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Preface

In 1898, an Austrian microbiologist Heinrich Winterberg made a curious  observation: 
the number of microbial cells in his samples did not match the number of colonies 
formed on nutrient media (Winterberg 1898). About a decade later, J. Amann quan-
tified this mismatch, which turned out to be surprisingly large, with non-growing 
cells outnumbering the cultivable ones almost 150 times (Amann 1911). These 
papers signify some of the earliest steps towards the discovery of an important 
phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 
1985). Note how early in the history of microbiology these steps were taken. 
Detecting the Anomaly almost certainly required the Plate. If so, then the period 
from 1881 to 1887, the years when Robert Koch and Petri introduced their key 
inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, 
which is remarkably close to the 1898 observations by H. Winterberg. Celebrating 
its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest 
unresolved microbiological phenomenon. 

In the years to follow, the Anomaly was repeatedly confirmed by all microbio-
logists who cared to compare the cell count in the inoculum to the colony count in 
the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 
1936). By mid-century, the remarkable difference between the two counts became 
a universally recognized phenomenon, acknowledged by several classics of the time 
(Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959). 

Surely the “missing” microbial diversity was as large then as it is now. However, 
reading the earlier papers leaves an impression that throughout most of the 20th 
century the “missing” aspect was not viewed as a particularly important problem or 
as an exciting opportunity. A casual mention was typical of many publications. 
“Missing” cells were not necessarily considered missing species let alone signs of 
novel classes of microbes. Besides, the unexplored microbial biodiversity was a 
purely academic issue; the hunt for novel species as a resource for biotechnology 
had not yet begun. It is also important that the reasons for the Anomaly appeared 
rather simple at the time. Counting errors, dead cells, and later damaged cells were 
continuously considered significant components of the disparity. Also, it had been 
obvious at least since Koch’s time that no single nutrient medium could possibly 
satisfy all microorganisms (Koch 1881), and so the finger was always pointing to 
media deficiencies. Indeed, imperfections in media design was such a simple and 
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intuitive explanation for the refusal of the microbial majority to grow in vitro that 
many microbiologists began viewing it as sufficient. The triviality of the explana-
tion generated a perception of the Anomaly as a purely technical issue that could be 
resolved by bettering the media compositions and incubation conditions.

This view began to change towards the end of the 20th century. Cultivation 
efforts during the preceding decades did produce success stories; yet even as the 
manuals for media recipes grew into thick volumes, the overwhelming majority of 
microorganisms still eschewed the Petri dish. The progress in recovering missing 
species was rather incremental and did not change the overall picture. And, it was 
going to get worse. 

The rRNA approach (Olsen et al. 1986) was a truly spectacular development: it 
provided insight into the microbial world missed by traditional cultivation. Novel 
microbial divisions were discovered by the dozen (Giovannoni et al. 1990; Ward 
et al. 1990; DeLong 1992; Fuhrman et al. 1992; Liesack and Stackebrandt 1992; 
Barns et al. 1994; Hugenholtz et al. 1998; Ravenschlag et al. 1999; Dojka et al. 
2000). From the molecular surveys of the 1990s emerged an image of the biosphere 
with millions of novel microbial species waiting to be discovered (Tiedje 1994; 
Allsopp et al. 1995). What microbiologists had been able to cultivate and catalogue 
throughout the entire history of microbiological exploration (Staley et al. 1989) 
appeared to be an insignificant portion of the total. Successes in cultivation not-
withstanding, the gap between microbial richness in nature and that of culture col-
lections just would not close. Even today, most of the known microbial divisions 
have no single cultivable representative (Rappe and Giovannoni 2003; Schloss and 
Handelsman 2004). This gap was called “extraordinary” in 1932 just as it was 
called in 2000 (Butkevich 1932; Colwell 2000), as if the countless cultivation 
 studies during these seventy years never existed. But, the realities of our age are 
different from the 1930s, and the Great Plate Count Anomaly is no longer “just” an 
academic observation. The need to close the gap is an urgent practical issue, as 
biotech and pharmaceutical industries appear to have exhausted what the limited 
number of cultivable species have to offer (Osburne et al. 2000). Today, the resolu-
tion of the phenomenon of microbial uncultivability is recognized as a top research 
priority for microbial biology (Young 1997; Hurst 2005). The principal challenges 
are to understand why uncultivated microorganisms are uncultivated, and to 
describe, access, and utilize their seemingly infinite diversity.

Microbiologists answered the call using two different strategies. One represents 
a group of clever approaches that bypass cultivation altogether. These go straight to 
the genes of the “missing” species to mine them for the information and products 
they encode, or employ isotopes and miniature electrodes to measure the activities 
of these species in situ. It is truly exciting to see how, today, cultivation-independent 
studies can be done at a single cell level. The other is a head-on strategy, and con-
sists of a multitude of innovations in cultivation, principally aiming at mimicking 
natural conditions. The two strategies have their specific advantages and disadvan-
tages, but few microbiologists think it is a battle of two competing products. 
Instead, the likely solution to the Anomaly is in a symbiosis between the two. What 
form and shape this symbiosis will take, it is too early to say, but the good news is 
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that both the authors and the readers of this book will likely witness, and witness 
soon, the process and the conclusion of this evolution. 

Furthering this unification is the main goal of this volume. The contributions 
center around three themes. The first theme groups together several chapters that 
focus on what can be learned about the microbial world without cultivating 
it. John Bunge opens the volume by describing how to statistically estimate the 
size of microbial diversity using gene sequence data. Chapters by Mitchell Sogin 
and Terry Gentry et al.  provide an account of the state of the art in recovering the 
sequence data from environmental samples. Antje Boetius et al. offer a perspective 
on studying microbes in nature by measuring their biogeochemical activities. 
Mircea Podar et al. explore how much information modern genomics tools can 
recover from single cells of uncultivated species. The second theme is the nature of 
uncultivated microorganisms, why so many species remain uncultivated, and how 
to domesticate them in the lab. Thomas Schmidt and Allan Konopka dissect the 
nature of slow growing species. Rita Colwell describes cells that are viable but 
nonculturable. Slava Epstein attempts to build a general model of the Great Plate 
Count Anomaly. The third theme builds connections between the Anomaly and 
practice. Vivian Miao and Julian Davies explore how metagenomics approaches 
could help to provide access to bioactive compounds produced by uncultivated 
 species. Kim Lewis advocates a connection between the phenomemon of microbial 
uncultivability and antimicrobial tolerance of biofilms and persister cells. Ken 
Nealson’s chapter concludes the volume by discussing the application of unculti-
vated cells to the search of life outside our planet, so as to outline the wide spectrum 
of subjects connected to the Great Plate Count Anomaly. 

There is something else that this volume intends to convey. Working in the field of 
uncultivated microorganisms today involves both luck and privilege. Not everyone has 
the fortune to study a phenomenon that has endured for a century, is of unquestionable 
importance, and yet remains unresolved. It is fascinating to think that “our” phenom-
enon predates the model of the atom, the theory of the Big Bang, cracking the genetic 
code… It is humbling to think of the great minds who have contributed over the past 
century to its resolution. And it is sensational to think how enormously beneficial this 
resolution may be by providing unimpeded access to the missing microbial diversity, 
and the treasures therein. As to the luck … the luck is in the timing, for the right of 
entry into the world of uncultivated microbes seems to be just round the corner.

Boston MA  Slava S. Epstein
January 2009  
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       Statistical Estimation of Uncultivated 
Microbial Diversity       

     J.   Bunge      (*ü )

Abstract The full microbial richness of a community, or even of an environmental 
sample, usually cannot be observed completely, but only estimated statistically. This 
estimation is typically based on observed count data, that is, the counts of the repre-
sentatives of each species (or other taxonomic units) appearing in the sample or sam-
ples. “Abundance” data consists of counts of the numbers of individuals from various 
species in a single sample, while “incidence” (or multiple recapture) data consists 
of lists of species appearing in several or many samples. In this chapter we consider 
statistical estimation of the total richness, i.e., the total number of species, observed 
+ unobserved, based on abundance or on incidence data. We discuss parametric and 
nonparametric methods, their underlying assumptions, and their advantages and dis-
advantages; computational implementations and software; and larger scientific issues 
such as the scope of applicability of the results of a given analysis. Some real-world 
examples from microbial studies are presented. Our discussion is intended to serve as 
an overview and an introduction to the literature and available software.

 J. Bunge 
 Department of Statistical Science ,  Cornell University  ,  Ithaca ,  NY 14853 ,  USA  
e-mail:  jab18@cornell.edu 
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2 J. Bunge

            1 Introduction  

 Recent  research has shown that microbial communities are astonishingly diverse; 
in fact many studies only capture a small fraction of the diversity of a given com-
munity, despite intensive sampling efforts (Huber et al.  2007) . In such cases we 
must estimate the total diversity – observed plus unobserved – by statistical 
extrapo lation from the available data. This is a nontrivial and indeed not entirely 
solved problem in statistics; it is a topic of considerable interest and activity among 
theoretical (mathematical) statisticians, and its literature continues to evolve at a 
rapid rate (Bunge and Barger  2008) . Some of these statistical developments have 
entered the mainstream of microbial diversity research, but some have not. In this 
chapter we give an overview of the area from an applied, data-analytic perspective, 
with the goal of providing the practitioner with a conceptual framework for the 
diversity estimation problem; the types of data typically encountered; and the 
relevant statistical procedures that are applicable to such datasets. 

 First we require a definition of “diversity.” This in turn requires that the com-
munity or population in question be classified in a clear and unambiguous manner, 
i.e., that it be subdivided into mutually exclusive subsets which, together, comprise 
the entire population. For statistical purposes any well-defined classification system 
will do, but in a biological population it is natural to classify individual organisms 
according to the Linnaean hierarchy, in particular by “species.’ However, there is 
currently no consensus regarding the concept of “species” for microorganisms, and 
instead microbiologists often group environmental microorganisms into operational 
taxonomic units (OTUs) based on their rRNA gene sequence similarity (Stackebrandt 
and Goebel  1994) . A species is then provisionally defined to be a group (OTU) of 
cells sharing a certain percentage identity of their 16s rRNA gene sequences. 
Values from 97 to 99% are typically used. 

 Given a classification system, several indices of diversity have been defined 
(Magurran  2004) , but the simplest is the number of OTUs, or “species richness’ in a 
given community. This quantity has a clear physical meaning and in principle could 
be determined exactly, given unlimited sampling effort. However, species richness, 
while relatively straightforward to define, is difficult to ascertain in practice, because 
biological communities often comprise a few large and many small species, and it is 
precisely the small species that elude sampling efforts. That is, the unobserved part 
of the community may be subdivided into many small groups unbeknown to us, yet 
we are required to estimate the number of these unobserved species. This is why the 
statistical problem of estimating species richness does not at present have an optimal, 
universal solution. Indeed, some authors have argued (mathematically) that no such 
global solution is possible, and that under the most general, nonparametric formula-
tion of the problem one can at best provide a lower bound for the species richness of 
a given population (Mao and Lindsay  2007) . On the other hand, if one is willing to 
impose certain structural constraints, richness estimation becomes possible, although 
subject to the validity of the assumed structure. For this and other reasons it is advis-
able to use and compare several existing methods, which make different assumptions 
about the (unknown) structure of the population. 
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 The goal of this chapter is not to comprehensively review the current literature 
or practice (statistical or biological), but to describe the scope and applicability of 
the major statistical methods from a synoptic, and somewhat idealized, perspective. 
(In particular, the references given here are intended as entry points to the literature 
not definitive historical summaries.) This is because the status of current theory and 
practice are, to a certain degree, fragmented and incomplete. The various methods 
have not yet been unified in a single mathematical framework, and in particular 
there is no comprehensive expository textbook, at the theoretical or applied level. 
More importantly from the practitioner’s point of view, there is no unified and 
comprehensive software program for species richness estimation. Some methods 
have been implemented in software that can be readily used by the applied practi-
tioner, others in software that requires a statistical computing specialist, while for 
others no software exists at all. In this chapter we seek to give an overview of the 
state of the art. We take a broad perspective, attempting to look beyond the present 
limitations of the literature or software resources (which at any rate are being con-
tinually improved), while referring the reader to current and relevant existing 
resources where possible. We focus on those methods for which the mathematical 
foundations have been studied in depth. 

 Generally speaking, two types of data are encountered in species richness 
estimation: first, abundance or frequency count data, usually from a single sam-
ple; and second, incidence or occurrence data, usually from multiple samples 
(from the same community). In the next two sections we discuss statistical methods 
for each of these data types, and connections between them. In the final section, 
we discuss certain scientific issues (not purely statistical) and potential future 
directions.  

  2 Abundance Data  

 In this scenario we collect a sample of organisms, sort them into species, and count 
how many of each kind we have in the sample. Such a description hides the com-
plications of the data-collection process, which may have several stages, each with 
its own biases (as in the case of clone library construction), and it hides the some-
what arbitrary decisions underlying the operative definition of species or OTU. 
However, the procedure is at least conceptually clear, and we will relegate its uncer-
tainties to the background for now, in order to focus on the statistical methods. 

 Given such a sample, then, how can we interpret it statistically? Since the total 
species list is unknown (otherwise there would be no estimation problem), there is 
no obvious ordering of the species observed in the sample. We therefore organize 
the data by simply counting the number of species observed once (the “single-
tons”), twice, three times, and so on. For example, in the dataset (1,25), (2,7), (3,7), 
(4,4), (5,1), (6,2), (8,1), (11,1), (13,1), (14,1), (16,1), (27,1), (31,1), and (37,1); 
there were 25 species observed once (each), seven observed twice, seven 
observed three times, …, and 1 observed 37 times (example data from Behnke 
et al.  (2008) ; OTUs defined at 98% sequence similarity level). Thus there were 
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25 + 7 + 7 + 4+…+1 = 54 species observed altogether in this sample, and there 
were 1 × 25 + 2 × 7 + 3 × 7 + … + 37 × 1 = 250 individuals. 

 If we denote such a dataset in general by {( i , f  
 i 
 ), i  = 1,2,…}, then  i  is the  frequency  

(of sample occurrence) and  f  
 i 
  is the  frequency of the frequency i  (in the sample), an 

unwieldy phrase which we may replace by  frequency count , and we call this  frequency 
count data . It has a simple and intuitive graphical display with frequency on the hori-
zontal axis and count on the vertical axis, as shown for our example data in Fig.  1 .  

 The left-hand side of the graph represents the less-abundant or rare species 
(at least in terms of their representation in the observed sample), and the right-hand 
side represents the abundant or frequent species (in the sample). Note that the structure 
shown in Fig.  1  is typical of microbial diversity studies: almost half of the observed 
species (25/54) were represented by singletons in the sample, but at the same time 
there were three highly abundant species (with frequencies 27, 31, and 37), each 
accounting for more than 10% of the sampled individuals (27/250, 31/250, 37/250). 
This structure reflects the statement noted in the Introduction, that the unobserved 
portion of the population may be subdivided to an almost arbitrary degree, rendering 
species-richness estimation difficult, or at least prone to statistical error. Nevertheless, 
it is remarkable that statistical methods can often achieve usable and credible 
results in such situations, although they must be interpreted with care. There are 
two main families of methods for abundance data, and we discuss these next. 

  2.1 Parametric Abundance Models 

 In this approach we assume that each species has a certain propensity to enter 
the sample. (This propensity is not identical to its literal abundance in the popula-
tion, because the production of the ultimate sample may not transparently represent 
the underlying population.) We call this the “sampling intensity” of the species: it 
is the number of representatives of the species expected to enter the sample during 

  Fig. 1    Frequency count data example       
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one unit of sampling effort. The simplest possible assumption is that all sampling 
intensities are equal; however, this almost invariably results in underestimating the 
true species richness, often severely. It is more realistic to assume that the sampling 
intensities differ across species, some larger and some smaller. We then model the 
distribution of the intensities using a probability distribution which in turn is deter-
mined by a small number of parameters (for example, its mean and variance). This 
is a  parametric stochastic abundance model . 

 If we suppose that each species independently contributes a random number of 
representatives to the sample according to the Poisson distribution, with mean equal 
to the species’ sampling intensity, we have a  mixed-Poisson model  for the frequency 
counts (the “mixing” distribution is the distribution of the sampling intensities). We 
then fit the mixed-Poisson model to the observed frequency counts, generally via 
the method of maximum likelihood. (For an outline of the mathematical theory see 
Chao and Bunge  2002  and Bunge and Barger  2008) . This amounts to fitting a 
“curve” to the data; the curve is projected upward and to the left to obtain an esti-
mate of  f  

0
 , the number of unobserved species (i.e., observed zero times in the sam-

ple), and  f  
0
  is added to the observed number of species to obtain a final estimate of 

the total richness. The same mathematical structure yields a standard error (SE) for 
the estimate, goodness-of-fit assessments, and so forth. Figure  2  shows such a 
model fitted to our example data. Here the estimate of  f  

0
  is 67, for a total richness 

estimate of 54 + 67 = 121 species; the associated SE is 39, and the model fit is 
excellent. (Note that the curve is only fitted to the data up to frequency = 16; we 
discuss this later.)  

 Several questions arise immediately. First, how do we choose the parametric 
model, or stochastic abundance distribution, to use? It would be ideal if basic ecologi-
cal theory would provide such a model, and it could be confirmed to fit data in a large 
number of cases. However, while there has been considerable work both in the math-
ematical and biological literature on the derivation of such models, no consensus has 
emerged (Williamson and Gaston  2005) . Furthermore, it is not clear that a single 

  Fig. 2    Frequency count data example with fitted parametric model       
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model would apply across different types of organisms, or at different levels of the 
taxonomic hierarchy. Even if such a model could be found for the abundances of 
microbial species in a specific habitat, under specific conditions, it is not obvious that 
the model would remain unchanged under the various sampling, molecular biology 
and bioinformatic procedures that are used to construct a clone library, which is often 
the final source of data for analysis. One can envision a seamless theory that would 
mathematically describe environmental abundances, sampling, and the production of 
the clone library, resulting in a final model for the library as a representation of the 
underlying population; however, no such theory has yet been attempted. Hence at 
present the choice of model must generally be empirical, based on apparent fit to the 
data. We return to this question below. 

 Second, we typically fit models only to the observed frequency count data up to 
some maximum frequency, which is called the “right truncation point” or “tuning 
parameter,” denoted by   τ  . Given an analysis based on the truncated data, we simply add 
the number of species with frequencies greater than   τ   to obtain the final richness esti-
mate. (In the example above,   τ   = 16.) The reason for this is that it may be impossible to 
find a parametric model (from any known family) that fits a given complete frequency-
count dataset. Some researchers justify this truncation heuristically by noting that much 
of the information relevant to estimation of  f  

0
  may be found in the lower frequencies 

(more rarely observed species), since these strongly influence the trajectory of the fitted 
curve, upward and to the left. However, the statistical foundation of this statement is 
uncertain, and in fact the richness estimate (and its SE) will typically vary with   τ  . 

 Nevertheless it is usually necessary to select a value for   τ  , and there are several 
possible approaches to this choice. First, we can look for an apparent gap in the 
data, and use that to subdivide it into “rare” (low-frequency) and “abundant” (high-
frequency) species. In the example, such a gap occurs between 16 and 27, so τ     = 16 
is not unreasonable. This approach requires expert judgment in each case, and 
furthermore there may be no such gap, or there may be many. Second, we can set 
τ     at a heuristically-selected fixed value, say   τ   = 10. But if   τ   can be taken much 
higher than 10 while still obtaining a good fit, potentially important data points will 
be omitted unnecessarily. Third, we can set τ     to be the maximum value that will 
allow a good fit of a given parametric model; however, this value (and hence the 
results of the analysis) will vary depending on the model. Finally, we can take τ     to 
be the maximum observed frequency in the data, and then select the model that 
gives the best fit to the entire dataset – although no (available) model may be 
entirely satisfactory. This simple approach tends to be conservative; that is, it tends 
to produce somewhat lower richness estimates. 

 As the above considerations show, the choice of model and tuning parameter 
interact, in a manner that does not currently have a direct statistical resolution. For 
a fixed value of   τ  , we can select a model using standard statistical criteria such as 
the Akaike Information Criterion (AIC). Given a variety of models, each fitted at 
several possible values of τ    , one can examine the Pearson chi-square goodness-of-
fit statistic, but at present the final choice of analysis must to some extent rely on 
expert judgment, pending further research. Fortunately, expansion of the set of 
available models (based on mathematical research) generally allows   τ   to increase, 
as the models become more flexible (Bunge and Barger  2008) . 
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 In summary, the advantages of the parametric stochastic abundance model 
approach are ease of interpretation, clear visual representation, and often excellent 
fit to a large proportion of the frequency count data. The disadvantages are: empirical 
selection of tuning parameter and model.  

  2.2 Nonparametric Abundance Models 

 In this approach, the basic structure is the same as above: each species is assumed 
to independently contribute a Poisson-distributed number of representatives to the 
sample, and the species’ sampling intensities are assumed to follow some underly-
ing “abundance” or “latent” distribution. However, here this distribution is not 
restricted to be a member of a parametric family (such as the lognormal), but rather 
is allowed to range over the entire set of possible distributions. Rather than fitting 
a parametric maximum likelihood estimate of total richness, this method computes 
a nonparametric maximum likelihood estimate or NPMLE (Wang and Lindsay 
 2005) . There are several differences from the parametric approach.

  •  The final fitted abundance (sampling intensity) distribution is constructed by the 
procedure for each dataset, rather than being selected from a parametric family. 
(In fact the nonparametrically fitted distribution is discrete, essentially defining 
a small number of categories of species abundances.) This has the advantage of 
great flexibility, but gives no indication as to the suitability of well-known para-
metric models; essentially it builds a model de novo for each analysis.  

 •  Since the method selects, or rather constructs an approximation to, a single 
model among the entire class of possible models (not just within a specific para-
metric family), the question of model selection among different parametric fami-
lies does not arise.  

 •  The NPMLE is relatively insensitive to the truncation point   τ  , so the question of   t  , and 
its problematic interaction with model selection, does not arise, or is less important.  

 •  There is not (at present) a direct variance (SE) formula for the NPMLE; instead 
the SE must be computed by some form of resampling such as the bootstrap. 
However, the bootstrap must be carried out very carefully, because the species 
richness estimation problem exhibits certain pathologies which may render 
bootstrap variance estimates inaccurate.  

 •  There are several possible NPMLE’s. All are based on the Poisson sampling 
model; the differences arise because of the various ways of stabilizing (reducing 
the variance of) the estimators, and in the approximations and algorithms used 
for computing them. Because the NPMLE approach is fairly recent, not enough 
experience has accumulated to make a definitive selection among these.  

 •  It has been argued mathematically in a certain nonparametric theoretical frame-
work that only lower bounds for the total richness can be regarded as reasonable 
(Mao and Lindsay  2007) . Intuitively, this is because the nonparametric approach 
attempts to make minimal assumptions about the population structure (the 
underlying abundance distribution), and consequently one must always allow for 
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an arbitrary number of arbitrarily small species. Some versions of the NPMLE 
incorporate a “penalty parameter” or other devices to reduce this possibility.    

 As of this writing software to compute the NPMLE (and its variants) is not readily 
accessible, and therefore we do not compute the estimate for our example data. However, 
we expect software for this approach to enter the mainstream in the near future.  

  2.3 Coverage-Based Estimation 

 The  coverage  of the sample is the proportion of the population represented by the 
species that have been observed. For example, suppose there are four species in the 
population, say A, B, C, D, with proportional abundances 75%, 20%, 4% and 1%, 
respectively. If species A and C (only) appear in the sample then the coverage is 
79%. (There is a statistical subtlety here: the  actual  coverage is random and 
depends on the particular sample observed, while the  expected  coverage is the long-
term average coverage produced by the sampling procedure. Some methods address 
one version, some the other.) Estimation of coverage may be an easier statistical 
problem than richness estimation, and has its own literature (Mao  2004) . The canoni-
cal example of a richness estimator based on this concept is the Abundance-based 
Coverage Estimator or ACE (Chao  2005) . This estimator first inflates the observed 
number of species in inverse proportion to a nonparametric coverage estimate (the 
smaller the coverage, the greater the inflation), and then further adjusts nonpara-
metrically according to the variability of the observed frequency counts. Many vari-
ations of ACE have been studied, including ACE1 for (apparently) higher-diversity 
populations (Chao and Lee  1992) . 

 ACE and its variants:

  •  Are nonparametric and hence do not require model selection  
 •  Admit direct variance estimation (SE), without resampling  
 •  Are sensitive to the choice of   τ   – typically both the richness estimate and its SE 

increase with τ      
 •  Provide a sequence of related estimators, typically assuming higher degrees of 

diversity in the population  
 •  Are known to underestimate total richness in high-diversity populations (i.e., are 

downwardly biased in such cases)  
 •  Can be theoretically (mathematically) related both to certain families of para-

metric models (such as the gamma-mixed Poisson/negative binomial), and to the 
NPMLE framework (Chao and Bunge  2002 ; Mao and Lindsay  2007)     

 In our example above, the preferred coverage-based estimator at   τ   = 10 is ACE, 
which gives an estimate of 86 with SE of 14, and at   τ   = 16 (the value selected by 
the parametric procedure) the preferred estimator is ACE1, which gives 152 with 
SE of 50. In some datasets the possible values of   τ   may vary by one or more orders 
of magnitude, with corresponding variation in the coverage-based estimates.  
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  2.4 Discussion 

 Given the variety of approaches to estimation of species richness, which method 
should we use in a given case, and how should we select a final analysis to report? 
There are several principal considerations. First, the method used should correctly 
represent the researcher’s operative assumptions about the underlying (target) 
population, sampling procedure, and biochemical system for production of the final 
frequency count data. All of the methods described above share the same funda-
mental framework: they assume that each species has a given sampling intensity, 
the intensities vary in such a way that they can be described by a probability distri-
bution, and members of each species enter the sample independently according to 
their sampling intensities. If the data can be assumed to have been generated 
according to this framework, then all of the methods above are equally applicable. 
(We consider different data structures in Sect.  3 ). 

 The simplest and (in our view) best approach would be to compute all estimates 
and associated statistics such as SE’s, goodness-of-fit assessments (where applica-
ble), graphical representations, etc., and examine them all, because each method 
will illuminate a different aspect of the data. In the best-case scenario all methods 
will agree (approximately), leading to good confidence in the results. If there is 
strong divergence between the various analyses, this too is informative, and indi-
cates that a more conservative approach should be preferred until further (or auxiliary) 
data becomes available. However, as of this writing there is no comprehensive and 
easy-to-use software package to carry out such a multimethod, parallel analysis. 
The coverage-based methods do not present major programming challenges and 
have been widely implemented in software. The parametric and nonparametric 
maximum likelihood methods require nontrivial algorithm and program develop-
ment, and in some cases entail significant computing time, especially when many 
analyses are requested simultaneously, e.g., for multiple values of   τ  . At present, the 
existing software for these methods is not comprehensive or integrated, and the 
applied user will still need expert guidance, which may be available from the soft-
ware authors. However, software for all methods is undergoing rapid development, 
and some software with reasonable user interfaces is beginning to appear, even for 
the computationally-intensive methods. 

 We recommend that the applied researcher make every effort  not  to be limited 
by easy-to-use, readily available software. Instead, we recommend that the 
researcher seek expert advice, which is available in most institutions from a statis-
tics department or group, and analyze his or her data using as many of the above 
methods as is feasible, and in particular to compare the results of more than one 
parametric model (for example, the gamma-mixed Poisson or negative binomial 
model is usually too inflexible to accommodate the high-diversity data often 
encountered in microbial diversity research). The combined judgment of the biological 
and statistical experts can then be brought to bear on the results of the analyses. 
Such an approach will yield a range of results under slightly different model 
assumptions, and will tend to guard against over-optimistic acceptance of any single 
result, which may be biased downward or upward, unbeknown to the researcher. 
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 Table  1  summarizes the salient pros and cons of the various methods at the 
present time.     

 We emphasize that while this is the current state of the art, progress is rapid and 
we expect many of the disadvantages listed above (for all methods) to be amelio-
rated in the near future, especially in terms of computation.   

  3 Incidence Data  

 In this scenario we collect species occurrence or incidence data on several different 
sampling “occasions,” or from several different lists; this is also known as capture–
recapture, multiple recapture, or multiple list data. For example, the Table  2  shows 
10 different samples or lists, which yielded a combined total of 15 observed species. 
(This is a subset of a larger dataset with 46 samples and 3,717 observed species, 
extracted from GenBank at the 90% similarity level (Epstein and Bunge  2008 ).) 
Each row represents the “capture history” of a particular species (arbitrary species 
ID numbers are assigned), and each column represents the list of species observed 
on a given sampling occasion. Note that on each occasion, the only presence or 
absence – the “incidence” – of each species is recorded, where 1 indicates that the 
given species was observed on the given occasion (0 otherwise). The right-most 
column gives the total number of observations for each (observed) species. Analysis 
of such data has a long history and immense literature, dating back at least as far as 
the eighteenth century (Borchers et al.  2002 , Chao and Huggins  2005) ; here we 
attempt only a sketch from a particular point of view.     

 Table 1    Comparison of abundance-based methods  

 Method  Advantages  Disadvantages 

 Parametric maximum 
likelihood 

 Well-understood properties; 
represents data via smooth 
distribution; responds stably 
to   τ  ; natural visualization; 
tests suitability of specific 
abundance 
distributions 

 Model selection not obvious; 
results depend on 
(and model selection 
interacts with)   τ  ; computa-
tionally intensive; patchy 
implementation in existing 
software 

 Nonparametric maximum 
likelihood 

 Does not require model 
selection; robust across a 
wide range of abundance 
distributions; apparently 
insensitive to   τ   

 Procedure not yet thoroughly 
studied; standard error 
must be obtained by resa-
mpling; computationally 
intensive, and software not 
yet readily available 

 Nonparametric 
coverage-based 

 Well-understood properties; 
does not require model 
selection; robust across a 
range of abundance distribu-
tions; several user-friendly 
software implementations 

 Tends to be biased downward 
in high-diversity situations; 
sensitive to   τ  ; little diag-
nostic information for 
choice of   τ   and specific 
estimator; no graphical 
representation 
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 We note that in some cases the actual “abundance” or number of observations of 
a given species on a given occasion may be recorded, leading to integer entries 
greater than 1; this may be called “multiple abundance data,” although there is no 
standard terminology in this case. Clearly multiple incidence data can be derived 
from multiple abundance data, but not the reverse. Note also that frequency-count 
data can be derived from the marginal totals, but the full table cannot be recovered 
from the frequency-count data. In this example, the latter is (1,8), (2,3), (3,1), (4,2), 
(5,1). Here the maximum possible frequency is equal to the number of samples. It 
is possible to apply frequency-count methods to such data if the number of samples 
is large enough; we return to this issue below. 

 Multiple incidence data is more highly structured than frequency-count data, and 
its statistical analysis admits more variations; here we only attempt an outline of the 
areas we see as especially relevant to microbial ecology. Much of the literature in this 
area originated with population size estimation for macro-fauna – birds, mammals, fish 
– and in this application a row in the table represents the capture history for a particular 
animal. A certain taxonomy of models has emerged from this literature (Borchers et al. 
 2002) . It is not ideally adapted to microbial ecology applications but it has become a 
de facto standard, and (at least) the first four models are noteworthy here.

  •  M 
0
 : Global homogeneity. Each species is equally likely to occur, on each occa-

sion, i.e., each species has the same sampling intensity or abundance, and the 
“sampling effort” is the same on each occasion.  

 •  M 
 t 
 : “Time” ( t ) effect. All species have the same sampling intensity or abun-

dance, but sampling effort varies with occasion or time. Thus all species have 
the same probability of occurrence on a given occasion (within a given column 
of the table), but this probability varies across occasions (columns).  

 •  M 
 h 
 : Heterogeneity ( h ) effect .  The species have different (heterogeneous) sam-

pling intensities or abundances, but sampling effort is the same on each occasion. 

 Table 2    Example multiple recapture data  

    Sample                            

 Species ID  1  2  3  4  5  6  7  8  9  10  Total 

 1  0  1  0  0  0  0  0  0  1  0  2 
 2  0  0  0  0  0  0  0  0  1  0  1 
 3  1  1  1  0  0  0  0  0  1  0  4 
 4  0  0  1  0  0  0  0  0  0  0  1 
 5  1  0  0  0  0  0  1  1  1  0  4 
 6  0  0  0  0  0  1  0  0  0  0  1 
 7  1  1  1  0  0  1  0  0  1  0  5 
 8  0  0  1  0  0  0  0  0  1  0  2 
 9  0  0  0  0  0  1  0  0  1  0  2 
 10  0  0  0  0  0  1  0  0  0  0  1 
 11  0  1  0  0  0  0  1  0  1  0  3 
 12  0  0  0  0  0  0  0  0  0  1  1 
 13  0  0  0  0  0  0  0  0  1  0  1 
 14  0  0  0  0  0  0  0  0  1  0  1 
 15  0  0  0  0  0  0  0  1  0  0  1 
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Thus a given species’ probability of occurrence is the same on every sampling 
occasion: the probability of occurrence is the same within a given row of the 
table, but varies from row to row.  

 •  M 
 th 
 : Time and heterogeneity effects. The species have different sampling inten-

sities,  and  sampling effort varies across occasions. Thus the occurrence proba-
bilities vary both across rows and across columns.    

 Further models involving behavioral ( b ) effects have been studied in the literature. 
These were originally intended to account for individual animals’ responses to 
being captured (e.g., becoming “trap-happy” or “trap-shy”), and while the statistical 
models for such effects may have an alternative interpretation in the microbial ecology 
setting, we do not discuss them here. In the following discussion we assume that 
the sampling occasions or lists are (statistically) independent. There are many situations 
in which this assumption may be false, but we will retain it here for simplicity, and 
because it is often reasonable in microbial ecology. 

 The models M 
0
  and M 

 t 
 , which assume equal species abundances, admit straight-

forward maximum likelihood estimates and can be dealt with in a reasonably 
uncomplicated manner, statistically and computationally. Unfortunately, the equal-
abundance assumption is rarely if ever realistic, and causes severe downward bias 
when the true population is heterogeneous. Thus the models of interest here are M 

 h 
  

and M 
 th 
 . The more general of these is of course M 

 th 
 ; however, it may possible for 

the researcher to specify, on substantive grounds, whether the “time” effect should 
be assumed to be present or not, that is, whether sampling effort can be assumed to 
be constant across occasions. Thus both M 

 h 
  and M 

 th 
  are potentially useful. 

 The same three classes of estimators – parametric maximum likelihood, non-
parametric coverage-based, and nonparametric maximum likelihood – exist for 
incidence data as well as abundance data. If we restrict our attention to models M 

 h 
  

and M 
 th 
 , this gives six potential families of statistical procedures to consider. We 

will briefly consider each of the six possibilities. In addition, there is (at least one) 
alternative approach based on “estimating equations,” which has both parametric 
and nonparametric aspects, and admits an elegant extension even to the most general 
model M 

 bth 
  (Chao et al.  2001) . However, in its present form this method depends on 

the “time” order of the samples, i.e., it is not invariant to permutation of the lists. 
Since this assumption appears to be more adapted to certain kinds of animal-trapping 
surveys, we do not delve into it in detail here. 

  3.1 Parametric Incidence Models 

  3.1.1 Model M  h   

 In this case, the row totals of the data, that is, the number of times each species is 
observed, are binomial random variables, where the binomial “success probability” 
(the probability that a given species is observed on a given occasion) varies from 
row to row. A parametric mixture model, analogous (and in some ways equivalent) 


