authors have received 
from the Standards Council of Canada (SCC) and several Senior Managers 
from BCH, as well as the financial assistance of SCC and BCH in supporting 
our participation in the activities of WG 10 of the IEC and WG B1.45 of CIGRE 
over many years.

Finally, but by no means last, we would like to thank our families who supported 
wholeheartedly this endeavor.

Vancouver and Toronto� Sudhakar Cherukupalli
George J. Anders 
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Today, fiber optic (FO) sensors are used to monitor large composite aircraft 
structures, concrete constructions, and to measure currents in high‐voltage 
equipment. They are also applied in electrical power industry to measure 
electric fields as an alternate to current and voltage transformers. They are also 
finding many applications in the field of medicine, chemical sensing, as well as 
to monitor temperatures around large vessels in the oil and gas processing 
industries. There have been recent attempts in Japan to monitor the wings of a 
fighter aircraft to monitor dynamic strain and temperatures when the aircraft 
is taking off and landing to better understand the load and temperature‐
induced stresses and how these affect fatigue performance. Considerable work 
is underway to map strain in large composite and concrete structures.

Research on the application of FO sensors (FOSs) has been conducted over 
many years. They were first demonstrated in the early 1970s (Culshaw and 
Dakin 1996; Grattan and Meggitt 1998) and are the subject of considerable 
research since 1980s. Early applications were focused on military and aerospace 
uses. FO gyroscopes and acoustic sensors are examples, and they are widely 
used today. With the increase in the popularity of FOSs in the 1980s, a great deal 
of effort was made toward their commercialization with an emphasis on the 
intensity‐based sensors. In the 1990s, new technologies emerged, such as in‐
fiber Bragg grating (FBG) sensors (Morey et al. 1989; Rao 1997), low‐coherence 
interferometric devices (Grattan and Meggitt 1995; Rao and Jackson 1996), and 
Brillouin scattering distributed sensors (Bao et al. 1995). Dramatic advances in 
the field of FO sensors have been made as a result of the emergence of these 
new technologies leading to a significant proliferation of their use.

FO sensors offer significant advantages over conventional measuring devices, 
most important of which are: electromagnetic immunity (EMI), small size, 
good corrosion resistance, and ultimate long‐term reliability. For example, 
FBG sensors offer a number of distinguishing advantages including direct 
absolute measurement, low cost, and unique wavelength‐multiplexing capability. 

Application of Fiber Optic Sensing



1  Application of Fiber Optic Sensing2

These new measuring technologies have formed an entirely new generation of 
sensors offering many important measurement opportunities and great poten-
tial for diverse applications.

This book is devoted to the application of the FO technology in electric 
power cables. However, before we tackle this subject, we would like to offer a 
brief review of the application of this technology in other fields. In the follow-
ing sections, an attempt is made to provide an overview of the types of FO 
sensors and we will list some of the industries where FOSs have been applied. 
These include:

●● Oil and gas industry
●● Fire detection and integrating them with the firefighting equipment
●● Large composite structure such as bridges and dams
●● Mines
●● Aircraft industry
●● Medicine
●● Power industry

1.1  Types of Available FO Sensors

One of the first applications of FOSs involved the, so‐called, limit sensors with 
an ability to detect motion beyond a certain limit and initiate action once this 
limit is exceeded. These types of sensors can be used for monitoring linear or 
rotational motion. Another type of an early application is a level sensor when a 
solid or a liquid rises or falls beyond a set point. Proximity sensors use infrared 
emission, reflection, or pressure change to perform such detection without 
the need for any physical contact. Another example involves a beam of light 
crossing a doorway. Beam interruption can be detected by a photo sensor and 
trigger an alarm. This application is typically used in the process industry for 
counting or having access control.

Another class of sensors uses FOs for linear or angular position control. One 
may have an array of optical fibers that are placed in parallel. The object to be 
detected when passing this array of sensors may alter the transmission or 
reflection of light. The sensor processing electronics can then infer the proper 
position of each object within the sensing region. In this case, the resolution of 
the detected positions will depend on the spacing between the sensing points. 
This idea has been extended by placing fibers in an angular fashion and 
has been used to detect or establish the angular position of a gear on drive 
systems.

FO sensors have also been used to measure linear as well angular speed or 
velocity of shafts (tachometers). Some of them use Doppler phase shift methods 
for such measurements.
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A FO gyroscope is another type of sensor. It consists of a coil, either polariza-
tion preserving or not, of optical fibers in which the light is simultaneously 
propagating in the clockwise and counterclockwise directions. The SAGNAC 
effect induces a differential phase shift between the clockwise and counter-
clockwise guided waves in the rotating media. The phase difference in the 
detected signal is converted into a rate or angle of rotation. Examples of this 
application are the Brillouin or resonant FO gyroscopes.

Optical fibers have also been used for temperature sensing. They may be 
broadly classified as FBG devices. Phosphor coated, Fabry–Perot cavity termi-
nated, or thermo-chromatic terminated optical fibers are some examples of 
such point sensors. In the electric power industry, these devices have been 
used to measure transformer winding temperatures.

Another class of temperature sensors are the distributed FO temperature 
devices. These are broadly classified as based either on the Raman scattering or 
Brillouin principles. Laser light injected into a fiber is continuously scattered. 
This backscattered light is used for calculating temperature profiles along the 
fiber. Brillouin scattering exhibits sensitivity to temperature as well as strain, so 
care has to be exercised when interpreting the temperature data. Devices based 
on Raman scattering fall into two principal categories: those that rely on the 
optical time domain reflectometry (OTDR) while the others use the optical 
frequency domain reflectometry (OFDR). It is the latter that provides the 
highest spatial resolution along a fiber.

While discrete monitoring based on FBG FO system has been and is continued 
to be used, it is expected that the distributed FOSs will play a more important 
role in health monitoring of large structures, such as dams, because the use 
of a single fiber makes installation easy with the ability to measure over long 
distances. While considerable advances have been made in measuring strain, 
the effects of temperature‐induced strain appear elusive especially when one 
needs to improve spatial resolution and accuracy. Because of its complexity, 
simultaneous measurement of multi‐axis strain and temperature in compos-
ites remains a major challenge for the optical fiber sensors community.

Because of a spate of explosive in‐service failures of the 525 and 800 kV 
oil‐filled current transformers in the late 1990s, the industry was looking for 
alternate devices that could provide accurate current measurements with a 
dynamic rating ranging from several 1000s to several 100 000s amperes. This 
led to the development of FO electric current sensors based on the Faraday 
effect. After more than two decades of development, they have successfully 
entered the market. At the University of British Columbia in Canada, Dr. Jaeger 
and his research team developed an electric field or voltage sensors and had 
conducted several field tests to prove the concept and develop a practical system. 
These systems were placed in the local utility’s 500 kV substation on a trial 
basis (Jaeger et al. 1998). Further collaborative efforts led to the development 
of integrated electro‐optic voltage and current sensors. Initially, the challenge 
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with these systems appeared to be their inability to match the needs of 
the  conventional protection equipment that required 120 V and 5 A input 
signals. In parallel, the modernization of the electric power grid and changes 
that occurred with the development for solid‐state relays, which now require 
lower voltage (~5 V) and current signals (100 mA), the devices developed 
at the university became more appealing to the industry. Moreover, these 
electro‐optical devices provided higher sensitivity, improved frequency 
bandwidth, with significantly improved EMI. This led to general acceptance 
of electro‐optical devices for current and voltage measurements in the power 
industry.

For medical applications, extrinsic FOSs based on multimode fiber transmission 
have matured. A number of FBG temperature and ultrasound sensor systems 
have been developed. With further engineering, it is anticipated that these sys-
tems could be used for in‐vivo measurement of temperature or/and ultrasound 
as well as blood pressure in the heart and other organs. In chemical sensing, 
FOSs based on evanescent wave coupling is still under development.

The following sections describe in more detail the application of the FO 
sensors in various industries.

1.2  Fiber Optic Applications for Monitoring 
of Concrete Structures

When compared with traditional electrical gauges used for strain monitoring 
of large composite or concrete structures, FOSs have several distinguishing 
advantages, including:

●● A longer lifetime, which could probably be used throughout the working 
lifetime of the structure (e.g. >25 years) as optical fibers are reliable for 
long‐term operation over periods greater than 25 years without degradation 
in performance.

●● A greater capacity of multiplexing a large number of sensors for strain 
mapping along a single fiber link, unlike strain gauges, which need a huge 
amount of wiring.

●● Greater resistance to corrosion when used in open structures, such as bridges 
and dams.

●● A much less intrusive size (typically 125 mm in diameter – the ideal size for 
embedding into composites without introducing any significant perturbation 
to the characteristics of the structure).

●● A much better invulnerability to electromagnetic interference, including 
storms, and the potential capability of surviving in harsh environments, 
such as that encountered in the nuclear power plants (Townsend and Taylor 
1996).
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These features have made FOSs very attractive for quality control during 
construction, health monitoring after building, and impact monitoring of 
large composite or concrete structures (Udd 1995). Since the use of FOSs in 
concrete was first suggested in 1989 (Mendez et al. 1989) and the demonstra-
tion of embedding a FO strain sensor in an epoxy–fiber composite material 
was reported in the same year (Measures 1989), a number of applications 
of FOSs in bridges, dams, mines, marine vehicles, and aircraft have been 
demonstrated.

One of the first monitoring demonstrations for large structures using FOSs 
was a highway bridge using carbon fiber‐based composite prestressing tendons 
for replacement of steel‐based tendons to solve a serious corrosion problem 
(Measures et  al. 1994). Because composite materials are not well proven in 
their substitution for steel in concrete structures, there is considerable interest 
in monitoring the strain and deformation or deflection, temperature, or envi-
ronmental degradation within these materials using an integrated FO sensing 
system. FBG sensors could be suitable for achieving such a goal. An array of 
FBGs has been attached to the surface of a composite tendon and the specially 
protected lead‐in/out optical fibers egress through recessed ports in the side 
of the concrete girders, as shown in Figure 1.1. However, if the FBG sensors 
could be embedded into the composite tendons during their manufacture, 
excellent protection for the sensors and their leads would be provided and 
done by (Measures et al. 1997).

Dams are probably the biggest structures in civil engineering; hence, it is 
vital to monitor their mechanical properties during or/and after construction 
in order to ensure the construction quality, longevity, and safety. FOSs are ideal 
for health monitoring applications of dams because of their excellent ability to 
be used in long‐range measurements. Truly distributed FOSs are particularly 
attractive as they normally have tens of kilometers measurement range with a 
meter spatial resolution. A distributed temperature sensor has been demon-
strated for monitoring concrete setting temperatures of a large dam in 
Switzerland (Thevenaz et al. 1999). This monitoring is of prime importance as 
the density and microcracks are directly related to the maximum temperature 
the concrete experiences during the setting chemical process.

FOS with Bragg gratings

Figure 1.1  Schematic diagram of a fiber Bragg grating sensor locations for strain 
monitoring on a bridge.
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This system has been used for concrete setting temperature distribution in a 
slab with dimensions of 15 m (L) × 10 m (W ) × 3 m (H ). These slabs are used for 
estimating the height of the dam in order to increase the power capability of 
the associated hydroelectric plant. The layout of an optical communication 
cable inside the slab is shown in Figure  1.2, which gives a two‐dimensional 
temperature distribution of the whole area. The fiber cable is installed during 
the concrete pouring. Figure 1.3 shows the temperature distribution over the 
slab at different times after concreting. It reveals that the temperature at the 
central area of the slab can be as high as 50 °C and it takes many weeks for this 
region to cool down.

Many research groups have demonstrated the “simple” operation of FBGs 
embedded in large composite or concrete structures for strain measurement. 
However, further work may be needed in order to produce a cost‐effective, 
multifunctional FBG multiplexing system that is able to measure static strain, 
temperature, and dynamic strain simultaneously with adequate resolution and 
accuracy. With such system, the FBG sensor would be able to realize its full 
potential and perhaps dominate the market for health monitoring of large 
composite and concrete structures in the future.
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Figure 1.2  Layout of an optical communication cable inside a concrete slab.
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1.3  Application of FO Sensing Systems in Mines

Measurement of load and displacement changes in underground excavations 
of mines and tunnels is vital for safety monitoring. Multiplexed FBG sensor 
systems could replace the traditional electrical devices, such as strain gauges 
and load cells, which cannot be operated in a simple multiplexed fashion and 
in a very hazardous environment with strong electromagnetic interference 
generated by excavating machinery. An FBG sensor system based on a broad-
band Erbium‐doped fiber source and a tunable Fabry–Perot filter has been 
designed for long‐term static displacement measurement in the ultimate roof 
of the mining excavations and in the hanging wall of the ore body’s mineshaft 
(Ferdinand et al. 1995). A specially designed extensometer with a mechanical‐level 
mechanism can cope with the large displacements of up to a few centimeters 
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Figure 1.3  Two‐dimensional temperature distribution in Luzzone dam during the concrete 
curing obtained with embedded fiber using Brillouin sensor.


