Database Design
and
Relational Theory

Normal Forms and All That Jazz
Second Edition

C.). Date

ApPress

Database Design and
Relational Theory

Normal Forms and All That Jazz

Second Edition

C. J. Date

Apress’

Database Design and Relational Theory: Normal Forms and All That Jazz

C.]. Date
Healdsburg, California, USA

ISBN-13 (pbk): 978-1-4842-5539-1 ISBN-13 (electronic): 978-1-4842-5540-7
https://doi.org/10.1007/978-1-4842-5540-7

Copyright © 2019 by C. J. Date

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484255391. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5540-7

In computing, elegance is not a dispensable luxury
but a quality that decides between success and failure.

—Edsger W. Dijkstra

The ill design is most ill for the designer.
—Hesiod
It is to be noted that when any part of this paper is dull
there is design in it.
—Sir Richard Steele
The idea of a formal design discipline is often rejected on account of
vague cultural / philosophical condemnations such as “stifling

creativity”; this is more pronounced ... where a romantic vision of
“the humanities” in fact idealizes technical incompetence ...

[We] know that for the sake of reliability and intellectual control
we have to keep the design simple and disentangled.

—Edsger W. Dijkstra

My designs are strictly honorable.

—Anon.

00000 ———

To my wife Lindy
and my daughters Sarah and Jennie

with all my love

Table of Contents

About the AULNOFcceiiiiieemniiiseenrrnsss s aa s nn s e e s ssnnnnensnnns Xiii
Preface to the First Edition.......c.ccccinnnnmmmmnnnssmmmmmnssssnmmmsssssssmsssssssssssssssssssssssnsssans XV
Preface to the Second Editionccccusseemmmnnsssnnnmmnsssssnnmssssssssmmssssssssssssssssssssssssssnss Xix
Part I: Setting the Scene........ccccunmmmnnnneemmnmenn s —————————— 1
Chapter 1: PreliminarieS....ccccouuuummmmsssssssmmmmmmmmssnnns 3
Some Quotes from the LITEIratUre........cccvcvieriernsnienens s sss s s ssesessessessessesessesseseessssssessens 4
A NOE 0N TEIMINOIOQYeeveeereriere s e see s s e s s s s s e e s a e s ae s e e e e s ae e ae e e e naesneeannnes 6
The RUNNING EXAMPIEcocireiecccin e s st s e 8
1023 10
The Place 0f DESIgN TNEOIY.......ccoveerrrererenerrsseresese s s e e s sse e s e sessssessssesssssssnses 12
AIMS OF ThiS BOOKeecveiirieeieiiisiiries e sesse e s sesseessessesesssessesaessessessesaessssssessessessssssessessensenns 16
(0T T Lo [T T T T T RS 17
] (LTSS 19
ST S 20
Chapter 2: PrereqUiSites......cccirrmmmmsnmmmmmmmmmssssssssssssssssssssssssssssssnsssesssssssssnsnnnssesssssnns 23
L0 11T = 24
Relations @and REIVAIScccceverierierieeserierses e s sesssessessessesssessessessessssssessesssssssssessessssssesasssnssees 24
Predicates and PropoSItionscccuuerninerrisesnessnsssssse s ssssssesssssssssessssssessssesns 28
More on SUPPHErs aNd PArtS........cccvivrinierienn s sae e s e ssessesssssssessesaesessensesnes 31
] (S 34
ST SR 37

TABLE OF CONTENTS

Part II: Functional Dependencies, Boyce/Codd Normal Form,
and Related Matterscccceeemmmmmmmmmnnnnmmmsssnsssssesssssssmnnnnnsnsssssssssssssssssssssnnnnes 49

Chapter 3: Normalization: Some Generalities........ccucummmmssmnmmnssssnnnmmssssnsnmsssssnnnnnns 47
Normalization Serves TWO PUIPOSES.......ccucreririniniere s s sessesse s st sesse s ssessssessesaes 49
0o F LA T 1 TS 53
The Normal FOrm HIerarChy......c.ccoovvvcrvrieneninsriese s sessese s sessessessesssssssessessessssessessessessssessessens 54
Normalization and CONSIFAINTS.........cccoueerererenneseese e 57
Equality DEPENdENCIES.......ccccveirrirereris s s e e s p e nnan 58
ConClUding REMAIKScccoreeerereerenerieseressese s se s s ses e ssssessssssesssensnnens 61
(] (01T 62
ANSWELSceeeeeeeeessessesessesessesse e s e s sae s s e e e s se s s e se s e e aeseene e e naesRene e e aReeRene e e n e nReeeenen e nnnsrensaennnnnnas 63

Chapter 4: FDs and BCNF (Informal).........cccinmsssmmmmmsssssnnssssssssnssssssssssssssssssssssssssnnees 69

First NOrmal FOMM ..o 65
Violating First NOrmal FOrM ... srs e e s sesnesnens 69
Functional DepenUenCIeS. ..o e s r e e 72
KBYS REVISILEA.eeeeereeerereseree e es s 74
Second NOFMAI FOIM ..o s se e nr s e 76
Third NOrmal FOrM ..o s 78
Boyce/Codd NOrmal FOIMccvivierevirsireressesessese s sessesse s ssssessessesaessssessessesssssssesaesaessssensesas 79
(] (01T S 82
4L S 85
Chapter 5: FDs and BCNF (FOrmal)ccccccccinnsssssmmmmmmmmmsssssssssssssssssssssssssssssssssssssssns 97
Preliminary Definitions.........ccoocoreernerreserese s 97
Functional Dependencies ReViSited.........ccccuvvirnrniniinin s ssessessssessesaens 100
Boyce/Codd Normal FOrm ReViSItedccuevvvrvnernninnene s s sessesesssssssessessessssessesaens 102
HEath’s TREOTEMccceieccce s e 105
(] (0T 110
L= 111

TABLE OF CONTENTS

Chapter 6: Preserving FDSccccuuseennmssssssnnmssssssssssssssnsnsssssssnsssssssnnsssssssnnssssssnnnnss 117
An Unfortunate CONFlICT.........cccoevererneecreresseseere s 119
ANOther EXAMPIE.......coc e e e e 123
B o T 1 125
B o B 1410 - OSSO 127
A Procedure that WOrKS ... s s 129
Identity DECOMPOSITIONS........covierrerererir e s e e se e s s e e s s aesre e s e saesne e e e naennens 134
More 0N the CONFIICT..........coveiriecirrrr e 136
Independent ProjeCtions ... 137
(] (o1 138
ANSWETS ...oeereeeesreesessesessesss e e sss e e s e se e s sa e e s e se e s b e e e e e Re e e Ee e e e e e e Re e e R e e nE e e nEnRe e nRe e nEnns 140

Chapter 7: FD Axiomatizationcusseeememnmnnnmmmsssssssssnnnsssmsssssssssssssssssssssssssssnnns 145
ArmSIrONG’S AXIOMIS ..cuerveeeierereriesesseresse s e e s sessessesss e s e ssessese s e esesaesas e s e ssesae st eensesaessessssensessens 146
AdAItIoNAl RUIEScveeeiiiricerre e 147
Proving the Additional RUIEScccoiiririrern e 150
ANOTNEr KiNd OF CIOSUIEcoeeereeceecreree e e 151
(] (o1 ST 153
ANSWELSeeeeieeeieeeee e e e se e se e s e s e s sessese s e e ae s se e e e e e e ae s se e e e e aeeRene e e n e e aeeRe e e e e e nnesrenen e nnnnnnas 154

Chapter 8: Denormalization........ccuccummmnsnemnmnssssnnmmsssssnmsssssnnmnsssnnesssssssesssnn 161
“Denormalize for PErformanCe” (?) ..ccucveevererrerieressssensesessessssessessesssssssessessessssessessessssssssssesaens 161
What Does Denormalization Mean?...........ccovvennnnnnnssssssssssse s sessssans 163
What Denormalization ISn’t (I)...ccceeennniiiesnninsn s s 165
What Denormalization ISn’t (I1).....cccoeeririencsnsr e 169
Denormalization Considered Harmful (I)ccoeeerernsmrnneneneseresesesese e e 172
Denormalization Considered Harmful ()ccoveeernnernenenesersse s sessesenns 174
(0T T Lo [T T T ST T RS 176
(=] (1T 177
L 1L = 179

vii

TABLE OF CONTENTS

Part Ill: Join Dependencies, Fifth Normal Form, and Related Matters........ 183
Chapter 9: JDs and 5NF (Informal)ccocccemmmmmssnnnnmmssssnsnmssssssnssssssssnssssssssssssssssnnnss 185
Join Dependencies—the BasiC Idea..........ccovvrerinncnin s 186
A Relvar in BONF @and NOt SNF ..o 190
CYCHC RUIES.....ceceeeeereeerieerese e e e n e p e e e e 194
ConClUding REMAIKScccovirerenernesesesesese e s sn s se s sesssnsnns 195
EXBICISES..c.cviuiuiiise iR 197

L 1= 3N 197
Chapter 10: JDs and S5NF (FOrmal).......ccusseemmesssssnnsssssssnnnsssssssnssssssssnssssssnsnssssssnnnnss 201
Join Dependencies ReVISITE ..o s 201
Fifth NOrM@l FOPM ... s 204
JDS IMPIEU DY KBYS ..o s s nnenens 207
A USEIUI TREOTEIM ... s ne s e e nr e nr s 211
FDS AreN’t JDS.....coviiiiiiriisincsnss s s 212
Update Anomalies REVISITEA.........ccvverererreriererrnsenesessssessese e sessesse s ssssessessesssssssessessessssessesaens 213
(] (01T T 215
ANSWETSeceeeeeeeeereee e e se e e e e s e e sse e s se e e e e e s ae e s Re e seeae s e e Re e e Re e sEeRenEeResEnRe e ne e e senne e nRe e neenes 217
Chapter 11: Implicit Dependencies.......ccccirrrrmmsssssmnsmmmmmmssssssssssssnsssesssssssssssssnsnsnss 221
Irrelevant COMPONENTS.......ccciiiiiiiir e e s s s b e nne 222
Combining COMPONENTS.......ccccerirernesrsesere s nr s 223
IrrEAUCIDIE DS ... 224
SUMMANY SO FAC ...c.vetcirece et s a e e e e e s s e e s e e s sae e e e e e sae e e e s e naenaes 228
The Chase AlGOIitIM......cceceieriereresersere s s s s sse s s e sse s s e e s e saesaess s e ssesaesae e snesaesaeseesennesaeses 231
ConCluding REMAIKScccoiiiiriirene st e s e p e s 235
(= (1L 236
4L 238
Chapter 12: MVDs and 4NF.........c.coonnmmmmmmmmmmmmmsssssssssmsmsssssssssssssssssssssssssssssssnnsnnnss 241
AN Introductory EXAMPIE.......ccoceieiiircres s 242
Multivalued Dependencies (INOrmal)ccoevvrrrriernnnsniene s sere s s e s ssessesessesaens 244

viii

TABLE OF CONTENTS

Multivalued Dependencies (FOrmal)ccccucvvirinininneninies s ss s s saenns 246
FOUurth NOrmMal FOIM......c.coiiieeeree s 247
LA DAY Ta] T2 (22 Lo T 250
Embedded DePendenCiEsccucvririnninierieninsirsese st se s s se s s st 251
(] (oSSR 252
1L N 254

Part IV: Further Normal FOrmS.....cccureeeesmmmsmsssmmssssssssssssssssssssssnsssssssnssnssssnnnns 20 1

Chapter 13: ETNF, RFNF, SKNF..........cccissmmmisammmmssnmmsssnsmsssnsesssnsssssnsssssnnssssnnssssnnssssas 263
BNF IS TOO SIFONG...c.ciueirieeriresire sttt se e e e p e e 265
The First Example: What SNF DOES..........cccrernnninenenn s sss s sessssssssssesnes 265
The Second Example: Why 5NF D0es T00 MUCHccuoccricvnicvncsrnce s 266
Essential Tuple NOrmal FOrM ..o s se s s st se s snens 268
Definitions and TREOIEMS..........ccoreerrecrerer e 268

A Relvar in ETNF and NOT BNF ... 27

A Relvar in 4ANF and NOt ETNF ..o snenens 274
Our ChoiCe Of NAME.........cccoeeereere e 274
Redundancy Free NOrmal FOIM ... sessenenns 275
A Relvar in RFNF and NOt SNF ..o s sessenesnenens 278

A Relvar in ETNF and NOt RENF ..o s 279
Superkey NOrmMal FOIM ... s e s se s s sssessssssessssessssssesssenns 279
A Relvar in SKNF and NOt BNF ... sessess s sessssessssessssesesssssssenens 280

A Relvar in RFNF and Not SKNF..........oooirrcses e s sessesesnenens 280
ConCluding REMAIKScccovirerinernsesrsesesese s s ss e ses s s s ssssessssssnssssesessssnns 280
(=] £ T P 282
L 1= 3N 283
Chapter 14: 6NFccccccinmmmmmnnmmmssnnnssssssssnesssssssssssssssssssssssnnssesssnnnsssssnnnsesssnnnnnss 287
Sixth Normal Form for Regular Data..........cccccvrenmrenerescrrcserese e 288
Sixth Normal Form for Temporal Data..........cccccvvrininninin s snes 291
] (o TSSOSO 301
L 1L 3N 302

TABLE OF CONTENTS

Chapter 15: The End Is Not Yetcccccvvnemmmnnnssnmnmmssssssnmnssssssnsnssssssssssssssssssssssnnnss 307
Domain-Key NOrmal FOIM........ccouciiiinincne e ss s et se s s ss e s s s s nnens 308
Elementary Key NOrmal FOIM ... 310
OVEISIIONG PU/NF ...t e 311
“Restriction-Union” Normal FOrM ..o s sssssssssssessnnes 312
o= {1 RN 313
L 1L = 3N 313

Part V: Orthogonalityccccccmnmemmmmissmnmmmssssnmmsesnmmsssmmssssnmsssnssssssanns 317

Chapter 16: The Principle of Orthogonal DeSign..............cusssusesssssnsssssssssssssssssnnnss 319
Two Cheers for NOrmalizationcococeeecererrercrrererese e e 319
A Motivating EXAmPIE ..o e 322
A Simpler EXAMPI....c.ciiiiirierere st s e e 324
TUPIES VS. PropOSItioNSccccevverererirrerie s se s s s ss s e s saesae e ssesaesaeses e s e snees 328
The First EXample REVISITEA........cccvvrrrierieresirserese s sese s ssesessessessessssessessesssssssessessesssssssesseses 333
The Second EXample REVISITEU........ccuvvrerierrrrsererensssereressssessessessessssessessessessssessessessssessessees 337
The FIiNal VEISION (?).ecicieeciriere s s s sttt st s s s st s 337
LN 03P 7= 0P 338
CoNClUding REMAIKScccvvieirierisseresesesese s se s s sn s ses s sesssssnns 341
L] (oSSR 342
L 1L 3N 343

Part VI: Redundangycccccenmssssssssssssssmmmmmmnmmmmssssssssssssssssssssnssssssssssssssnnnnns 347

Chapter 17: We Need More SCIi€NCe.......ccccusumrrsssnsmsssnsmsssnsesssnsssssnsssssnsssssnnssssanssssas 349
LN L= 5 Y o] o P 353
Predicates VS. CONSIIAINTScccooeoererernerenesesese s 356
EXAMPIE T oot n e e r e n R e 357
o 10 1] [S SR 359
6 01][SRR 360

TABLE OF CONTENTS

6 0 1]][S 360
e 1110 LT OSSPSR PYSSN 361
e 11110 LT OSSOSO 362
e 11110 0 OO 366
EXAMPIE 8 ...t e n e e r e n e e 368
EXAMPIE O ..t p e n e n e 369
6 101][SRR 371
6 10 1] < S 372
e 11110] 00 SO OSSPSR 372
Managing REAUNUANCYccvccoerenmrrenerinereresese s se s ses s 374
1. RAW DESIgN ONIY ... s 374
2. Declare the CONSTraint..........cccoreenreerrerrr e 375
B USB AVIBW ... ne e 375
4. USE @ SNAPSNOL......couiiirc 376
Refining the DEfinition ... s 377
EXAMPIES 1 ANU 2.t e e 383
EXAMPIE 3.t e e 383
EXAMPIE 4. e e e 383
EXAMPIE 5.t e e e e 383
EXAMPIE Bttt e e e e e e bR 384
EXAMPIE 7 ...ttt e e e e e e e a e e 384
EXAMPIE ...t e e e e e e 384
EXamples 9 and 10 ... e s 385
o211 110 0 SRS 388
EXAMPIE 12ttt e e e e e e bR 388
ConClUding REMAIKSccoviiereerreseseses e s ses e 388
(] (oSSR 389
1L 3N 389

xi

TABLE OF CONTENTS

Part VII: APPendiXES ...ceeeeeeeemnnnnnssssssssssssssssssssssssssssssssssnssssnnnnnnnnnnnssnsssssnsnsnss 391
Appendix A: What Is Database Design, ANYWaY?cuccenmmssssnsnsssssssssssssssssssssssnns 393
Logical vs. Physical DESIgN........c.ccucerininnieniesssire e sis e ses e s ses e s s s e snens 398
The ROIE OF TREOIYceieieecirere e e e e p s s e 399
[(=0 0 LT S 400
3] OSSR 402
REAUNUANCY ...t r e e s n e s s r e n e an 403
“EVENTUAI CONSISIENCY......ccviiererieriseressesresessesse e sss e s e ssesaeses e s e ssesaesss e saesaessesessesaesaessnnensesaens 405
Appendix B: More on ConsSiSteNCYccceurrssssnnssrsssssssssssssnssssssssssssssssssssssssssnnnssssnnns 407
The Database IS a Logical SYSIEM ... 408
Proving that 1 = 0 ... e 411
WIONG ANSWETScovrueerueerreesessesessesesseesessesessssessasesesssssssssessenssssssssssensssensssssssssssnsssensssassssnsenens 412
Generalizing the AFQUMENT...........cccovevrenenesrne s sr s 414
Why Integrity Checking Must Be Immediate.........cccovvvvrinnnninieniennsensene s sessessens 415
Appendix C: Primary Keys Are Nice but Not Essential..........cccuussnmmmnnnnnnnssssssnnnnns 417
Arguments in Defense of the PK:AK DiStinCtion.............cccvvvvnnninvnsnn e 419
Relvars with TW0 or MOre KeYs........covviiinnsinsnens s s sesse s ssssessessessssessesnens 422
The Invoices and Shipments EXaMPIE ... 426
One Primary Key per Entity TYPE? ... 430
The Applicants and Employees EXample.........cccrinninininnnnnne s sessessesesessessesse s 431
{04 T Lo T T T ST T OO 434
Appendix D: Historical NOtesSccccrrrmmmmmsssmssnnmmmmmsssnnnnns 437
INO@X ueeiiiismnnsssnnnsssnnnsssnnnsssanssssanssssanssssansssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnnss 443

xii

About the Author

C.]. Date is an independent author, lecturer, researcher, and consultant, specializing
in relational database technology. He is best known for his book An Introduction to
Database Systems (8th edition, Addison-Wesley, 2004), which has sold some 900,000
copies at the time of writing and is used by several hundred colleges and universities
worldwide. He is also the author of numerous other books on database management,
including most recently:

e From Ventus: Go Faster! The TransRelational™ Approach to DBMS
Implementation (2002, 2011)

o From Addison-Wesley: Databases, Types, and the Relational Model:
The Third Manifesto (3rd edition, with Hugh Darwen, 2007)

o From Trafford: Logic and Databases: The Roots of Relational Theory
(2007) and Database Explorations: Essays on The Third Manifesto and
Related Topics (with Hugh Darwen, 2010)

o From Apress: Date on Database: Writings 2000-2006 (2006)

e From Morgan Kaufmann: Time and Relational Theory: Temporal
Databases in the Relational Model and SQL (with Hugh Darwen and
Nikos A. Lorentzos, 2014)

o From O’Reilly: Relational Theory for Computer Professionals: What
Relational Databases Are Really All About (2013); View Updating and
Relational Theory: Solving the View Update Problem (2013); SQL and
Relational Theory: How to Write Accurate SQL Code (3rd edition, 2015);
The New Relational Database Dictionary (2016); and Type Inheritance
and Relational Theory: Subtypes, Supertypes, and Substitutability (2016)

e From Lulu: E. E Codd and Relational Theory: A Detailed Review and
Analysis of Codd’s Major Database Writings (2019)

Mr Date was inducted into the Computing Industry Hall of Fame in 2004. He enjoys a

reputation that is second to none for his ability to explain complex technical subjects in a

clear and understandable fashion.

xiii

Preface to the First Edition

This book began life as a comparatively short chapter in a book called Database in
Depth: Relational Theory for Practitioners (O’Reilly, 2005). That book was superseded
by a greatly expanded version called SQL and Relational Theory: How to Write Accurate
SQL Code (O’Reilly, 2009), where the design material, since it was somewhat tangential
to the main theme of the book, ceased to be a chapter as such and became a (somewhat
longer) appendix instead. I subsequently began work on a second edition of this latter
book.! During the course of that work, I found there was so much that needed to be said
on the subject of database design in general that the appendix threatened to grow out of
all proportion to the rest of the book. Since the topic was, as I've indicated, rather out of
line with the major emphasis of that book anyway, I decided to cut the Gordian knot and
separate the material out into a book of its own: the one you're looking at right now.
Three points arise immediately from the foregoing:

o First, the present book does assume you're familiar with material
covered in the SQL and Relational Theory book (in particular, it
assumes you know exactly what relations, attributes, and tuples are).
I make no apology for this state of affairs, however, since the present
book is aimed at database professionals and database professionals
ought really to be familiar with most of what’s in that earlier book,

anyway.
e Second, the previous point notwithstanding, there’s unavoidably a

small amount of overlap between this book and that earlier book. I've
done my best to keep that overlap to a minimum, however.

'That second edition was published by O’Reilly in 2012. It was followed in 2015 by a third. Thus,
all references to that book in what follows should be understood as referring to that third edition
specifically (where it makes any difference).

PREFACE TO THE FIRST EDITION

e Third, there are, again unavoidably, many references in this book
to that earlier one. Now, most references in this book to other
publications are given in full, as in this example:

Ronald Fagin: “Normal Forms and Relational Database
Operators,” Proc. 1979 ACM SIGMOD International Conference on
Management of Data, Boston, Mass. (May/June 1979)

In the case of references to the SQL and Relational Theory book in
particular, however, from this point forward I'll give them in the
form of that abbreviated title alone.

Actually I've published several short pieces over the years, in one place or another,
on various aspects of design theory, and the present book is intended among other
things to preserve the good parts of those earlier writings. But it’s not just a cobbling
together of previously published material, and I sincerely hope it won’t be seen as such.
For one thing, it contains much new material. For another, it presents a more coherent,
and I think much better, perspective on the subject as a whole (I've learned a lot myself
over the years!). Indeed, even when a portion of the text is based on some earlier
publication, the material in question has been totally rewritten and, I trust, improved.

Now, there’s no shortage of books on database design—so what makes this one
different? In fact I don’t think there’s a book on the market that’s quite like this one. There
are many books (of considerably varying quality, in my not unbiased opinion) on design
practice, but those books (again, in my own opinion) usually don’t do a very good job of
explaining the underlying theory. And there are a few books on design theory, too, but
they tend to be aimed at theoreticians, not practitioners, and to be rather academic in
tone. What I want to do is bridge the gap; in other words, I want to explain the theoryin a
way that practitioners should be able to understand, and I want to show why that theory
is of considerable practical importance. What I'm not trying to do is be exhaustive; I don’t
want to discuss the theory in every last detail, I want to concentrate on what seem to me
the important parts (though, naturally, my treatment of the parts I do cover is meant to be
precise and accurate, as far as it goes). Also, I'm aiming at a judicious blend of the formal and
the informal; in other words, I'm trying to provide a gentle introduction to the theory, so that:

a. You can use important theoretical results to help you actually do
design, and

b. You'll be able, if you're so inclined, to go to the more academic
texts and understand them.

PREFACE TO THE FIRST EDITION

In the interest of readability, I've deliberately written a fairly short book, and I've
deliberately made each chapter fairly short, too.? (I'm a great believer in doling out
information in small and digestible chunks.) Also, every chapter includes a set of
exercises (answers to most of which are given in Appendix D at the back of the book),?
and I do recommend that you have a go at some of those exercises if not all. Some of
them are intended to show how to apply the theoretical ideas in practice; others provide
(in the answers if not in the exercises as such) additional information on the subject
matter, over and above what'’s covered in the main body of the text; and still others are
meant—for example, by asking you to prove some simple theoretical result—to get you to
gain some understanding as to what’s involved in “thinking like a theoretician.” Overall,
I've tried to give some insight into what design theory is and why it is the way it is.

Prerequisites

My target audience is database professionals: more specifically, database professionals
with a more than passing interest in database design. In particular, therefore, I assume
you're reasonably familiar with the relational model, or at least with certain aspects of
that model (Chapter 2 goes into more detail on these matters). As already indicated,
familiarity with the SQL and Relational Theory book would be helpful.

Logical vs. Physical Design

This book is about design theory; by definition, therefore, it's about logical design, not
physical design. Of course, I'm not saying physical design is unimportant (of course not);
but I am saying it’s a distinct activity, separate from and subsequent to logical design. To
spell the point out, the “right” way to design a database is as follows:

1. Do aclean logical design first. Then, as a separate and subsequent
step:

2Sadly, the second edition is somewhat larger than its predecessor. That always happens with
new editions, of course, though in the present case the increase is due in part to the fact that—in
response to reader requests—I've increased the font size. In any case, at least the individual
chapters are still fairly short. Mostly.

’In response to reader requests again, in this second edition I've moved the answers that are
specific to a given chapter to the end of the chapter in question and deleted the old Appendix D.

xvii

PREFACE TO THE FIRST EDITION

2. Map thatlogical design into whatever physical structures the
target DBMS happens to support.*

Note, therefore, that the physical design should be derived from the logical design
and not the other way around. (Ideally, in fact, the system should be able to derive the
physical design “automatically” from the logical design, without the need for human
involvement in the process at all.)®

To repeat, the book is about design theory. So another thing it’s not about is the
various ad hoc design methodologies—entity / relationship modeling and the like—
that have been proposed over the years, at one time or another. Of course, I realize that
certain of those methodologies are fairly widely used in practice, but the fact remains
that they enjoy comparatively little by way of a solid theoretical basis. As a result, they’re
mostly beyond the scope of a book like this one. However, I do have a few remarks here
and there on such “nontheoretical” matters (especially in Chapters8 and 17, also in
Appendix C).

Acknowledgments

I'd like to thank Hugh Darwen, Ron Fagin, David McGoveran, and Andy Oram for their
meticulous reviews of earlier drafts of this book. Each of these reviewers helped correct

a number of misconceptions on my part (rather more such, in fact, than I like to think).
Of course, it goes without saying that any remaining errors are my responsibility. I'd also
like to thank Chris Adamson for help with certain technical questions, and my wife Lindy
for her support throughout the production of this book, as well as all of its predecessors.

C.J. Date
Healdsburg, California

2012 (minor revisions 2019)

‘DBMS = database management system. Note that there’s a logical difference between a DBMS
and a database! Unfortunately, the industry very commonly uses the term database when it
means either some DBMS product, such as Oracle, or the particular copy of such a product that
happens to be installed on some particular computer. I do not follow that usage in this book. The
problem is, if you call the DBMS a database, then what do you call the database?

5This idea isn’t as farfetched as it might seem. See my book Go Faster! The TransRelational™
Approach to DBMS Implementation (Ventus, 2002, 2011), available as a free download from
http://bookboon. com.

xviii

http://bookboon.com/

Preface to the Second Edition

This edition differs from its predecessor in many ways. The overall objective remains
the same, of course—I'm still trying to provide a gentle introduction to design theory—
but the text has been revised throughout to reflect, among other things, experience
gained from teaching live classes based on the first edition. Quite a lot of new material
has been added (including new chapters on sixth normal form and the various normal
forms between fourth and fifth, and a couple of new appendixes on database design
in general). Examples, exercises, and answers have been expanded and improved in
various respects, and the text has been subjected to a thorough overhaul throughout.
Numerous cosmetic improvements and a variety of technical corrections—an
embarrassingly large number of these, I'm sorry to have to report—have also been made.
The net effect is to make the text rather more comprehensive (but, sadly, some 50%
bigger) than its predecessor.

My thanks to O’Reilly Media Inc. (publisher of the first edition) for permission to
place this second edition with a different publisher.

C.J. Date
Healdsburg, California
2019

Xix

PART |

Setting the Scene

This part of the book consists of two introductory chapters, the titles of which
(“Preliminaries” and “Prerequisites,” respectively) are more or less self-explanatory.

CHAPTER 1

Preliminaries

(On being asked what jazz is:)
Man, if you gotta ask, you'll never know.

—Louis Armstrong (attrib.)

This book has as its subtitle Normal Forms and All That Jazz. Clearly some explanation is
needed! First of all, of course, I'm talking about design theory—database design theory,
that is—and everybody knows that normal forms are a major component of that theory;
hence the first part of the subtitle. But there’s more to that theory than just normal
forms, and that fact accounts for that subtitle’s second part. Third, it's unfortunately the
case that—from the practitioner’s point of view, at any rate—design theory seems to be
riddled with terms and concepts that are hard to understand and don’t seem to have
much to do with design as actually done in practice. That's why I framed the latter part
of my subtitle in colloquial (not to say slangy) terms; I wanted to convey the idea that,
although we’d necessarily be dealing with “difficult” material on occasion, the treatment
of that material would be as undaunting and unintimidating as I could make it. But
whether I've succeeded in that aim is for you to judge, of course.

I'd also like to say a little more on the question of whether design theory has anything
to do with design as carried out in practice. Let me be clear: Nobody could, or should,
claim that database design is easy. But a sound knowledge of the theory can only help.
In fact, if you want to do design properly—if you want to build databases that are as
robust, flexible, and accurate as they’re supposed to be—then you simply have to come
to grips with the theory. There’s just no alternative: at least, not if you want to claim to be
a design professional. Design theory is the scientific foundation for database design, just
as the relational model is the scientific foundation for database technology in general.
And just as anyone professionally involved in database technology in general needs to be
familiar with the relational model, so anyone involved in database design in particular
needs to be familiar with design theory. Proper design is so important! After all, the

© C.]J. Date 2019
C.J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_1

CHAPTER 1 PRELIMINARIES

database lies at the heart of so much of what we do in the computing world; so if it’s
badly designed, the negative impacts can be extraordinarily widespread.

Some Quotes from the Literature

Since we're going to be talking quite a lot about normal forms, I thought it might be—well,
not exactly enlightening, but entertaining, possibly (?)—to begin with a few quotes from
the literature. The starting point for the whole concept of normal forms is, of course, first
normal form (1NF), and so an obvious question is: Do you know what INF is? As the
following quotes demonstrate (sources omitted to protect the guilty), a lot of people don’t:

o To achieve first normal form, each field in a table must convey
unique information.

e An entity is said to be in the first normal form (1NF) when all
attributes are single valued.

o Arelationis in 1NF if and only if all underlying domains contain
atomic values only.

o Ifthere are no repeating groups of attributes, then [the table] is in 1NE.

Now, it might be argued that some if not all of these quotes are at least vaguely
correct—but they’re all hopelessly sloppy, even when they’re generally on the right lines.
Note: In case you're wondering, I'll be giving a precise and accurate definition of 1NF in
Chapter 4.

Let’s take a closer look at what'’s going on here. Here again is the first of the foregoing
quotes, now given in full:

o To achieve first normal form, each field in a table must convey
unique information. For example, if you had a Customer table with
two columns for the telephone number, your design would violate
first normal form. First normal form is fairly easy to achieve, since few

folks would see a need for duplicate information in a table.

OK, so apparently we're talking about a design that looks
something like this:

CUSTNO PHONENC1 PHONENO2

CHAPTER 1 PRELIMINARIES

Now, I can’t say whether this is a good design or not, but it certainly doesn’t
violate 1NE (I can’t say whether it’s a good design because I don’t know exactly what
“two columns for the telephone number” means—the phrase “duplicate information
in a table” suggests we're recording the same phone number twice, but such an
interpretation is absurd on its face. But even if that interpretation is correct, it still
wouldn’t constitute a violation of 1NF as such.)

Here’s another quote:

e First Normal Form ... means the table should have no “repeating
groups” of fields ... A repeating group is when you repeat the same
basic attribute (field) over and over again. A good example of this is
when you wish to store the items you buy at a grocery store ... [and
the writer goes on to give an example, presumably meant to illustrate
the concept of a repeating group, of a table called Item Table, with
columns called Customer, Item1, Item2, Item3, and Item4):

CUSTOMER ITEM1 ITEM2 ITEM3 ITEM4

Well, this design is almost certainly bad—what happens if the customer doesn’t
purchase exactly four items?—but the reason it’s bad isn’t that it violates 1NF; like the
previous example, in fact, it’s a INF design. So, while it might perhaps be claimed—
indeed, it often is claimed—that 1NF does mean, loosely, “no repeating groups,” a
repeating group is not “when you repeat the same basic attribute over and over again.”!

How about this one (a cry for help found on the Internet)? I'm quoting it absolutely
verbatim, except that I've added some boldface:

o Ihave been trying to find the correct way of normalizing tables in
Access. From what I understand, it goes from the 1st normal form to
2nd, then 3rd. Usually, that’s as far as it goes, but sometimes to the
5th and 6th. Then, there’s also the Cobb 3rd. This all makes sense to
me. I am supposed to teach a class in this starting next week, and I
just got the textbook. It says something entirely different. It says 2nd
normal form is only for tables with a multiple-field primary key, 3rd
normal form is only for tables with a single-field key. 4th normal form

At the same time it’s not as easy as you might think to say exactly what it is! See further discussion
in Chapter 4.

CHAPTER 1 PRELIMINARIES

can go from 1st to 4th, where there are no independent one-to-many
relationships between primary key and non-key fields. Can someone
clear this up for me please?

And one more (this time with a “helpful” response):

e It’s not clear to me what “normalized” means. Can you be specific
about what normalization rules you are referring to? In what way is
my schema not normalized?

Normalization: The process of replacing duplicate things with a
reference to the original thing.

For example, given “john is-a person” and “john obeys army,” one
observes that the “john” in the second sentence is a duplicate of
“john” in the first sentence. Using the means provided by your
system, the second sentence should be stored as “->john obeys
army.”

A Note on Terminology

As I'm sure you noticed, the quotes in the previous section were expressed for the

most part in the familiar “user friendly” terminology of tables, rows, and columns (or
fields). In this book, by contrast, I'll favor the more formal terms relation, tuple (usually
pronounced to rhyme with couple), and attribute. I apologize if this decision on my part
makes the text a little harder to follow, but I do have my reasons. As I said in SQL and
Relational Theory:*

I'm generally sympathetic to the idea of using more user friendly
terms, if they can help make the ideas more palatable. In the case
at hand, however, it seems to me that, regrettably, they don’t
make the ideas more palatable; instead, they distort them, and

in fact do the cause of genuine understanding a grave disservice.

I remind you from the preface that throughout this book I use SQL and Relational Theory as an
abbreviated form of reference to my book SQL and Relational Theory: How to Write Accurate SQL
Code (3rd edition, O'Reilly, 2015).

6

CHAPTER 1 PRELIMINARIES

The truth is, a relation is not a table, a tuple is not a row, and

an attribute is not a column. And while it might be acceptable
to pretend otherwise in informal contexts—indeed, I often do
so myself—I would argue that it’s acceptable only if all parties
involved understand that those more user friendly terms are
just an approximation to the truth and fail overall to capture the
essence of what's really going on. To put it another way: If you
do understand the true state of affairs, then judicious use of the
user friendly terms can be a good idea; but in order to learn and
appreciate that true state of affairs in the first place, you really do
need to come to grips with the formal terms.

To the foregoing, let me add that (as I said in the preface) I do assume you know
exactly what relations, attributes, and tuples are—though in fact formal definitions of
these constructs can be found in Chapter 5.

There’s another terminological matter I need to get out of the way, too. The relational
model is, of course, a data model. Unfortunately, however, this latter term has two quite
distinct meanings in the database world.? The first and more fundamental one is this:

Definition (data model, first sense): An abstract, self-contained,
logical definition of the data structures, data operators, and so
forth, that together make up the abstract machine with which
users interact.

This is the meaning we have in mind when we talk about the relational model in
particular: The data structures in the relational model are relations, of course, and the
data operators are the relational operators projection, join, and all the rest. (As for that
“and so forth” in the definition, it covers such matters as keys, foreign keys, and various
related concepts.)

The second meaning of the term data model is as follows:

Definition (data model, second sense): A model of the data
(especially the persistent data) of some particular enterprise.

3This observation is undeniably correct. However, one reviewer wanted me to add that the two
meanings can be thought of as essentially the same concept at different levels of abstraction. I
hope that helps!

CHAPTER 1 PRELIMINARIES

In other words, a data model in the second sense is just a (logical, and possibly
somewhat abstract) database design. For example, we might speak of the data model for
some bank, or some hospital, or some government department.

Having explained these two different meanings, I'd like to draw your attention to an
analogy that I think nicely illuminates the relationship between them:

e A datamodelin the first sense is like a programming language, whose
constructs can be used to solve many specific problems but in and of
themselves have no direct connection with any such specific problem.

e Adatamodel in the second sense is like a specific program written in
that language—it uses the facilities provided by the model, in the first
sense of that term, to solve some specific problem.

It follows from all of the above that if we're talking about data models in the second
sense, then we might reasonably speak of “relational models” in the plural, or “a”
relational model, with an indefinite article. But if we're talking about data models in the
first sense, then there’s only one relational model, and it’s the relational model, with the
definite article.

Now, as you are probably aware, most writings on database design, especially if their
focus is on pragma rather than the underlying theory, use the term “model,” or the term
“data model,” exclusively in the second sense. But—please note very carefully!—I don’t
follow this practice in the present book; in fact, I don’t use the term “model” at all, except
occasionally to refer to the relational model as such.

The Running Example

Now let me introduce the example I'll be using as a basis for most of the discussions in
the rest of the book: the familiar—not to say hackneyed—suppliers-and-parts database.
(I apologize for dragging out this old warhorse yet one more time, but I do believe that
using essentially the same example in a variety of different books and publications can
help, not hinder, the learning process.) Sample values are shown in Figure 1-1 on the
next page.* To elaborate:

“For reasons that might or might not become clear later, the values shown in Fig. 1.1 differ in two
small respects from those in other books of mine: First, the status for supplier S2 is shown as 30
instead of 10; second, the city for part P3 is shown as Paris instead of Oslo.

8

CHAPTER 1 PRELIMINARIES

o Suppliers: Relvar S denotes suppliers.” Each supplier has one supplier
number (SNO), unique to that supplier; one name (SNAME), not
necessarily unique (though the SNAME values in Figure 1-1 do
happen to be unique); one status value (STATUS), representing
some kind of ranking or preference level among suppliers; and one
location (CITY).

e Parts: Relvar P denotes parts (more accurately, kinds of parts). Each
kind of part has one part number (PNO), which is unique; one name
(PNAME), not necessarily unique; one color (COLOR); one weight
(WEIGHT); and one location where parts of that kind are stored (CITY).

o Shipments: Relvar SP denotes shipments—it shows which parts are
supplied, or shipped, by which suppliers. Each shipment has one
supplier number (SNO), one part number (PNO), and one quantity
(QTY). Also, I assume for the sake of the example that there’s at most
one shipment at any given time for a given supplier and a given
part, and so each shipment has a supplier-number / part-number
combination that’s unique.

] Sp
SNO SNAME STATUS CITY SNO PNO QTY
s1 Smith 20 London s1 Pl 300
52 Jones 30 Paris s1 P2 200
53 Blake 30 Paris 51 P3 400
S4 Clark 20 London S1 P4 200
S5 Adams 30 Athens s1 P5 100
s1 PG 100
P 52 Pl 300
s2 P2 400
PNO PNAME COLCR WEIGHT CITY S3 P2 200
54 P2 200
Pl Nut Red 12.0 London S4 P4 300
P2 Bolt Green 17.0 Paris sS4 PS5 400
P3 Screw Blue 17.0 Paris
P4 Screw Red 14.0 London
PS5 Cam Blue 12.0 Paris
P6 Cog Red 15.0 London

Figure 1-1. The suppliers-and-parts database—sample values

’If you don’t know what a relvar is, for now you can just take it to be a table in the usual database
sense. See Chapter 2 for further explanation.

CHAPTER 1 PRELIMINARIES

Keys

Before going any further, I need to review the familiar concept of keys, in the relational
sense of that term. First of all, as I'm sure you know, every relvar has at least one
candidate key. A candidate key is basically just a unique identifier; in other words,

it'’s a combination of attributes—often but not always a “combination” consisting of
just a single attribute—such that every tuple in the relvar has a unique value for the
combination in question. For example, with respect to the database of Figure 1-1:

o Every supplier has a unique supplier number and every part has a
unique part number, so {SNO} is a candidate key for S and {PNO} is a
candidate key for P.

o Asfor shipments, given the assumption that there’s at most one
shipment at any given time for a given supplier and a given part,
{SNO,PNO} is a candidate key for SP.

Note the braces, by the way; to repeat, candidate keys are always combinations, or sets, of
attributes (even when the set in question contains just one attribute), and the conventional
representation of a set on paper is as a commalist of elements enclosed in braces.

This is the first time I've mentioned the term commalist, which I'll be using from
time to time in the pages ahead. It can be defined as follows. Let xyz be some
syntactic construct (for example, “attribute name”); then the term xyz commalist
denotes a sequence of zero or more xyZ's in which each pair of adjacent xyz's is
separated by a comma (blank spaces appearing immediately before or after any
comma are ignored). For example, if A, B, and C are attribute names, then the
following are all attribute name commalists:

A, C

So too is the empty sequence of attribute names.

10

CHAPTER 1 PRELIMINARIES

Moreover, when some commalist is enclosed in braces and thereby denotes

a set, then (a) blank spaces appearing immediately after the opening brace or
immediately before the closing brace are ignored, (b) the order in which the
elements appear within the commalist is immaterial (because sets have no
ordering to their elements), and (c) if an element appears more than once, it’s
treated as if it appeared just once (because sets don’t contain duplicate elements).

Next, as I'm sure you also know, a primary key is a candidate key that’s been singled
out in some way for some kind of special treatment. Now, if the relvar in question
has just one candidate key, then it doesn’t make any real difference if we call that key
primary. But if the relvar has two or more candidate keys, then it’s usual to choose one
of them to be primary, meaning it's somehow “more equal than the others.” Suppose,
for example, that suppliers always have both a unique supplier number and a unique
supplier name, so that {SNO} and {SNAME} are both candidate keys. Then we might
choose {SNOJ}, say, to be the primary key.

Observe now that I said it’s usual to choose a primary key. Indeed it is usual—but
it'’s not 100% necessary. If there’s just one candidate key, then there’s no choice and no
problem; but if there are two or more, then having to choose one and make it primary
smacks a little bit of arbitrariness, at least to me. (Certainly there are situations where
there don’t seem to be any really good reasons for making such a choice. There might
even be good reasons for not doing so. Appendix C elaborates on such matters.) For
reasons of familiarity, I'll usually follow the primary key discipline myself in this
book—and in pictures like Figure 1-1 I'll indicate primary key attributes by double
underlining—but I want to stress the fact that it’s really candidate keys, not primary
keys, that are significant from a relational point of view, and indeed from a design theory
point of view as well. Partly for such reasons, from this point forward I'll use the term
key, unqualified, to mean any candidate key, regardless of whether the candidate key in
question has additionally been designated as primary. (In case you were wondering, the
special treatment enjoyed by primary keys over other candidate keys is mainly syntactic
in nature, anyway; it isn’t fundamental, and it isn’t very important.)

More terminology: First, a key involving two or more attributes is said to be composite
(and a noncomposite key is sometimes said to be simple). Second, if a given relvar has
two or more keys and one is chosen as primary, then the others are sometimes said

11

CHAPTER 1 PRELIMINARIES

to be alternate keys (see Appendix C). Third, a foreign key is a combination, or set,

of attributes FK in some relvar R2 such that each FK value is required to be equal to
some value of some key K in some relvar R1 (R1and R2 not necessarily distinct). With
reference to Figure 1-1, for example, {SNO} and {PNO} are both foreign keys in relvar SP,
corresponding to keys {SNO} and {PNOY} in relvars S and P, respectively.

The Place of Design Theory

As I said in the preface, by the term design I mean logical design, not physical design.
Logical design is concerned with what the database looks like to the user (which means,
loosely, what relvars exist and what constraints apply to those relvars); physical design,
by contrast, is concerned with how a given logical design maps to physical storage.”
And the term design theory refers specifically to logical design, not physical design—the
point being that physical design is necessarily dependent on aspects (performance
aspects in particular) of the target DBMS, whereas logical design is, or should be, DBMS
independent. Throughout this book, then, the unqualified term design should be
understood to mean logical design specifically, unless the context demands otherwise.

Now, design theory as such isn’t part of the relational model; rather, it’s a separate
theory that builds on top of that model. (It’s appropriate to think of it as part of relational
theory in general, but it’s not, to repeat, part of the relational model per se.) Thus, design
concepts such as further normalization are themselves based on more fundamental
notions—e.g., the projection and join operators of the relational algebra—that are part
of the relational model. (All of that being said, however, it could certainly be argued that
design theory is a logical consequence of the relational model, in a sense. In other words,
I think it would be inconsistent to agree with the relational model in general but not to
agree with the design theory that’s based on it.)

The overall objective of logical design is to achieve a design that’s (a) hardware
independent, for obvious reasons; (b) operating system and DBMS independent, again
for obvious reasons; and finally, and perhaps a little controversially, (c) application
independent (in other words, we're concerned primarily with what the data is, rather
than with how it’s going to be used). Application independence in this sense is desirable

5This definition is deliberately a little simplified (though it's good enough for present purposes).
A better one can be found in Chapter 3, also in SQL and Relational Theory.

"Be aware, however, that other writers (a) use those terms logical design and physical design to
mean something else and (b) use other terms to mean what I mean by those terms. Caveat lector.

12

CHAPTER 1 PRELIMINARIES

for the very good reason that it’s normally—perhaps always—the case that not all

uses to which the data will be put are known at design time; thus, we want a design
that’ll be robust, in the sense that it won’t be invalidated by the advent of application
requirements that weren’t foreseen at the time of the original design. Observe that one
important consequence of this state of affairs is that we aren’t (or at least shouldn’t be)
interested in making design compromises for physical performance reasons. Design
theory in general, and individual database designs in particular, should never be driven
by mere performance considerations.

Back to design theory as such. As we’ll see, that theory includes a number of formal
theorems, theorems that provide practical guidelines for designers to follow. So if you're
a designer, you need to be familiar with those theorems. Let me quickly add that I don’t
mean you need to know how to prove the theorems in question (though in fact the
proofs are often quite simple); what I mean is, you need to know what the theorems
say—i.e., you need to know the results—and you need to be prepared to apply those
results. That’s the nice thing about theorems: Once somebody’s proved them, then their
results become available for anybody to use whenever they need to.

Now, it's sometimes claimed, not entirely unreasonably, that all design theory really
does is bolster up your intuition. What do I mean by this remark? Well, consider the
suppliers-and-parts database. The obvious design for that database is the one illustrated
in Figure 1-1; I mean, it’s “obvious” that three relvars are necessary, that attribute
STATUS belongs in relvar S, that attribute COLOR belongs in relvar P, that attribute QTY
belongs in relvar SP, and so on. But why exactly are these things obvious? Well, suppose
we try a different design; for example, suppose we move the STATUS attribute out of
relvar S and into relvar SP (intuitively the wrong place for it, of course, since status is a
property of suppliers, not shipments). Figure 1-2 on the next page shows a sample value
for this revised shipments relvar, which I'll call STP to avoid confusion:®

8For obvious reasons, throughout this book I use T, not S, as an abbreviation for STATUS.

13

