e e

(Pronging
for the PIC
Microcontroller

Demystify Coding with Embedded
Programming

Hubert Henry Ward

C Programming
for the PIC
Microcontroller

Demystify Coding
with Embedded Programming

Hubert Henry Ward

Apress’

C Programming for the PIC Microcontroller: Demystify Coding with
Embedded Programming

Hubert Henry Ward
Lancashire, UK

ISBN-13 (pbk): 978-1-4842-5524-7 ISBN-13 (electronic): 978-1-4842-5525-4
https://doi.org/10.1007/978-1-4842-5525-4

Copyright © 2020 by Hubert Henry Ward

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5524-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5525-4

Dedicated to my wife Ann

Table of Contents

About the AUthOrccccmmnimmmnnesnnnss s xiii
About the Technical ReVIEWETccsssesssssssassssnsssnsssassssassssnsssansssnsssas Xv
Introduction........cccccmnsemmmnsnmmsssnsmssssnmsssnsmsssnsssssns s ssnn s nnnnsnnnnnns Xvii
Chapter 1: Introduction...........cccuunnsseeesmmnnnmmmmsssssssssnem s ————" 1
Programmable Industrial CoNtrollersccovevvesrenernsesenesess s 1
Programming LAnQUAQES......ccouverrerrerersenensensesessssessessesssssssessessessssessessessssessessesses 3
MACHINE COEcccovrirrreicri s 3
PACSTSYeT aq] o] (<1 g I 4T 1 Vo S 5

C Programming LANQUAGEccocerernnrnnniesienss e sesse s ssssss s ssessssessesneens 5
Different Programming LANQUAJEScccererereererenmrresmrensesessesessssesessesessssessssesenns 6
TREIDE ...t bbb 7
SUMMANY....ctitieernesrre e e e b s r e r e e b e e e e nnnne e 8
Chapter 2: Our First Programcccccvnnsemmmmmsssssnmsssssssnsssssssssssssssssssnss 9
The PORTS 0f the PIC.......cccciiccccsnriseesese s sssasnas 9
Good Programming PraCtiCeccevevererrerieresessersessessssessessessessssessessesssssssensenees 10
The AIgOrTRM.......co e ———————— 10
The FIOWCHAM........cceceeeeereer e nnenen 11

The Program LiStiNgccccveeeerenernsesrsensnssesessesesesessssesessesesssssssssesssssssssenens 11
USiNg MPLABX IDEccvoerererirserie s sesse e ss et e e e sasssssessesnens 12
Creating the Project in MPLABX..........ccccvvviernnensensenessssessese e ssssessessessessssessesaes 13
The First Program Turning On and Off an Qutput.........cccccvverievvrnrenserenessensenaens 23

TABLE OF CONTENTS

The Main Aspects 0f @ ‘C’ Programccceveeverersersersesessessessesssssssessessesssssssessees 23
The Comments and PIC Configurationccccoveevniennnsennscnenesese s eseneens 23
The TRISA and TRISB........cccccourireisnnsrssssrsr s ss s ssssssnns 29
ATRIS EXAMPIE.....coiiiiricrire st n s e 31
EXEICISE 2T e 31
Setting the PORTS........ccorrr s se s saesnes 31
The ADC (Analogue to Digital CONVEIEN)........ccvvrverierrererserseseseesessessessesessessessenes 33
Setting Up the OSCIllAtorccccveerevererrerere s sesse e ssssese e ssesessessesees 36
EXEICISE 2-2......eeeeeeeeereecrerc s e 39
Waiting for an INPUL.........cooeeeece e 39
Waiting to Turn the LED Off........cccoveeineirssrresensse s sessesensnnens 42
EXEICISE 2-3.....ceeeeeeirreeriee s e 51
(001111117 1T 52
Testing the Program..........cocvvivenninninse s ses s se s s s s ssessssssesaesseas 52
Compiling and Running the Program.............cceceerienrnscvnneneniencrssesesesessenes 56
Testing the Program Practicallyccccocrienninininnnnsnc s 59
R0 T o S 62
EXEICISE ANSWENS ...c.vereerreerrssessssssessesessssesssssssssssessssessssssssssssssssesssssnssssnsssanes 63

Chapter 3: Updating the Program............cccivnmssemnnnssssnsnsssssssnsssssssnsnnns 69

If This Then DO That.........covvninre s 65
Saving the Old Program...........ccoccrrvrnicnnesersse s sese e ssssesens 66
Labels and the Goto INStrUCLION.........c.ccceeereeecrerereree s 69
EXEICISE 3-T..riesreereerrne s s 69

WHhile VS. If TREN....coceeccerce e 69

Slowing the MICro DOWNcccvcreererr e ss e s sre e s saesees 70

TOCON REJISIEE ...cverveererrerrererserersesssssssessessessssessessessessssessessessessssessessesssssnsessees 71

TABLE OF CONTENTS

Adding a One-Second DEIAYcccvvereverrerierennsensenese s s ssessssessessenes 74
EXEICISE 2. s 75
Delaying the TUurn Off.......ociircn e 77
USING SUDFOULINEScoveereecrercser e e 79
Defining and Calling a Subrouting..........c.ccovveerecrsssncsnese e 79
The delay SUDFOULINE.......ccccvvvrrrer e 80
Calling the Subroutine from Within the Main Program............ccceveevvveriernene 80
The Variable Delay and the FOr DO LOOPcccceeeverververnererrersee e sesessee e saesnens 82
Local and Global Variables and Data Types.........ccccvvrinnnnnnennesnsensesessssessensens 85
778 L= I 1T T PR 85
Type UNnSIigned Char ... 86
TYPE INE et 86
LOCal Vari@bIEsccvviiiireririnsce s 87
Global VariabIes...........oveererernincr s 87
EXEICISE 33 90
SUMIMANY.....eieeeeeeree e e r e se e e s re e e e e nns 91
EXEICISE ANSWENSceveeereeerereerseesseesessesessssessesessssssessesessssessssesesssssssenessnnes 91
Chapter 4: Applying What We’ve Learned.........cccossmmssansssassssnsssansssass 93
Controlling a Single Set of Traffic LIghtS......c.ccocvcvvrivnrninienesssersene e sessensennns 93
The AlGOritNM ... ——————— 94
The Configuration WOrdSccceeeernvcrnesne s sens 100
The Analysis 0f the Program ... sessesesnenens 101
Downloading the Program to a Prototype Board...........ccccvrererencrnsenenenennnnes 106
Extending the Program to the Crossroads Traffic Lightscccccvrnierennnnns 109
The AIgOFthm ... e 110
SUMMAIY.c.ueiteirierere s sere e sesse s e s e e s e ssesse e s e saesaese e e saesaesae e s e saesaessenennessens 118

vii

TABLE OF CONTENTS

Chapter 5: Real-World INputscccinnssmmmmmmssssnnnssssssssssssssssssssssnns 119
Using Analogue INPULSccoevreinircre s s 119
The ADCONO Control Register ... sessessessens 120
The ADCONT REGISTEr......cceeeereecrererereses e sessssesnnnens 122
The ADCON2 RegiSTercuueerrererrnesrssesessesessssessssesessesessssesssssssssssssssssssssssssssnens 124
Creating the Required AcqUISItion TIMEccuvvvrierenensenseresssessesse s sessesessens 128
6 111][S 129
06 111][129
Changing the ADC Input Channels ... sessessens 130
A Basic Setup for the ADC..........ccovrrrinnrr e 131
A Basic Program for the ADCccoeernvnnenersse s sessssessenens 132
The AlGOrithm ..o ———— 132
Analysis 0f the Programc.ccovcvvevievnninnensessessssessessesessssessessesssssssessessens 134
SUMMAIY.c.veitetrerereses s e s s sre e e e sse s sa e e s e saesaese e e saesaesae e s e saesaesseensesaess 135
Chapter 6: Using the LCD.........ccccnsmmmsanmssasmssnssssnsssassssassssnsssassssanssas 137
The LCD CONTIOIIEY ... e se e 137
Instruction or Command MOdE..........ccoveevrrenerenernsesensese s 137
DAta MOTEcerereereererer e nnen 138
INitializing the LODccvcrcerereer et s e sa s sn e e 142
The Subrouting ICAOUL ()....ccverrererrerrererrerersereresessessesesessssesessesaesessessessens 159
The Subrouting SENAINTO () ..v.cveverrerrerierererrerrererre s e seesessesaens 159
The New Aspects to PIC Programming in This LCD Program.........cccoeeevienuenne. 162
AITAYS ... sesse e se s e e p e e e e R e e e 162
USING POINTETScecvreeerrcerie s 163
Connecting the LCD in 8-Bit MOdE..........ccoverrrinernseninesersse e 165

viii

TABLE OF CONTENTS

The VoIt Meter Programc.cccevvvninneninsinse s sessesssessessessesssesaesannns 175
The AIgOrithm ..o ——— 175
Creating Special Characters on the LCDccccrvviinsniniennsncenesssenennens 190
SUMMANY..c..eeeerercreree s e e pe e e e 211
Chapter 7: Creating a Header File.........c.ccccmmnsssnnmnnnsssnnnnnsssssnsnnssssnns 213
HEAURK FIlES...cvieeeeeeerieert sttt s 213
Creating @ Header Filecovcvvvrerenirrerere s sesse e ses s sse e e sae s ssessesnens 213
Including the Header File into Your Program...........ccccecvvnvnnnneniensensensenenens 217
The Global Header File.........c.covvennrnnesscsenessss s sesnssns 218
Creating a Header File for Your Configuration Instructions..........c.ccccevvcniennene. 219
SUMMANY....eieeerieereree s s e e e e 221
Chapter 8: Understanding Some Useful Codec.cuommurnnnsnsnsnnas 223
The Trace TADIEccveceeereee e 224
THE PrOCESSccvceriicrinceriee s s 224
LINES 16 ... s 231
Line 7 unsigned char #liStpointer;......cccovvrrrriernnnsnierenesserseseseesessessenes 231
Line 10 NUMDBDEITH4; c.eereeeececeree e rerer e se s s see e e s e s e s se s e e snesaesaeens 232
Line 11 numbert = NUMDBEIT + 2}ovvvvererierrerreerererses e seseesaesaessenns 232
Line 12 number2 = NUMDBEIT = 2}cccvvvverererersee s s s see e ssesesssesaessesnas 232
Line 13 number2 = 0b1111111111110000;..........ccorerererermrmssssssssssssnsnnnas 232
LI I T R 233
LINE 18 Z = Y+ eeeereersrsssrsnsrssssssssssssssss e e sssssssssssssssssssasnas 233
Line 19 z = (unsigned Char) U;.........cccnrrinnnininsn e 233
LiNE 21 Y = ~ Y} e 233
LiNE 23 Z = Y<<T e 234
LiNE 24 Z = Y>> i 234

ix

TABLE OF CONTENTS

Line 26 y=(2>0) ? @ : ~1;.evvcrrerrerererrerererss s e ses e e ssssessessesassessesaesaes 235
Line 27 y=(a==0) 2 @ : -1} coecrrrrrrrrerrrerrre s 235
Ling 28 y=(2>0) 7 Z 1 =1 e s 235
Line 29 listpointer = list;cccviinninininnr e 236
Line 30 =liStPOINer =2;ccvviviierererrersee s s sre e sns 236
Line 31 lIStPOINTEr +4;...cvierierere i snes 236
Line 32 #liStPOINtEr = 5;....ccvcererererrerere e sersese s s s sse s e saesessesnesaes 236
Line 33 listpointer = [iSt;ccccvveveririrr e 237
Line 34 @ =2 & 0XFO;cceceeeerereeeeererrer e s s s n e e 237
Line 37 if (1 && 7 ==)M = 5. 238
LiNe 38 €ISE M = 9;.....uevcerceerererree s s e s e sa e sre s s e snesre e e 238
Line 39 n = 0000001000ccceurrrrrrrrrerrrererereresesesesesesesesssssssssssssssssssssssnns 238
Line 40 if (n & 0b00001000)m = 5; Line 41 else M = 3;....cccccvvrvervrerveriennen 239
Line 42 if (n & 0b00000001)t = 4; Line 43 else t = 2;........ceeererrrersesannnnnns 239
LiNE 44 N = 105 ...cveeeeeessssssrsrssssssssssssss e e e e ss s s sssssssssssssssasanas 239
Line 45 for (@ = 0,2 < 5, @++})ccviirnnniniennnnness s ssssesseses 239
Line 47 «listpointer = Nj....cccvcvierennirinr s 240
Line 48 liStPOINter ++;....cccviririerrrinrirene s 240
LINE 49 N =N 425 240
Line 51 WHIIE (1)] c.eueeeeeeeeersrssssssssisise e sssssssasnas 241
Debugging the Program..........cccccvvvveririersnnessersessee e sesessee e sesesssessessessens 241
Compiling the Completed Program...........cccccrrvinnnnnniennnsnsensesssessesenns 242
SUMMANY....eeeerercreree s se s e s nen e 249

TABLE OF CONTENTS

Appendix: Additional ReSOUrCeS......ccuusssmmmmmnmmrrsssssssssssssnssssssssssnnnnns 251
USeful DEfinitioNS.......c..cocvereeeereereereeese e 251
Mathematical and Logic Operators..........c.cccvvvnvniernnnsnseniess s 252
KEBYWOIUS ... e 253
D L B LTSS 253
T (0] TN 254
0 1SS 256
Numbering Systems Within Microprocessor-Based Systems.........cccceevvevrernene 256

Binary NUMDEIS......c.covirerr it sn s s sns e s 257
Converting Decimal t0 BiNaryccccoverrrererenernsesessesese s sesseses e 257
Adding and Subtracting Binary NUMDErScccoovevnenmrnsesnsesenesensssesenns 261
Subtracting Binary NUMDErScccccvvirriennese s 263

The Hexadecimal NUMDEr SYStEMccccvevvrnnnieniennsensere e sessesessessssessessesees 264
1T = 267

About the Author

Hubert Henry Ward has over 24 years of experience in teaching students
at the Higher National Certificate and the Higher Diploma in Electrical
and Electronic Engineering. Hubert has a 2.1 Honours Bachelor’s Degree
in Electrical & Electronic Engineering. Hubert has also worked as a
college lecturer and consultant in embedded programming. His work
has established his expertise in the assembler language and C, MPLABX,
and designing electronic circuit and PCBs using ECAD software. Hubert
was also the UK technical expert in Mechatronics for 3 years, training the
UK team and taking them to enter in the Skills Olympics in Seoul 2001,
resulting in one of the best outcomes to date for the United Kingdom in
Mechatronics.

xiii

About the Technical Reviewer

Leigh Orme is a graduate engineer at SSE plc in Greater Manchester,
United Kingdom. He has an electrical and electronic engineering degree
from Manchester Metropolitan University.

Introduction

This book looks at programming a PIC microcontroller in C. We'll study

the following aspects of programming the PIC:

1.

10.

11.

Looking at some of the background to the program
language for micros

Creating a project in the Microchip IDE MPLABX
Configuring the PIC

Setting up the oscillator using the internal oscillator
block

Setting up some digital inputs and outputs

Simulating a simple program using the simulator in
MPLABX

Creating a simple delay and a variable delay

Using the ADC to accommodate an analogue input
to the PIC

Using an LCD in both 4-bit and 8-bit mode to
display data
How to make a header file to save writing the same

instructions again in every project.

Using arrays and controlling how you step through
an array

xvii

INTRODUCTION

The Aim of the Book

The aim of this book is to introduce the reader to PIC microcontrollers and
writing programs in ‘C’ There is some background information starting
with what a PIC is and some aspects of programming languages. It will
then move onto what an IDE is and how to use MPLABX, one of the most
common industrial IDEs. MPLABX is an IDE that is freely available from
the Microchip web site. The ‘C’ compiler is their free compiler that again
can be downloaded from their web site. Note that I use MPLABX version
5.2 and the XC8 compiler version 2.05 or 1.35. These can be downloaded
from the archive section of their web site.

Then the text moves on to the exciting world of writing programs
for microcontrollers. It is based around the range of microcontrollers,
termed PIC micros, available from Microchip. It will show you how to
write programs without buying any devices or equipment as you can use
the MPLABX simulators that come free with the MPLABX IDE. If you have
access to an ECAD package, such as PROTEUS or Tina, that has the ability
to run 8-bit or 16-bit and so on micros, then it will show you how to use
that software to run your programs, again without buying any equipment.

This book is based around the PIC18F4525 as it has the advantage
of being a 40 pin dual in line package. This means it is quite easy for the
hobbyist to create a practical circuit on vero board or even a small PCB.

My other books cover using the PIC to control a variety of DC motors
such as simple DC motors using PWM to control the speed of the DC
motor, stepper motors, and servo motors. I also have a short book looking
at communications for the 18F4525. Apart from those books, I am writing
another range of books on how to use a 32-bit PIC, but this is a surface
mount device which makes it rather more difficult to build practical
circuits. However, the 32-bit PICs have some very useful additions.

xviii

INTRODUCTION

The PIC18F4525 is a very useful PIC with 5 ports giving us the use of
36 I/0. It has 4 timers and 3 external interrupt sources. It has a two-CCP
module with the ability to provide two separate PWM outputs, and it has
full bridge drive capabilities. There are more functions available, and they
all make the PIC18F4525 a very useful microcontroller.

The Objectives of the Book

After reading this book, you should be able to do the following:
e Write PIC programs in C
e Use the main features of the MPLABX IDE
o Interface the PIC to the real world

e Design and create useful programs based around the
PIC18F4525

» Enjoy delving into the exciting world of embedded
programming

I hope you enjoy reading this book and find it very useful. I firmly
believe that programmers should not just put together blocks of code,
which perform the functions they want, to create a program. To be a good
programmer, with the versatility to alter their programs to cope with the
wide variety of microcontrollers and their different oscillator choices,
you need to know how the code works. In my many years of teaching this
subject, I have often been told that to create a 1-second delay, you simply
write the instruction delay (1000). Well, that only works for a certain
oscillator frequency and timer setting. To be able to create a delay using
any oscillator, you need to understand how your timer counts and at what
frequency it counts. Armed with that sort of deeper understanding, you
will be a better programmer.

Xix

INTRODUCTION

This book is aimed at giving you the full understanding of the
fundamental aspects of the microcontroller and how it works. Then, with
a deeper understanding of how the different control registers control
the micro, you will become a programmer who will, with experience,
fully control your device and not rely on bits of code, which you don'’t
understand, doing the programming for you. It is essential that we have
programmers who have this deep appreciation of their microcontrollers,
and I hope that after reading this book, you are on your way to becoming
one of those programmers.

The Prerequites for the Book

There are none really, but if you understand ‘C’ programming, it would
be useful. Also, if you understand the binary and hexadecimal number
systems, it would be an advantage, but there is a section in the Appendix
that will help you with that.

CHAPTER 1

Introduction

This chapter covers some of the fundamentals of what a microprocessor-
based system is and how a microcontroller is different. It then covers the
historic development of the ‘C’ programming language for PIC controllers.

After reading this chapter, you should appreciate how the micro sees
your instructions and understand the terms machine code, assembler,
compiler, and linker.

Programmable Industrial Controllers

Programmable Industrial Controllers (PICs) is really just a trademark
for the microcontrollers produced by Microchip, or so I have been led
to believe. Some say it stands for Programmable Industrial Controllers,
or Programmable Intelligent Controller, or Programmable Interface
Controller. However, the term PIC is used by Microchip to cover an
extremely wide range of microcontrollers produced by them. I will simply
refer to the microcontroller as the PIC.

Each PIC will have all the components of a microprocessor-based
system as shown in Figure 1-1, such as

e A microprocessor
« ROM, RAM
e Anl/Ochip

o« The associated address, data, and control buses

© Hubert Henry Ward 2020
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_1

CHAPTER 1 INTRODUCTION

However, all these parts are all on a single chip, not several as with older
microprocessor-based systems. This means it is really a single-chip computer.
As well as all that, the PIC has much more circuitry on the single chip.
This extra circuitry is used to make it into a control system with a micro at the
heart of it. The extra circuit may include an ADC, opamp circuits for compare

and capture, a PWM module, and a UART module. These extra circuits may

not be on all PICs as PICs vary in their makeup for different applications.

13

1' Address Buses # i

pp area

ALU EFROM
Wreg Data Bus Used for
Status reg ger
FiRreg Program
7 2

el —

Special RAM
E:;mm UsedFor

. Storing Dat
Special orngDsla
area of

RAM

The Control Bus m Bhit port
Has not been shown - only 5 for 11O
Fort B
s Sbit port
all used for 1/Or

Figure 1-1. The Basic Microprocessor System

One more thing before we move on is that the PIC is a RISC chip as
opposed to a CISC chip. RISC stands for reduced instruction set chip, whereas
CISC stands for complex instruction set chip. Indeed, the instruction set for
PIC micros ranges from 35 to 75 core instructions. However, the 18F4525 has
an extended instruction set at your disposal. The Intel processor, which is a
CISC chip, uses hundreds of instructions. So the PIC is pretty efficient.

CHAPTER 1 INTRODUCTION

Programming Languages

There is a wide variety of programming languages for microprocessor-
based systems. However, all microprocessors only understand
voltage levels, ideally 5V and 0V. These two voltage levels are how all
microprocessors understand logic which has only two states which are
“yes or no,” 5V or 0V, and now 3.3v and Ov as with the 32-bit PICs.

It is because of this that the binary number system is commonly used
in microprocessor-based systems. This is because binary only has two
discrete digits ‘1’ and ‘0’

Consider the following binary number:
10101001

This really represents
5v0v5v0Ov5vOvOvSY

The 5v and 0v is really the only language that all microprocessors
understand. However, we can easily use binary to represent the 5v and Ov
as ‘1’ and ‘0! So writing in binary is easier than writing 5v and Ov.

Machine Code

This then is the birth of “machine code,” the most basic programming
language termed low level as it is at the level that the micro understands.
Now consider the following:

A9

This is a hexadecimal representation of the 8 binary bits 10101001.
It is used to enable programmers to represent binary numbers in a less
complicated manner to avoid mistakes, as its very easy to write a ‘0’
instead of a ‘1’ However, the early programmers actually wrote their

CHAPTER 1 INTRODUCTION

programs in the binary machine code to make them faster. There is a

section in the Appendix that covers the binary and hexadecimal number

systems which is something you need to understand. See Appendix 7.
Now consider the following:

LDA#

This is actually termed “mnemonics” which stands
for an alphanumeric code used to represent the
instruction.

The mnemonic LDA# represents the instruction
LoaD the Accumulator immediately with the number that follows:

‘LD’ for load, ‘A’ for accumulator, and ‘#’ for
immediately.

It is fairly obvious that we, as humans, can learn to understand the
mnemonics quicker than hexadecimal or the binary of the machine code.
However, the microprocessor does not understand these mnemonics.
Somehow the mnemonics has to be converted to the machine code.

Consider the following:

LDA# A9 10101001

The first column is the code or mnemonics; the next two columns
are the conversion to the machine code via hexadecimal and then to
binary. Every instruction in the micros instruction set has its hexadecimal
or binary equivalent. With the EMMA systems, the students actually
converted the mnemonics code to the machine code, but this is very time-
consuming.

The act of converting the mnemonics to machine code is called
“compiling,” and with the EMMAs, we get the students to compile the
mnemonics. In real programming, we use a program called a compiler to
do this.

CHAPTER 1 INTRODUCTION

Assembler Language

Different micros use different mnemonics to represent the instructions in
their instruction set. All these different mnemonics are now collectively
termed assembler language. There are different ones for different systems
such as TASAM for TINA with the EMMAs, MASAM for Microsoft used in
DOS programs, and MPLAB assembler from Microchip.

When using assembler language, all instructions have two parts:

e The OPCODE. This is the part that describes the
operation (i.e., LDA Load The Accumulator).

e The OPERAND. Where the micro gets the data to be
used in the operation (i.e., ‘#").

This means that the data is what follows immediately next in the
micros memory.

As this book is based on the C programming language, there is no
real need for the reader to understand the assembly language, but it is
important to realize that all program languages, even visual basic, have to
be converted to the machine code before being loaded into the micro. This
process is called compiling, and it usually involves converting the program
instructions into assembler before going into machine code.

C Programming Language

C and now C++ are generic programming languages that many
programmers now study. As this has meant that there are a lot of engineers
who can program in this language, then Microchip, the manufactures

of PICs, have produced ‘C’ compilers that can be used to convert a ‘C’
program into the machine code for their PICs. Indeed, as the number of
programmers who write in assembler have reduced and the number of ‘C’
programmers have increased, Microchip has stopped writing assembler

CHAPTER 1 INTRODUCTION

compilers for their more advanced PICs such as the 32-bit PICs. Also, I
believe that Siemens is now moving toward programming their PLCs in ‘C!

The more modern languages such as Python and C# have their roots
in ‘C!

Different Programming Languages

Table 1-1 shows some of the more common programming languages.

Table 1-1. Some Common
Programming Languages

Example Language

Machine code (binary 1s and 0s)
Assembly Language

Cobol

Fortran

C, Pascal

Ada 83

C++,

C#

Python

Basic

Visual Basic

CHAPTER 1 INTRODUCTION

The IDE

The term IDE stands for integrated development environment. It is
actually a collection of the different programs needed to write program
instructions in our chosen language. Then convert them to the actual
machine code that the micro understands, and also link together any bits
of program we may want to use.

The programs we need in the IDE are

o Atext editor to write the instructions for the program.
Note: The simple text editor “Notepad” could be
used, but the text editor in MPLABX is by far a more
advanced text editor.

o A compiler to change the instructions into a format the
micro can understand.

e Alinker to combine any files the programmer wants to
use.

e Adriver that will allow the programming tool used to
load the program into the micro.

e Avariety of simulation tools to allow the programmer
to test aspects of the program.

e Avariety of debug tools to allow the programmer to test
the program live within the micro.

All these are in the IDE we choose; Microsoft has Visual Studio,
Microchip has MPLABX, and Freescale uses CodeWarrior. Note that
CODEBLOCK is an IDE for writing generic 'C' programs that will run on
your PC. As this book is based on the PIC micro, it will concentrate on
MPLABX. MPLABX has an improved text editor to give the text different
color codes when we save the file as a .asm or .c for c program file such as
light blue for keywords, light gray for comments, and so on.

CHAPTER 1 INTRODUCTION

There are some other organization programs within MPLABX such
as the ability to write to the configuration registers for the PIC. There is
also the ability to simulate your programs within the IDE. All this makes
MPLABX a useful tool for programming PICs.

There is also a program called MCC Microchip Code Configurator. This
will actually produce a lot of the code you need, to use various aspects of
the PIC, for you. However, I firmly believe that you should produce the
code you use yourself so that you fully understand the code you use. I will
not cover the use of the MCC. Also, Microchip has not written the MCC for
all their PICs, and the 18F4525 is one they have missed so far.

Really when asked who the programmer is, you should be able to say
that you are and not the MCC. When you take the time to study how to
write your own code, you will find it is not as hard as you first thought.
Also, you will get a better self-reward if you write it all yourself.

The only aspect of the programs that I let Microchip do for me is to
write the code configuration bits that set up the PIC. This is only because it
is so simple to do this and it covers all the #pragma statements.

Summary

This chapter has given you some background information about
microcontrollers. It has introduced some of the terms and given you an
explanation of what they mean such as

¢ PIC
e IDE

The next chapter will take you through creating a project in MPLABX
the IDE from Microchip. It will also allow you to produce your first PIC
program.

CHAPTER 2

Our First Program

After reading this chapter, you should be able to create a project and
write a program that uses inputs from switches and turns on outputs.

We are going to start off by writing a program that will make the PIC wait
until a switch connected to bit 0 of PORTA goes high. It will then light

an LED on bit 0 of PORTB. The PIC will then wait until a second switch,
connected this time to bit 1 of PORTA, goes high. When this happens, the
LED on bit 0 of PORTB will be turned off. Note that both switches will be
single momentary switches, that is, they will stay high only when they are
pressed; when they are released, their logic will go low.

The PORTS of the PIC

Before I go any further, I think I should explain that the PORTS are the
actual physical connections that the PIC uses to connect to the outside
world. Note that the micros have used the analogy of the real ports, such
as the Port of London or the Port of Liverpool, which actually connect the
country to the outside world taking goods in for the country and sending
goods out of the country.

These PORTS connect internally to registers inside the PIC. The registers
are merely a collection of individual cells which we call bits. In the 18f4525
there are 8 cells or bits connected together to form a register. This is because
the 18f4525 is an 8-bit micro. These bits are numbered from right to left as
bit 0, bit 1, bit 2, bit 3, bit 4, bit 5, bit 6, and bit 7. This is shown in Figure 2-1.

© Hubert Henry Ward 2020 9
H. H. Ward, C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-5525-4_2

CHAPTER 2 OUR FIRST PROGRAM

b7 b6 b5 b4 b3 b2 b1 b0

Figure 2-1. An 8-Bit Register

The bit 0 is sometimes referred to as the LSB or least significant bit, as
this represents the units column or the ones column; whereas the bit7 is
the MSB, most significant bit, as this represents the 128 column. Note that
a 32-bit micro will have 32 bits in their registers and PORTS.

Good Programming Practice

All programs should be planned. The programmer should not just start
writing code in the IDE. A good programmer should write an algorithm
then construct a flowchart then write the program listing.

The Algorithm

This is really simply putting your thoughts, of how you are going to get the
PIC to do what is asked of it, down on paper. The purpose is to focus your
mind on how to complete the task. It will also allow you to choose the right
PIC for the job. The algorithm should cover at least the following:

e You should explain the sequence of events you want to
control.

¢ You should then identify all the input and output
devices you will need.

¢ You should then create an allocation list for the control
and identify any special inputs or outputs or controls
you will need, such as analogue inputs, PWM outputs,
and any timers.

10

CHAPTER 2 OUR FIRST PROGRAM

The Flowchart

This is a diagram using standard symbols to show how the program will
flow through the instructions and so complete the task.

Flowcharts are diagrams that show how any process flow through its
constituent parts. They are very useful diagrams for designing computer
programs. All flowcharts use five basic symbols; there are more, but the
five most common symbols are shown in Figure 2-2.

Start or Stop symbol

D Input or Output symbol

Data manipulation symbol

Decision symbol

EEE—— Direction of flow symbol

Figure 2-2. The Main Flowchart Symbols

The Program Listing

This is a list of the actual instructions written in your chosen language. If
you have constructed your flowchart correctly, then each block in your
flowchart will produce the correct lines of coding in your program listing.

11

CHAPTER 2 OUR FIRST PROGRAM

Using MPLABX IDE

Before we go too far into the depths of MPLABX, I will discuss the use of
MCC and MPLAB Harmony. Microchip has realized that there are many
aspects of writing programs for the PIC that have to be carried out within
every program. Therefore, they give you the facility to use their code-
generating programs to write the code for you. MCC, MPLABX Code
Configurator, is the program that does this for you. MPLAB Harmony
does this for the 32-bit micros. Wow, isn’t that great? Well yes and no.
Using MCC creates a myriad of files and functions that are not easy to
understand. If you write all the code for your program yourself, then you
know where all the bits are and you understand how they work. Also this
book teaches you how to use the datasheet to help write the instructions.
You will learn how the PIC actually works and how it uses the simple logic
‘1’s and ‘0’s to control how it works. I firmly believe it is important for you,
as the programmer, to understand what you are controlling and how your
program instructions actually control it. If you use MCC straight off, then
you risk losing this understanding and who the programmer is, you or
Microchip. If you write all your own code, then you are the programmer.

MPLABX is the new IDE from Microchip. It is written in Java, and it
has many improvements from the previous MPLAB. The book is written
around using MPLABX version 5.2.

The text is based around using the PIC18f4525, but it can easily be
adapted for any PIC micro. The 18F4525 PIC is a very versatile PIC in that
it has

e« 36I/0
¢ 13 ADC channels
e 2 CCP modules as well as a UART and SPI

It has 48 kbytes of program memory as well as internal EEPROM.

12

