Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

Jing Cheng

RESEARCH

Wirkungsgradoptimales ottomotorisches Konzept für einen Hybridantriebsstrang

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

Reihe herausgegeben von

Michael Bargende, Stuttgart, Deutschland Hans-Christian Reuss, Stuttgart, Deutschland Jochen Wiedemann, Stuttgart, Deutschland

Das Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) an der Universität Stuttgart erforscht, entwickelt, appliziert und erprobt, in enger Zusammenarbeit mit der Industrie, Elemente bzw. Technologien aus dem Bereich moderner Fahrzeugkonzepte. Das Institut gliedert sich in die drei Bereiche Kraftfahrwesen, Fahrzeugantriebe und Kraftfahrzeug-Mechatronik. Aufgabe dieser Bereiche ist die Ausarbeitung des Themengebietes im Prüfstandsbetrieb, in Theorie und Simulation. Schwerpunkte des Kraftfahrwesens sind hierbei die Aerodynamik. Akustik (NVH), Fahrdynamik und Fahrermodellierung, Leichtbau, Sicherheit, Kraftübertragung sowie Energie und Thermomanagement - auch in Verbindung mit hybriden und batterieelektrischen Fahrzeugkonzepten. Der Bereich Fahrzeugantriebe widmet sich den Themen Brennverfahrensentwicklung einschließlich Regelungs- und Steuerungskonzeptionen bei zugleich minimierten Emissionen, komplexe Abgasnachbehandlung, Aufladesysteme und -strategien, Hybridsysteme und Betriebsstrategien sowie mechanisch-akustischen Fragestellungen. Themen der Kraftfahrzeug-Mechatronik sind die Antriebsstrangregelung/Hybride, Elektromobilität, Bordnetz und Energiemanagement, Funktions- und Softwareentwicklung sowie Test und Diagnose. Die Erfüllung dieser Aufgaben wird prüfstandsseitig neben vielem anderen unterstützt durch 19 Motorenprüfstände, zwei Rollenprüfstände, einen 1:1-Fahrsimulator, einen Antriebsstrangprüfstand, einen Thermowindkanal sowie einen 1:1-Aeroakustikwindkanal. Die wissenschaftliche Reihe "Fahrzeugtechnik Universität Stuttgart" präsentiert über die am Institut entstandenen Promotionen die hervorragenden Arbeitsergebnisse der Forschungstätigkeiten am IVK.

Reihe herausgegeben von

Prof. Dr.-Ing. Michael Bargende Lehrstuhl Fahrzeugantriebe Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Prof. Dr.-Ing. Hans-Christian Reuss Lehrstuhl Kraftfahrzeugmechatronik Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland Prof. Dr.-Ing. Jochen Wiedemann Lehrstuhl Kraftfahrwesen Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Weitere Bände in der Reihe http://www.springer.com/series/13535

Jing Cheng

Wirkungsgradoptimales ottomotorisches Konzept für einen Hybridantriebsstrang

Jing Cheng IVK, Fakultät 7, Lehrstuhl für Fahrzeugantriebe Universität Stuttgart Stuttgart, Deutschland

Zugl.: Dissertation Universität Stuttgart, 2019

D93

ISSN 2567-0042 ISSN 2567-0352 (electronic) Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart ISBN 978-3-658-28143-4 ISBN 978-3-658-28144-1 (eBook) https://doi.org/10.1007/978-3-658-28144-1

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature.

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftliche Mitarbeiterin im Rahmen des Promotionskollegs HYBRID beim Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) der Universität Stuttgart. Ich möchte für die Förderung des Promotionskollegs HYBRID der Daimler AG und dem Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg danken.

Mein besonderer Dank gilt Herrn Prof. Dr. Michael Bargende, dem Leiter des Lehrstuhls Fahrzeugantriebe im Institut für Verbrennungsmotoren und Kraftfahrwesen, für die wissenschaftliche Betreuung dieser Arbeit sowie die Übernahme des Hauptreferates. Herrn Prof. Dr. Christian Beidl, Leiter des Instituts Verbrennungskraftmaschinen (VKM) an der Technischen Universität Darmstadt, danke ich für sein Interesse an meiner Arbeit und für die Übernahme des Korreferates.

Des Weiteren möchte ich auf Seite des Kooperationspartners Daimler AG den Mitarbeitern der Abteilung RD/PGD und RD/PGC für die Anregungen und den fachlichen Austausch danken. Ein besonderer Dank gilt dabei Herrn Dr. Frank Altenschmidt für seine Initiative und Vorschläge für die wissenschaftliche Arbeit und Herrn Christoph Ley für die Unterstützung bei der Modellierung.

Außerdem möchte ich meiner ganzen Familie für das Verständnis und die Unterstützung danken. Ganz besonders möchte ich mich bei meinem Ehemann Tobias Plaumann für seine Geduld sowie fachliche und sprachliche Unterstützung während der Promotion bedanken.

Stuttgart

Jing Cheng

Inhaltsverzeichnis

Vo	rwor	t		VII
Ab	bildu	ngsver	zeichnis	IX
Ta	belleı	nverzei	chnis	XIII
Ab	kürzı	ungsvei	rzeichnis	XV
Ku	rzfas	sung		XIX
Ab	strac	t		XXI
1	Ein	leitung		1
2	Sta	nd der	Technik	3
	2.1	Ottom	otoren mit Direkteinspritzung	
		2.1.1	Gemischbildung und Brennverfahren	3
		2.1.2	Betriebsarten	7
	2.2	Hybrid	lantrieb	9
		2.2.1	Grundlage zum Hybridantrieb	9
		2.2.2	Betriebsmodi eines P2-Hybridfahrzeugs	17
		2.2.3	Auslegung der Betriebsstrategie	19
3	Ges	amtsys	stemmodellierung für Hybridfahrzeug	
4	Dat	enbasi	s für Kalibrierung und Validierung	29
5	Stre	eckenn	odell für Verbrennungsmotoren	
	5.1	Variar	nten der Streckenmodelle	
	5.2	Motor	steuergerätemodell	

	5.3	Das Mittelwertmotormodell
	5.4	Das Rohemissionsmodell
	5.5	Abgasnachbehandlungsmodell76
6	Sim	ulation mit regelbasierter Betriebsstrategie
	6.1	Regelbasierte Betriebsstrategie und Simulationsmethodik
	6.2	Verbrauchseinfluss des Brennverfahrens und Hubraums
_	~	
7	Sim	ulation mit optimierender Betriebsstrategie
7	Sim 7.1	ulation mit optimierender Betriebsstrategie
7	5im 7.1 7.2	ulation mit optimierender Betriebsstrategie
7	7.1 7.2 7.3	ulation mit optimierender Betriebsstrategie
7	 7.1 7.2 7.3 7.4 	ulation mit optimierender Betriebsstrategie
7 8	 Simi 7.1 7.2 7.3 7.4 Zusa 	ulation mit optimierender Betriebsstrategie

Abbildungsverzeichnis

Abbildung 2.1: Ladungswechsel in homogener und geschichteter Verbrennung [1]		4
Abbildung 2.2:	Schematische Darstellung der Struktur einer Tripel- flamme [2]	5
Abbildung 2.3:	Einteilung der Brennverfahren von Ottomotoren mit Direkteinspritzung [3]	6
Abbildung 2.4:	Hauptbetriebsarten im Motorkennfeld [4]	8
Abbildung 2.5:	Drehzahl-Drehmomentverläufe verschiedener An- triebselemente	11
Abbildung 2.6:	Ragone-Diagramm für elektrische Energiespeicher [5]	12
Abbildung 2.7:	drei klassische Konfigurationen des Hybridfahrzeugs	14
Abbildung 2.8:	Unterteilung des parallelen Hybridfahrzeugs [6]	15
Abbildung 2.9:	Betriebsmodi eines P2-Hybridfahrzeugs	18
Abbildung 3.1:	Regelkreis des Gesamtsystemmodells	23
Abbildung 3.2:	Ersatzschaltbild des stationären Niedervoltbatterie- modells	25
Abbildung 3.3:	Ersatzschaltbild des dynamischen Hochvoltbatterie- modells	26
Abbildung 4.1:	Konfiguration des Hybrid-Antriebsstrangs [7]	30
Abbildung 4.2:	Messstellenplan des Versuchsträgers	32
Abbildung 4.3:	Messprogramme und deren Nutzung	32
Abbildung 5.1:	Struktur des Motorstreckenmodells im Gesamt- system	35
Abbildung 5.2:	Struktur des Motorstreckenmodells im Gesamt- system	37
Abbildung 5.3:	Beispiel der Ladedruckreglung und simulative Aus- führungen	39

Abbildung 5.4:	Darstellung der motornahen ECU-Funktionen	.40
Abbildung 5.5:	Struktur der importierten ECU-Funktionen	.42
Abbildung 5.6:	Steuerungsablauf einer Momentenerhöhung	.44
Abbildung 5.7:	Zusammensetzung der Zylinderfüllung:	.45
Abbildung 5.8:	Steuerung des Luftmassenstroms	.46
Abbildung 5.9:	Nockenwellensteuerung und Eispritzwinkel	.48
Abbildung 5.10:	ZW-Steuerung im Homogenbetrieb	.50
Abbildung 5.11:	Steuerungen in Zünd- und Kraftstoffpfad während des Betriebsartenwechsels	. 50
Abbildung 5.12:	Simulationsergebnisse der momentanen Kraftstoff- verbräuche	.52
Abbildung 5.13:	Modellierung des Luftfilters	.54
Abbildung 5.14:	Kennfeld und Grenzen des Verdichters [8]	.58
Abbildung 5.15:	Modellsturktur des MWM für M270	.62
Abbildung 5.16:	Momentgenerierung und Luftmassen in WLTC	.63
Abbildung 5.17:	Temperatur und Druck im Abgaskrümmer und nach der Turbine	.64
Abbildung 5.18:	Vergleich stationäre Simulationsergebnisse mit Messung	.65
Abbildung 5.19:	Arbeitsprinzip des Rohemissionsmodells und Auf- bau des KNNs	.67
Abbildung 5.20:	Arbeitsablauf der IVS [9]	.69
Abbildung 5.21:	Pareto-Diagramm am Beispiel CO- Entstehung im HOM-Betrieb	.70
Abbildung 5.22:	Ablauf der Kalibrierung REM	.70
Abbildung 5.23:	Zwischenergebnisse der Iteration KNN-Generierung	.71
Abbildung 5.24:	Vergleich Simulation und Messung der NO _x Emis- sionen	.74
Abbildung 5.25:	Vergleich der HC- und CO-Emissionen von Simula- tion und Messung	.75

Abbildung 5.26:	Aufbau des untersuchten Abgasnachbehandlungs- systems und Arbeitsprinzip der Simulation76
Abbildung 6.1:	Beispiel einer regelbasierten Hybridbetriebsstrategie [10]81
Abbildung 6.2:	Vergleich der Lastpunktverschiebung von zwei ver- schiedenen Verbrennungsmotoren
Abbildung 6.3:	Motorbetriebszeiten und akkumulierte Verbräuche zweier Ottomotoren im NEFZ
Abbildung 6.4:	Verbrennungsmotorischer Betrieb der Ottomotoren mit drei Hubraumvarianten
Abbildung 6.5:	Verbrauchsvergleich im NEFZ der betrachteten Hubraum- und Motorvarianten
Abbildung 7.1:	Flussdiagramm einer Offline-Optimierung mittels ECMS
Abbildung 7.2:	schematische Darstellung von P _{Krst} und P _{ele} in Ab- hängigkeit des Verteilungsfaktors u94
Abbildung 7.3:	Beispiel einer Cost-to-Go-Matrix bei 1200 min ⁻¹ 95
Abbildung 7.4:	die Geschwindigkeitsprofile NEFZ, RTS-95-high- /low97
Abbildung 7.5:	Verteilung der Betriebspunkte in drei Fahrzyklen97
Abbildung 7.6:	SOC-Verläufe der vier Simulationsvarianten
Abbildung 7.7:	Vergleich Cost to Go (1200 min ⁻¹)99
Abbildung 7.8:	Häufigkeit von EM Momenten bei verschiedenen Motorkonzepten im RTS-95-high100
Abbildung 7.9:	Verteilung der Betriebspunkte in vier Simulations- kombinationen101
Abbildung 7.10:	spezifische Kraftstoffverbräuche der drei Betriebs- arten
Abbildung 7.11:	Zeitlicher Ablauf der Betriebsarten im RTS-95 high- /low

Tabellenverzeichnis

Tabelle 2.1:	Hybridfahrzeuge unterteilt nach Elektrifizierungs- grad und jeweils verfügbare Funktionen [11]	17
Tabelle 4.1:	Technische Daten des Versuchsträgers	31
Tabelle 4.2:	Übersicht aller ausgeführten Variationen	34
Tabelle 5.1:	Eingänge der KNN in HOM, HOS und SCH	73
Tabelle 6.1:	Versuchsplan für die Simulation	80
Tabelle 7.1:	λ_0 in verschiedenen Simulationsvarianten	98

Abkürzungsverzeichnis

m	Massenstrom
q	Durchfluss
Q	Wärmeübertragung
Ag	Abgase
AGN	Abgasnachbehandlungssystem
AGR	Abgasrückführung
AÖ	Auslassventil Öffnen
AS	Auslassventil Schließen
ASR	Antriebsschlupfregelung
Aw	Wandoberfläche
BMS	Batterie Management System
С	Capacitor (Kondensator)
c _K	Wärmekapazität
CO	Kohlenmonoxide
CO_2	Kohlenstoffdioxid
c_p/c_v	spezifischen Wärmekapizität
CPC	Central Powertrain Controller
DOD	Depth Of Discharge (Entladungsgrad)
DP	Dynamische Programmierung
ECMS	Equivalent Consumption Minimization Strategy (äqui-
	valente Optimierungsstrategie des Verbrauchs)
ECU	Steuergerätemodell
EÖ	Einlassventil Öffnen
ES	Einlassventil Schließen
ET	Einspritzteilung
GA	genetisches Algorithmus
Gb	Getriebe
Н	Enthalpie, Elektrifizierungsgrad
Н	Hamiltonische Funktion
HC	Kohlenwasserstoffe
HOM	Homogenbetrieb
HOS	Homogen-Schicht-Betrieb
HSP	Homogen-Split-Betrieb
Hu	unterer Heizwert

I _{Batt}	Batteriestrom
ICCT	International Council on Clean Transportation
IVS	Input Variable Selection (Eingangsauswahl)
J	Gesamtkostenindex
K _{FW}	Beiwert Stromwiderstand
KNN	künstliches neuronales Netz
Krst	Kraftstoff
LWOT	Ladungswechsel oberer Totpunkt
m	Masse
MSE	Mean Squared Error (mittlere quadratische Abweichung)
MWM	Mittelwertmotormodell
NAK	Nassanfahrkupplung
NEFZ	Neue Europäische Fahrzyklus
N _{Gang}	eingelegter Gang
NO _x	Stickoxide
NSC	NO _x Storage Catalyst (NO _x -Speicherkatalysator)
NW	Nockenwelle
OBD	On-Board-Diagnose
р	Druck
Р	Leistung
PEMS	Portable Emission Measuring System (Mobiles Emissions-
	messgerät)
p _{me}	mean effective pressure (effektiver Mitteldruck)
PMP	Pontrjaginsches Minimierungsprinzip
p _{mr}	Reibmitteldruck, Reibmitteldruck
Q	Batterie Kapazität
QSS	quasi-stationär
RC(-Glied)	Resistor Capacitor (Widerstand Kondensator)
RDE	Real Driving Emissions (Emissionen im praktischen Fahr-
	betrieb)
R _{Diff}	Diffusionswiderstand
R _{Dur}	Durchtrittswiderstand
REM	Rohemissionsmodell
R _i	Innenwiderstand
\mathbf{s}_0	äquivalenter Faktor
SCH	Schichtbetrieb
SOC	State Of Charge (Ladezustand)
SOF	State Of Function (Betteriezustand)