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Preface

Assuming some familiarity with Lebesgue measure, integration and related func-
tional analysis summarised in Chap. 2, this is an exposition of topics that arise
when identifying elements of the dual space of L1ðX;L;‚Þ with finitely additive
measures on a r-algebra L when the measure ‚ is complete and r-finite. Such a
representation has its origins in the independent work of Fichtenholz and
Kantorovitch [14] and Hildebrandt [20] and culminated in a general abstract theory
due to Yosida and Hewitt [35] in 1952. However, even now it is not unusual ([16] is
an exception) for books on measure theory to give a detailed account of the dual
space of LpðX;L;‚Þ, 16 p\1, while relegating the case p ¼ 1 to references, e.g.
[12, p. 296] which invokes the theory of finitely additive measures on algebras such
as is developed in [35].

An explanation may be that a study of finitely additive measures on algebras
necessitates a possibly unwelcome diversion from the mainstream theory of
countably additive measures that suffices for p 2 ½1;1Þ. Whatever the reason, a
consequence is that L1ðX;L;‚Þ� has acquired an aura of mystery, to the extent that
it is often not very clear beyond the mere definition what is meant by saying that a
bounded sequence in L1ðX;L;‚Þ is weakly convergent.

The aim here is to take Yosida and Hewitt theory on r-algebras beyond the
representation theorem for L1ðX;L;‚Þ�, pointing out some of its consequences for
measurable functions generally and in particular for weak convergence of
sequences in L1ðX;L;‚Þ. The target audience is anyone who feels nervous about
representing the dual of L1ðX;L;‚Þ by finitely additive measures in the knowledge
that there exist uncountably many, linearly independent, finitely additive measures
m> 0 defined on the Lebesgue r-algebra of ð0; 1Þ with the property that

Z 1�1
k

0
u dm ¼ 0 for all u 2 L1ð0; 1Þ and k 2 N; but

Z 1

0
1 dm ¼ 1: ð†Þ

An essential goal will be to come to terms with observations such as this one.
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In their seminal work, Yosida and Hewitt [35] studied general Banach spaces
L1ðX;M;NÞ of essentially bounded measurable functions, where measurability is
determined by an algebra M (closed under complementation and finite unions) and
essential boundedness is defined in terms of a family N � M (closed under
countable unions with the added property that A � B 2 N implies A 2 N ) that
mimics null sets. Obviously, L1ðX;L;‚Þ is a special case of L1ðX;M;NÞ but in
general no measure of any kind is involved in the definition of L1ðX;M;NÞ.
However, although [35] shows that the dual of L1ðX;M;NÞ can be expressed in
terms of finitely additive measures, the exposition here is restricted to L1ðX;L;‚Þ
because

properties of finitely additive measures on r-algebras are less circumscribed by hypotheses
than on algebras, and replacing the algebra M by a r-algebra L and N by the family of
null sets fE 2 L : ‚ðEÞ ¼ 0g, where ‚ is complete and r-finite, yields a theory which is
relevant in applications, including when X is a Lebesgue measurable subset of Rn or a
differentiable manifold, or when X ¼ N with counting measure.

For a r-finite measure space the ultimate aim is to develop theory sufficient to
characterise weakly convergent sequences in L1ðX;L;‚Þ in terms of their ‚-
almost-everywhere pointwise behaviour. However, in the process, when ðX; ‰Þ is a
locally compact Hausdorff topological space and ðX;B;‚Þ is a corresponding Borel
measure space, there emerges a natural way to localise weak convergence.
A sequence is weakly convergent in L1ðX;B;‚Þ if and only if it is weakly con-
vergent at every point x0 in the one-point compactification of ðX; ‰Þ. Here, weak
convergence at x0 is defined in terms of functionals which are zero outside every
neighbourhood of x0; for an example of such, see (†).

The essential range RðuÞðx0Þ1 of a Borel measurable function u at x0 is similarly
defined in terms of those elements of L1ðX;B;‚Þ� which are localised at x0. Since
it need not be a singleton, RðuÞðx0Þ can be interpreted as a multivalued repre-
sentation of the fine structure at x0 of u 2 L1ðX;B;‚Þ which is intimately related to
weak convergence.

The Literature

In her Foreword to the monograph by Bhaskara Rao and Bhaskara Rao [6], Dorothy
Maharam Stone cites Salomon Bochner as having said that “contrary to popular
mathematical opinion finitely additive measures were more interesting, more dif-
ficult to handle, and perhaps more important than countably additive measures”.
Oxtoby [25] described [6] as a comprehensive account of finitely additive measures
which effectively organises a large body of material that is widely scattered in the
literature and deserves to be better known, and in their preface the authors them-
selves described it as a reference book as well as a textbook.

1RðuÞðx0Þ is sometimes referred to as the cluster set of u at x0.
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The origins of this theory are to be found in the early days of modern integration
theory when there were many contributors: see [12, §III.15, p. 233 and §IV.16,
p. 3882] and the comprehensive bibliography with notes in [6]. However, pre-
sumably because they could not match the versatility of Lebesgue’s theory of
integration and the power of its convergence theorems, finitely additive measures
seem to have fallen out of fashion. Nevertheless, they continue to have significant
roles in, for example, mathematical economics, probability, statistics, optimization,
control theory and analysis [7, 9, 25, 35].

In a series of three papers on additive set functions on abstract topological
spaces, A. D. Alexandroff [2] studied bounded regular finitely additive measures
that represent linear functionals on spaces of continuous functions. On a similar
theme, but in a more general setting, a much-cited reference for the dual of
L1ðX;L;‚Þ is Dunford and Schwartz [12, p. 296] which covers the theory of
finitely additive set functions on algebras and includes extensive historical notes.
For a recent account, see Fonseca and Leoni [16, Theorem 2.24], and Aliprantis and
Border [3] for the abstract theory in which it is embedded.

It will soon be apparent that key results, including (†), rely on the axiom of
choice. For a discussion of the role of the axiom of choice, geometrical and
paradoxical aspects of finitely additive measures, and their invariance under group
actions on X, see Tao [32]. Oxtoby’s commentary [25] is of independent interest.

A key role is played throughout by the set G of finitely additive measures that
take only the values 0 and 1 and the observation that L1ðX;L;‚Þ is isometrically
isomorphic to a space of real-valued continuous functions on ðG; ¿Þ with the
maximum norm, where ¿ is a compact Hausdorff topology. Further analysis ofG in
a Borel setting then leads to localization, and to other developments mentioned
above and outlined in the Introduction.

What follows is in large part an extension of a simplified version of Yosida and
Hewitt [35], set out in the notation and terminology of Chap. 2.

Bath, UK John Toland
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Chapter 1
Introduction

Overview

In a normed linear space V , a sequence {vk} converges weakly to v (vk ⇀ v) if
v∗(vk) → v∗(v) for all v∗ ∈ V ∗, the dual space of V and, from the uniform bound-
edness principle, weakly convergent sequences are bounded in norm. However, it
has been known since the work of Banach that when V is a complete normed linear
space it may not be necessary to use all elements of V ∗ when testing for weak con-
vergence. Indeed, when C(Z) denotes the space of real-valued continuous functions
on a compact metric space Z with the maximum norm, he showed that vk ⇀ v in
C(Z) if and only if vk(z) → v(z) for all z ∈ Z and {‖vk‖} is bounded. To do so he
observed [5, Annexe, Thm. 7] that Dirac δ-functions satisfy conditions for a set W ∗
in the dual space of a Banach space to have the property that

{‖vk‖} bounded andw∗(vk) → 0 for allw∗ ∈ W ∗ imply vk ⇀ 0. (W)

When (X, �) is a locally compact Hausdorff space and (C0(X, �), ‖ · ‖∞) is the
Banach space of real-valued continuous functions on X that vanish at infinity (see
(2.9)), weakly convergent sequences are pointwise convergent because δ-functions
belongs to the dual space of C0(X, �), and bounded by the uniform boundedness
principle. Conversely, from Theorem 2.37 (Riesz) and Lebesgue’s Dominated Con-
vergence Theorem [15, Thm. 2.24], sequences that are norm-bounded and pointwise
convergent on X are weakly convergent.

In particular, when Z is a compact Hausdorff space, for {vk} ⊂ C(Z) (the space
of real-valued continuous functions on Z with the maximum norm)

vk ⇀ v0 in C(Z) ⇔ sup
k

‖vk‖ < ∞ and vk(z) → v0(z) for all z ∈ Z. (V)

The possibility of usefully extending these observations to L∞(X,L,λ) (the real
Banach space of essentially bounded real-valued functions defined by (2.8)) at first
appears limited because, for example, in an open set� ⊂ R

n with Lebesguemeasure,
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