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Foreword

At the dawn of the century’s third decade, robotics is reaching an elevated level of
maturity and continues to benefit from the advances and innovations in its enabling
technologies. These all are contributing to an unprecedented effort to bringing
robots to human environment in hospitals and homes, factories and schools, in the
field for robots fighting fires, making goods and products, picking fruits and
watering the farmland, saving time and lives. Robots today hold the promise for
making a considerable impact in a wide range of real-world applications from
industrial manufacturing to health care, transportation, and exploration of the deep
space and sea. Tomorrow, robots will become pervasive and touch upon many
aspects of modern life.

The Springer Tracts in Advanced Robotics (STAR) was launched in 2002 with
the goal of bringing to the research community the latest advances in the robotics
field based on their significance and quality. During the latest fifteen years, the
STAR series has featured publication of both monographs and edited collections.
Among the latter, the proceedings of thematic symposia devoted to excellence in
robotics research, such as ISRR, ISER, FSR, and WAFR, have been regularly
included in STAR.

The expansion of our field as well as the emergence of new research areas has
motivated us to enlarge the pool of proceedings in the STAR series in the past few
years. This has ultimately led to launching a sister series in parallel to STAR. The
Springer Proceedings in Advanced Robotics (SPAR) is dedicated to the timely
dissemination of the latest research results presented in selected symposia and
workshops.

This volume of the SPAR series brings the proceedings of the sixteenth edition
of the International Symposium on Experimental Robotics (ISER). This symposium
took place in Buenos Aires, Argentina, from November 5 to 8, 2018. The
seven-part volume edited by Jing Xiao, Torsten Kroger, and Oussama Khatib is a
collection of 67 contributions spanning a wide range of topics in robotics, including
medical robotics, unmanned aerial vehicles, mobile robot navigation, mapping and
localization, field robotics, robot learning, manipulation, human—robot interaction,
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and design and prototyping. Experimental validation of algorithms, concepts, or
techniques is the common thread running through this large research collection.

From its classical venue to its excellent program, the fifteenth edition of ISER
culminates with this unique reference on the current developments and new
directions of experimental robotics—a genuine tribute to its contributors and
organizers!

July 2019 Bruno Siciliano
SPAR Editor



Preface

Experimental Robotics X VI is the collection of contributions presented at the 2018
International Symposium on Experimental Robotics (ISER 2018), November 5-8,
2018, Buenos Aires, Argentina. A total of 67 contributions were selected via peer
review out of 120 submissions. The contributions cover a wide range of topics in
robotics, including medical robotics, unmanned aerial vehicles, mobile robot nav-
igation, mapping and localization, field robotics, robot learning, manipulation,
human-robot interaction, and design and prototyping. The common emphasis is on
experimental testing and validation of new ideas and methodologies, and this
collection of contributions represents the latest in experimental research in robotics.

ISER is a series of biennial international symposia. Sponsored by the
International Foundation of Robotics Research (IFRR), the goal of ISER symposia
is providing a single-track forum for research in robotics that focuses on novelty
of theoretical contributions validated by experimental results. Taking advantage
of the small group setting, ISER 2018, for the first time, paired a discussion session
with each regular session to better facilitate the exchange of ideas related to the
session theme.

ISER 2018 also featured a pre-symposium workshop for outreach to robotics
researchers and students in Argentina and surrounding countries and a
post-symposium industrial forum to facilitate discussion of robotics applications
and technology transfer. In doing so, ISER 2018 continued the unique tradition of
ISER as an ambassador of robotics in the host country and region.

We thank all the reviewers for their important work in maintaining the high
quality of the symposium. We also thank Franka Emika and the US National
Science Foundation for providing financial support to the symposium or its par-
ticipants. Most of all, we thank all the authors and participants for their technical
contributions.

Jing Xiao

Torsten Kroger
Oussama Khatib
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Torsten Kroeger

All five papers of this session cover advancements for hardware and software com-
ponents as well as algorithms that will improve or enable medical robotics applications.
Niyaz et al. presented a motion planning concept validated by physical and simulated
experiments, which allowed tentacle-like robots composed of pre-curved telescoping
tubes to navigate through tissue. This would enable novel minimally invasive surgery
applications requiring robot navigation in highly constraint spaces. The work of
Kim et al. offered a comparable hardware setup and focused on non-surgical approa-
ches to open narrowed coronary arteries and restore arterial blood flow to the heart
tissue. Compared to the tentacle-like robots, the robots were wire-guided. The wires
were tracked through fluoroscopy. Chitalia et al. introduced a new hardware design for
robot joints for robotic pediatric neuroendoscopes — a tendon-driven continuum robot,
which was feasible for use in the tip of neuroendoscopes. Wartenberg et al. presented a
novel design of a six-degree-of-freedom system that could be used for needle insertion
tasks inside of MRI scanning system. With the goal of modeling, understanding, and
transferring human skills to robot devices, Chaudhari et al. discussed parameterizing
musculoskeletal models with deep learning methods — an approach that offered the
potential for future human-robot rehabilitation applications.

Given the current interest and growth in machine learning algorithms, most dis-
cussions during the discussion panel of this session were geared to data-driven mod-
eling and engineering approaches. For instance, the panel and the audience discussed
opportunities for using data-driven and model-free approaches for kinematic models of
complex systems such as continuum robots.
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Following Surgical Trajectories
with Concentric Tube Robots
via Nearest-Neighbor Graphs

Sherdil Niyaz'®)  Alan Kuntz?, Oren Salzman®, Ron Alterovitz?,
and Siddhartha Srinivasa'

L School of Computer Science and Engineering, University of Washington,
Seattle, USA
sniyaz@cs.washington.edu
2 Department of Computer Science, University of North Carolina at Chapel Hill,
Chapel Hill, USA
3 The Robotics Institute, Carnegie Mellon University, Pittsburgh, USA

1 Introduction

Concentric tube robots, or CTRs, are tentacle-like robots composed of precurved
telescoping tubes (Fig. la) and are controlled by rotating and translating each
individual tube [6]. Their dexterity and small diameter enable minimally-invasive
surgery in constrained areas, such as accessing the pituitary gland via the sinuses.
Unfortunately, their unintuitive kinematics make manually guiding the tip while
also avoiding obstacles with the entire tentacle-like shape extremely difficult [19].
This motivates a need for new user interfaces and planning algorithms.

Although existing planners [19] enable CTRs to reach specified points in
task-space, this is often insufficient. For example, cutting a window in the skull
during brain surgery (Fig. 1b) requires specifying an entire path R for the robot’s
tip. We have, to the best of our knowledge, implemented the first planner in this
domain able to compute a trajectory that closely follows such a task-space path.

Algorithms that are able to follow some task-space path R by computing a
constrained path in configuration space (C-space) [2,14,17,22] have two main
challenges: (i) some (e.g., a vector-field planner [17]) are fast but myopic, often
falling into local minima and (ii) all are oblivious to how closely the generated
paths follow R. In contrast, Holladay et al. [9] address both concerns by con-
structing a layered graph L in C-space and searching it for a path that directly
minimizes the Fréchet distance [21] from R.

Key to this algorithm’s efficiency are the graph’s ordered layers (Fig. 2a), each
consisting of multiple Inverse Kinematics (IK) solutions for a specific point on R.
Directed edges connect each configuration to others in the same and adjacent lay-
ers, ensuring monotonic progress. Unfortunately, this requires any path through

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-33950-0-1) contains supplementary material, which is avail-
able to authorized users.
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Fig. 1. (a) CTR with coin for scale. (b) Depiction of a CTR deployed via the sinus. A
reference path R, used to cut a window in the skull with the CTR’s tip, is depicted in
yellow. (¢) An example of a surgical system that uses our planner as a core component.

\ ¢ = TK(r;) V= TK(r;)

I I N
L k

i |

(a) (b)

Fig. 2. (a) Layered graph L and (b) nearest-neighbor graph N constructed in C-space
to follow a reference path R in task-space. Note that a layer in L is depicted as a
vertical stack of nodes. If reaching r; is impossible, all paths in L become blocked. The
structure of Ni, however, can bypass such blockages.

L to touch R at every layer, leading to failure in constrained environments such
as ours. For example, a layer mapping to a point r; € R made unreachable due
to collisions causes no collision-free path to exist in the graph. The CTR’s kine-
matics make it difficult for a surgeon specifying a path to perfectly distinguish
feasible locations in task space, accentuating this failure mode.

Our key insight is to generalize this algorithm by searching over a nearest-
neighbor graph, with less restrictive connections that allow deviation from infea-
sible portions of R (Fig.2b). This makes planning in constrained anatomical
environments possible, and thus enables our key contribution—a system imple-
mented on a CTR, presented with a set of simulated and physical experiments.
The former reveal that our planner produces higher-quality solutions more reli-
ably than alternative algorithms, while the latter inform algorithmic next-steps
necessary to bridge the simulation and real-robot gap.

2 Technical Approach

2.1 Notation and Definitions

The Fréchet distance is a metric of path similarity that has been extensively
studied in computational geometry, with varied applications such as speech [12]
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and handwriting [18] recognition. It can be explained intuitively via an analogy
where a dog on a leash traverses one path while its owner traverses another, each
with independent speed parameterizations a and 3. In this case, the Fréchet
distance is the shortest leash length required for the two to stay connected,
assuming the dog and its owner are selecting optimal values of « and (.

Motion plans for surgical tasks, such as tissue manipulation, must respect
the physician’s intent by (i) minimizing the tip’s deviation from the specified
path at each point in time and (ii) following the “flow” of the path by ensuring
that consecutive points along the two paths are traversed in the same order.
Because the Fréchet distance captures both objectives, it provides an excellent
optimization criteria for our domain.

Our planner searches for these motion plans in C-space, the set of all pos-
sible configurations of the robot. Each configuration is a d-dimensional point
that uniquely defines the robot’s shape. Similarly, the task-space of the robot is
defined as the space of all possible end-effector positions. We use the Forward
Kinematics (FK) operator to map points in C-space to points in task-space, and
use the Inverse Kinematics (IK) operator to perform the reverse mapping.

For a CTR, a configuration must describe the translation ¢; and rotation 6;
of each individual tube. Thus, for a CTR comprised of k tubes (typically three
or four), each configuration is a 2k-length tuple ¢ = (41,61, .., £k, 0)). We define
the robot’s task-space as the R? location of its tip, which is sufficient for many
procedures such as cutting with heat or a laser. However, we note that our
planner can easily be used with other definitions of task-space that also account
for the tips’s orientation.

In our setting, the physician specifies a reference path R in task-space as a
sequence of R3 waypoints. Let I" denote the set of collision-free C-space paths
and F : R? x R?® — R denote the discrete! Fréchet distance between two task-
space paths. Our problem now calls for computing?

in F(FK .
arg min 7(FK(v), R)

2.2 Algorithmic Approach

Recall that Holladay et al. [9] construct a layered graph L in C-space. This is
done by evenly sampling waypoints along the reference path R, and computing
a “layer” of distinct IK solutions for each one. Each of these configurations
has out-edges to all configurations in both the same and next immediate layer.
Following Har-Peled and Raichel [8], the cross-product graph ® = L x R? is

! Computing the continuous Fréchet distance, is notoriously difficult [16]. Thus, we
use the discrete variant, easily computed using dynamic programming [5]. Here, the
“leash” between points on the two paths is computed only for a discrete set of points
and serves as an approximation of the (continous) Fréchet distance.

2 By a slight abuse of notation we use FK to map both points as well as paths in
C-space to points and paths in task space, respectively.

3 By a slight abuse of notation we treat R both as the discrete reference path as well
as the one-dimensional graph defined by this sequence of waypoints.
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Configuration Space Task Space

Fig. 3. A reference path R (purple, right) in the task-space of a robot (yellow, right)
induces a manifold M g of IK solutions in C-space (grey, left). Following R via a layered
graph requires traversing Mgz from one end to the other, such as by taking the path
in green. However, even if R is not directly in collision with some obstacle (red, right),
its presence may cause a point 7' € R to map to a self-manifold [3] IK(7') that is
completely in collision (red, left) given the kinematics of the robot. These in-collision
self-manifolds require deviating from Mg to approximate R, and make traversal via
the layered graph impossible.

then constructed and searched for a minimal-bottleneck path, which induces the
path £ € L such that FK(£) minimizes the discrete Fréchet distance with R.

Algorithmic Enhancement: Our early experiments, however, revealed that
this planner often fails in surgical scenarios. In these constrained environments,
some sampled waypoint r; € R may be unreachable, often due to a combina-
tion of collisions and robot kinematics (Fig.3). Even the existence of one such
waypoint prevents the algorithm from finding any solutions, as all paths are
blocked by a layer of configurations in collision (Fig.2a). To prevent this, we
construct a nearest-neighbor graph N by uniformly sampling IK solutions from
R and connecting each to its k-nearest neighbors (NN) in C-space. This less-
rigid structure allows the planner to avoid IK solutions sampled from infeasible
waypoints (Fig. 2b).

Specifically, each configuration ¢ is connected to its k-NN in Q4(q), the set
containing all ¢, € Ny, such that FK(gs) lies after FK(g) along R. This ensures
that any path through N, monotonically follows R. As in [9], we generate the
path £ € Nj, that minimizes the Fréchet distance with R by searching the cross-
product graph ® = Nj x R.

Densification: This graph-based approach allows solutions to be improved on-
demand by sampling additional IK solutions from R and densifying Ng. To
connect each newly-sampled solution ¢ to Ng, we add out-edges from ¢ to its
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k-NN in Qs(¢). In addition, we add in-edges to ¢ from its k-NN in @Q,(g), the
set containing all ¢, € Ny such that FK(g,) lies before FK(¢) along R. These
additional connections increase the set of paths the planner can search over,
while still constraining it to monotonically follow R.

Implementation details: We collision check edges lazily [4,7], using LPA* [11]
for efficient replanning. Our CTR has three tubes, each of which can be rotated
and translated, inducing a 6-dimensional C-space. We use the damped least
squares (DLS) IK algorithm [20], which has previously been used with the CTR
[19]. We represent obstacles as polygonal meshes, and use FCL [13] for collision
checks. We define the distance between two configurations ¢; and go as:

> k1 — ba| + p(Br1, Ox2)
k

where p denotes the SO(2) difference between two angles. We note that the
choice of distance metric can drastically affect the algorithm’s performance [1].

3 Experiments and Results

We consider four surgically-motivated reference paths in our experimental eval-
uation (Fig.4), all within a human skull base. The first (i) moves the CTR’s tip
in a straight line towards the back of the sinuses, ending near a region where
the second (ii) traces a trapezoid. These two paths are inspired by a clinical sce-
nario where the CTR is deployed via the first path, and then uses the second to
cut a window allowing deeper access into the skull. We also test (iii) a different
version of the second path, as well as (iv) a W-shaped path that could be used
for wound irrigation. While not in collision with the skull, these last two paths
reside in constrained areas and thus exhibit the phenomenon depicted in Fig. 3.

3.1 Simulation Comparison

We evaluate our algorithm, which we term NN Graph, in simulation and com-
pare its performance with the following alternatives: (a) VFP which follows a
vector-field along R by using the Jacobian to integrate a path in C-space [17],
(b) GreedylK which adaptively samples a set of ordered IK solutions from R

- PRI

Fig. 4. From left to right, reference paths (i) through (iv) used in our experiments.
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and attempts to interpolate a collision-free path in C-space between them [17],
(¢) CBiRRT which enables planning on constraint manifolds [2] and (d) Lay-
ered Graph—the approach presented by Holladay et al. [9]. It is worth noting
that planners (a) and (b) are myopic but efficient and that all but (d) were not
designed to minimize the Fréchet distance from a reference path.

Simple Paths: We first compare the planners using paths (i) and (ii), both
without regions made unreachable by the collision geometry or CTR kinematics.
We report the Fréchet distances of the produced trajectories from R for a wide
set of parameters (Fig.5) and average results over ten random seeds.

We see that for both paths, all planners successfully produce solutions. When
using path (i), a straight line, performance for all planners remains fairly stable
as parameters vary. However, both paths reveal weaknesses in VFP and GreedylK.
With the former, optimal performance on path (ii) is only achieved under two
sets of parameters. Similarly, GreedylK produces results of markedly lower quality
than NN Graph across most parameters. CBiRRT, meanwhile, is used to pin the
CTR’s tip within a tolerance of R and succeeds when this tolerance is made
sufficiently tight. This is especially evident on path (i), the straight line.

Constrained Paths: We also compare the planners using paths (iii) and (iv),
as seen in Fig. 6. Due to being located in constrained areas, these paths contain
small regions infeasible for the CTR to follow perfectly. We note that these paths
were not hand-engineered adversarially, but were generated by a human familiar
with the CTR and real-world surgical procedures.

Due to the infeasible regions, Layered Graph was unable to find any solutions
with either path, confirming the failure mode we observed in our early exper-
iments. While CBiRRT still constrains the CTR’s tip to lie within a tolerance
of R, it lacks any notion of path following, causing it to violate the flow of these
more constrained paths. This oblivious nature also hinders GreedylK, causing
it to display unstable behavior where sampling more IK solutions can cause a
sharp drop in solution quality.
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Fig. 5. Fréchet distances over a range of parameters for path (i) at top and path (ii)
at bottom. A grey square indicates the algorithm failed to find a solution with that
combination of parameters.
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Fig. 6. Fréchet distances for path (iii) at top and path (iv) at bottom. We note that
Layered Graph failed on both paths, and that VFP failed on path (iii).

In our experiments with all four paths, NN Graph displayed stable behavior
under parameter variation and was the only planner able to consistently produce
high-quality solutions. In fact, for each of the four other planners, at least one
path led to either very low quality solutions or no solutions being found.

Additional Comparisons: We use our results from path (iii) to perform addi-
tional comparisons between planners. In the first of these, we correlate Fréchet
distance and runtime for each planner by averaging results across all parameters
over ten-second windows (Fig. 7a). This confirms that GreedylK produces solu-
tions quickly due to its simple nature. However, our planner outperforms the
others, which display fluctuating behavior over time.

In addition to evaluating our planner over a range of parameters, we are
interested in how a single set of parameters generalizes across a range of reference
paths. We compare against GreedylK using its optimal parameters, and select
a set for NN Graph that lead to similar runtime on path (iii). Generalization is
evaluated by adding independent Gaussian noise to the corners defining this path
and recording planner success rates (each taken over 20 trials) under increasing
levels of noise (Fig. 7b). We see that as the level of noise increases, our planner
has a higher success rate than GreedylK.

3.2 Algorithmic Behavior

Runtime Analysis: A decomposition of NN Graph’s runtime on path (iii) as we
linearly scale both the number of nearest-neighbors and IK solutions sampled
is shown in Fig.7c. FK, used in constructing the nodes of the cross-product
graph @ [8,9], is notably the most expensive component. This cost arises from
modeling complex interactions between tubes, which requires solving a series of
differential equations rather than the typical matrix multiplication.

Densification: We also explore the ability of densification to improve existing
NN Graph solutions. This provides our planner an advantage over alternatives,
as it enables a physician to improve a solution online until they are satisfied. Our
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Fig. 8. Densification results.

trials use 20 nearest-neighbors and augment N with an additional 20 configu-
rations per densification iteration. We report the Fréchet distances of solutions
as the graph increases in size.

Densification provides very little improvement with path (i), likely because
this simple straight-line path makes the initial solution already close to optimal.
The other three paths display notable improvement as the size of Nj increases
(Fig. 8). However, paths (iii) and (iv) both exhibit diminishing returns past a
given iteration.

3.3 Physical Experiments

We evaluate our algorithm on the real robot, testing all four paths inside a
3D-printed model of the skull base anatomy. Parameters are selected that create
high-quality solutions in simulation. To measure Fréchet distance, we use a mag-
netic tracking system to localize the tip during execution. Because this system
is noisy, we execute each trajectory ten times and average the results.
Imperfections in our kinematic model (discussed in the next section) prevent
us from scoring path (iii) due to collisions. While this path was not executed
successfully, the other three were. Paths (iv), (ii), and (i) were each executed
with average real Fréchet errors of 0.00806, 0.00747, and 0.00744 m respectively.
These are all significantly higher than the respective simulation errors of 0.00211,
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Fig. 9. Simulated (top) and real (bottom) execution of path (ii). The reference path
is colored yellow in simulation.

0.00031, and 0.00034 m. This discrepancy arises primarily from the inaccuracies
in our kinematic model. A comparison of simulated and real execution using
path (ii) is shown in Fig. 9.

4 Experimental Insights and Future Work

Our experiments support our use of a nearest-neighbor graph and demon-
strate the advantages of our planner over alternatives. They also reveal pre-
viously unconsidered domain-specific challenges, which we can only now begin
to address. We propose solutions to each of these, which we will explore in future
work.

Our planner’s high runtime is mainly due to our robot’s expensive
FK (Fig. 7c), motivating a paradigm shift in planner design for all robots that
incur high cost in this operation. To address this, we propose constructing the
cross-product graph @ implicitly, which avoids unnecessarily invoking FK to
create nodes never expanded during the search.

While we demonstrate a successful planner, our physical experiments reveal
the kinematic model has now become the limiting factor. Although this model is
state-of-the-art [15], it fails to perfectly model certain physical phenomenon, such
as friction between tubes. This causes the shape of the robot in simulation to
only approximate reality. Naturally, improving this model is a solution. We also
propose taking its uncertainty into account via a bicriteria optimization problem
of (i) minimizing Fréchet and (ii) maximizing the distance of the robot from
obstacles to prevent collisions. This has the added benefit of mitigating error in
the collision geometry, constructed from a preoperative volumetric scan [10].

Additionally, successful execution of path (ii) on the real CTR required man-
ually tuning the insertion point of the robot into the skull. The kinematics of the
robot induce a trumpet-shaped workspace, leading to greater range of motion
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farther from this insertion point. One of the insertion points was too close to the
reference path, placing it outside the robot’s workspace and causing a planning
failure. Likewise, the successful insertion point placed the shaft of the robot in
a less-constrained area, preventing a collision that otherwise occurred due to
modeling error. Because it proved so consequential, we propose incorporating
this selection of insertion point as a planning subproblem.
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Abstract. Percutaneous Coronary Intervention (PCI) is a non-surgical
approach used to open narrowed coronary arteries and restore arterial
blood flow to heart tissue. During a PCI procedure, the clinician uses
X-ray fluoroscopy to visualize and guide the catheter, guidewire, and
other devices (e.g. angioplasty balloons and stents). Robot-assisted PCI
could potentially reduce the radiation exposure of operators and pro-
vide a more ergonomic workflow. However, modeling and controlling of
the guidewire remains challenging because of the interplay of guidewire
motions, the tip properties (e.g., loads, coating), and the local cross-
sectional area of the vessel lumen (e.g, stenosis) and results in a highly
non-linear system. Thus, robot-assisted PCI devices are still passively
controlled by human operators at the cockpit. In this paper, we intro-
duce methods to generate distal guidewire motions that take advantage
of the fast response of a robotic system and which may be difficult to
generate by a human hand. The fundamental motions that a robot can
use to control the movement and direction of the guidewire are rotation
and pushing/retracting, from the proximal end of the guidewire outside
the insertion point on the patient’s body. We begin by investigating com-
binations of these fundamental motions under structured environmental
settings and conduct a systematic empirical comparison of task comple-
tion time for a given setting. We then demonstrate improved dynamic
behavior motions for a soft guidewire, which shows a promising speed-up
by 33% and 44% for two difficult stenosis cases.
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1 Introduction

Percutaneous Coronary Intervention (PCI) [1] is a minimally invasive approach
used to open coronary arteries that have been narrowed or blocked by atheroscle-
rosis. During a PCI procedure, X-ray fluoroscopy is the primary imaging modal-
ity used to visualize and guide the catheter, guidewire, and other devices (e.g.
angioplasty balloons and stents). The clinician is continuously exposed to X-
rays while manipulating a guidewire through the catheter, into the coronary,
and across the stenosis or blockage. Moreover, in order to reduce the degree of
longterm radiation exposure, the interventional cardiologist wears a heavy lead
apron during the entire procedure. To alleviate these workflow conditions and
allow the clinician to sit on an ergonomic console, robots have been introduced [2]
to remotely manipulate the guidewire and the catheter. However, they are still
passively controlled by human operators at the cockpit. Modeling and control-
ling of the guidewire remains challenging because of the interplay of guidewire
motions, the tip properties (e.g., loads, coating), and the local cross-sectional
area of the vessel lumen (e.g, stenosis) and results in a highly non-linear sys-
tem. For the task of controlling guidewires to cross stenosed lesions, referred to
as wiring a vessel, it is ideal to use as soft a wire as possible. A softer wire is
likely to cause less damage to the vessel lumen and is less likely to result in
adverse events, such a vessel perforations. During the procedure, clinicians often
change to stiffer wires to cross a difficult stenosis and then switch back to a
softer wire. A system that can combine the benefits of environmental modeling
and optimal guidewire manipulation with human operator control could poten-
tially reduce task completion time and allow the clinician to cross the stenosis
without switching wires.

In this paper, we introduce methods to generate distal guidewire motions that
take advantage of the fast response of a robotic system and which may be difficult
to generate by a human hand. The fundamental motions that a robot can use to
control the movement and direction of the guidewire are limited to rotation about
its axis and pushing/retracting at the proximal end of the guidewire. We begin
by investigating combinations of these fundamental motions under structured
environmental settings and conduct a systematic empirical comparison of task
completion time for a given setting. We then demonstrate improved dynamic
behavior motions for soft guidewires on difficult stenosis cases.

1.1 Related Work

A detailed assessment of the mechanical properties of wires used in PCI is
described by Schréder [3]. Guidance on various crossing techniques, wire selec-
tion and manipulation based on environmental conditions for the manual opera-
tor are described in [1,4,5]. Prior efforts at kinematics and dynamics modeling,
including simulating wires [6-11], were directed at developing training simula-
tors for physicians. In this work we focus on dynamic behavior motions and their
interactions with the environment to assist the operator in crossing a stenosis
with the softest wire possible.



