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Preface

Smart grid infrastructure has attracted substantial interest for use as effective electric
power management systems that work together with recently developed reciprocal
communication networks. One of the most important considerations for smart grid
systems is maximizing the use of renewable power sources such as wind and solar
power, which are beneficial for the economy and sustainability. To achieve a balance
of supply and demand with renewable energy sources, a dynamic pricing strategy
intended to bring consumer demand more in line with supply has been proposed.
However, the success of this strategy strongly depends on actual consumer response
to time-varying prices. As can be imagined, having consumers be continuously
aware of prices is generally inconvenient and impractical. Therefore, it is highly
recommended to have a distributed energy management system (EMS) that can
automatically regulate supply–demand imbalances with regard to user convenience
and economy.

Additionally, demand for electric vehicles (EVs) and plug-in hybrid vehicles
(PHVs) is expected to increase, making them important transportation means in
a low carbon society. EVs and PHVs carry in-vehicle batteries of 20–30 kWh
and 5–10 kWh, respectively. In addition, vehicles used for car sharing, customer
transportation, luggage transportation, home delivery, and other such tasks will be
electrified. Thus, there is little doubt that the market for EVs and PHVs will continue
to develop. Setting the capacity, number, and arrangement of storage batteries and
scheduling battery charging and discharging of batteries are important design points
for realizing a distributed EMS that meets various requirements. As EVs and PHVs
proliferate, in-vehicle batteries will not be used solely for transportation, but can
be integrated into the customer’s EMS. Effective use of in-vehicle batteries can be
a key technology to realize a resilient community, particularly when supply and
demand balance is significantly disrupted or when a disaster occurs. In consideration
of these factors, in-vehicle batteries will play three roles in next-generation smart
communities.

v
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1. Power storage device for transportation
2. Power storage device for improving supply–demand balance in each customer’s

local EMS
3. Aggregated community virtual power storage used for power network stabiliza-

tion

It is highly recommended to design charge–discharge scheduling of in-vehicle
batteries to balance supply and demand in the local EMS and meet the community’s
power network stability requirements while considering the transportation demands
of each user. Therefore, an energy–mobility integrated system model must be
developed and fully exploited to design the future smart community. Based on these
perspectives, this book addresses the following topics:

Part I Design and analysis of energy management systems considering consumer
demand and use of electric vehicles

• Activity-based modeling for integration of energy systems for house and electric
vehicle

This chapter introduces an activity-based approach to model home and trans-
portation energy demand. This method simulates in-home and out-of-home activ-
ities and quantifies home and transportation energy demands accordingly. This
method enables quantification of energy demand with realistic temporal variations.
An important application of this method is analyzing the EMS that integrates the
house and EV or PHV, which can be achieved when in-home and out-of-home
activities are modeled consistently.

• Probabilistic model and prediction of vehicle daily use

To utilize in-vehicle batteries in an EMS, with consideration of user acceptance,
the EMS must know when the vehicle is driven and parked, which can be
represented by a departure, and travel time profile. This chapter presents a method
to predict the most probable car use profile over 1 day based on a customer’s daily
car use statistics. The prediction method is formulated as a maximum-likelihood
estimation, and the usefulness of the proposed method is evaluated using numerical
experiments.

• Design of a home energy management system integrated to a vehicle
(V2H + HPWH EMS)

This chapter proposes a home EMS (HEMS) that simultaneously controls an in-
vehicle battery charge–discharge process and a heat pump water heater (HPWH)
operation plan. The proposed control method iteratively calculates the in-vehicle
battery charge–discharge plan and HPWH operation schedule to minimize the
electricity bill considering both reverse surplus power as a penalty and vehicle
usage as a constraint. The effectiveness of the proposed system is then verified in
simulations using real household data.
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• Range extension autonomous driving for electric vehicles based on optimization
of velocity profile considering traffic signal information

In this chapter, a range extension autonomous driving system that considers
traffic signal information is proposed. This proposed system optimizes the
autonomous driving velocity profile based on precise vehicle loss models. The
authors conduct simulations and experiments to prove the effectiveness of the
proposed system in terms of mileage per charge.

Part II Synthesis of distributed energy management systems based on aggregation
of local EMSs and vehicles

• Real-time pricing and decentralized optimization strategy for power flow balanc-
ing in EV/PHV storage management

This chapter investigates a decentralized energy management strategy for a
community composed of households equipped with EV/PHV storage. The pro-
posed real-time pricing strategy does not depend on the number of agents and allows
plug-and-play type operations. This will address EV/PHV storage management
problems as unpredictable connections or disconnections of vehicles may exist.
Effectiveness of the proposed pricing-based decentralized management strategy is
then evaluated using numerical experiments.

• A scalable control approach for providing regulation services with grid-
integrated electric vehicles

Researchers at the University of Delaware are providing regulation services by
controlling bidirectional power transfer between a fleet of EVs and the grid. As
EVs become more popular, increasing the size of the EV fleet, large-scale control
becomes an important challenge. Power transfer for thousands of EVs may need
to be controlled, accounting for driver requirements while providing regulation
services. To cope with this challenge, the authors propose a grid-integrated vehicle
(GIV) control approach based on bins. Results show that their GIV control method
can combine the good scheduling qualities of a centralized GIV approach with a
distributed GIV approach’s scalability.

• A continuum approach to assessing the impact of spatiotemporal EV charging to
distribution grids

The assessment problem on how charging operations of a large population of EVs
impact the spatial voltage profile of a power distribution grid is addressed. Unlike
the conventional space-discretization approach, an alternative approach for the
assessment based on a continuum representation of the distribution voltage profile
is introduced. Continuum representation explicitly keeps spatial (or geographical)
information on a distribution grid and thus enables us to quantify the spatial impact
of EV charging.
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Part III Toward dependable distributed energy management system using informa-
tion and communication technologies (ICT)

• Cyber security for voltage control of distribution systems under data falsification
attacks

This chapter provides an overview of recent research on false data injection (FDI)
attacks on voltage measurements transmitted by sensors to a centralized controller.
The approach is to first introduce an attack detection algorithm and then enhance the
security level using a resilient controller that can perform regulation in the presence
of attacks by utilizing detection results. We illustrate our methods using simulation
studies on a realistic, small-scale distribution system.

• Machine learning based intrusion detection in control system communication

This chapter compares conditional random field-based intrusion detection with
probabilistic model-based intrusion detection. These methods use control system
communication network traffic sequence characteristics. Learning only utilizes
normal network traffic data, assuming no prior knowledge on attacks in the system.
We apply these two probabilistic models to intrusion detection in DARPA data and
an experimental control system network and compared performance differences.

Lastly, this work was supported by many collaborative researchers and executed
as one of the projects in the Core Research for Evolutional Science and Technology
(CREST) program of the Japan Science and Technology Agency (JST), and we
deeply appreciate these contributions.

Nagoya, Japan Tatsuya Suzuki
Nagoya, Japan Shinkichi Inagaki
Sakai, Japan Yoshihiko Susuki
Nagoya, Japan Anh Tuan Tran
May 2019
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Chapter 1
Activity-Based Modeling for Integration
of Energy Systems for House and Electric
Vehicle

Yohei Yamaguchi, Nikhil Prakash, and Yoshiyuki Simoda

1.1 Introduction

Energy is consumed to sustain everyday human activities. People use appliances
for various purposes such as cooking and entertainment, and use cars to travel
to work and other places. Thus, home and transportation energy consumption
has been understood, analyzed, and modeled in relation with people’s activity.
Activity-based modeling generally assumes that energy consumption is derived
from the activity of simulated individuals. Thus, activity is dealt with as a core
of modeling, which enables replication of the structure determining energy demand.
According to Sivakumar [58], activity-based modeling is distinguished from agent-
based modeling simulating the actions of individuals or a group of individuals
because not all agent-based models are activity-based. In this chapter, we present
activity-based modeling techniques to model energy systems integrating houses and
electric vehicles.

There have been several activity-based models developed to model home and
passenger transportation energy demand. Integrated modeling between homes
and passenger transportation can be established using consistent activities people
engage in inside and outside their homes. Most existing activity-based models
have not been applied to integrated analysis between home and transportation
because these domains are developed independently. However, there is an increasing
need for integrated analysis for various purposes, such as design of home energy
management systems (EMSs) for minimizing household electricity cost because of
the emergence of electric vehicles (EVs). In the power system management field,
EVs are recognized as a source of flexibility to levelize electric power demand and

Y. Yamaguchi (�) · N. Prakash · Y. Shimoda
Graduate School of Engineering, Osaka University, Osaka, Japan
e-mail: yohei@see.eng.osaka-u.ac.jp

© Springer Nature Switzerland AG 2020
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improve power system performance [6]. Several studies have analyzed integrated
home EMSs considering EVs [14, 22, 42–44, 67].

Existing activity-based models are characterized by methods in which activity
and appliance and car use among other factors are modeled. This chapter intro-
duces a method for classifying activity-based energy demand modeling techniques
developed for home energy systems (Sect. 1.2) and transportation energy systems
(Sect. 1.3). Section 1.4 presents an activity-based model developed for integrated
analysis between homes and EVs.

1.2 Energy Demand Modeling for the Residential Sector

Household electrical appliances can be classified into three groups based on their
use [17]. The first group operates all day without occupant intervention such as
refrigerators and network routers. The second group includes appliances operated
by occupants for certain activities, such as washing machines and televisions. The
third group involves heating, air conditioning, and lighting, which are operated
to control the indoor environment depending on home occupancy. Based on
this understanding, appliance energy consumption has been modeled to realize a
relationship with occupancy and activity of people in the house. Established models
use a variety of methods to generate occupancy and activity and determine appliance
use as explained below.

1.2.1 Occupancy-Based Approach

Richardson et al. [54] established an occupancy-based method for modeling residen-
tial energy demand, which has been frequently used to model for dynamic energy
demand for residential buildings. The number of active occupants is considered as
transition states and a random trial is conducted at each time step to determine the
occurrences of transition between transition states. For this process, the Markov
property is assumed as the transition probability defined as Ni,j /Ni , where Ni is
the total number of samples at transition state i and Ni,j is the number of samples
whose state changes from i to j . Transition probability is defined for each time step,
and by evaluating with random numbers, a time series of changes in the number of
active occupants is first determined.

Time use data (TUD) is generally used in this process. TUD is generally collected
by time use surveys, in which respondents are asked to submit time use diaries that
describe how they spent their time on survey days. In their model, TUD is classified
by respondent household size of when transition probability is quantified.

After generating an occupancy schedule, occupant appliance use is determined.
For appliances in the aforementioned second category, a so-called switch-on
probability, which is the probability of a switch-on event of an appliance occurs,
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is used. In Richardson et al. [54], the switch-on probability was quantified using
appliance TUD and annual total electricity consumption. They assumed the switch-
on probability to be proportional to the probability of activities being undertaken
(referred to as activity probability) quantified for each time of day based on the TUD
corresponding to the number of active occupants. It should be noted that activity
probability is different from switch-on probability. If activity probability is used as
switch-on probability, appliance use will be overestimated because switch-on events
do not occur at every time step when activity is undertaken [69]. A calibration
scalar is thus used to avoid such overestimation. Switch-on probability is defined
as the product of activity probability and the calibration scalar, which adjusts the
total number of switch-on events per year to replicate the appliance’s annual total
electricity consumption.

In Richardson et al. [53], this approach was applied to model lighting use. The
only difference in this approach was that the lighting model considered natural
light depending on outdoor irradiance. This approach can be applied to appliances
categorized in the third category operated to control the indoor environment
depending on occupancy. This approach has several applications.

Richardson’s model has been further extended. For instance, McKenna and
Thomson [41] integrated modules to quantify energy demands for both water
heating and space heating to cover energy demand for all end-uses. Baetens and
Saelens [3] proposed accounting for occupancy patterns [2] to classify TUD, which
was originally classified solely by household size. This contributed to improve the
model’s ability to represent heterogeneity among households. Yamaguchi et al.
[69] proposed using a calibration scalar dependent on time of day to improve the
representation of appliance use time variation.

One of the shortcomings of Richardson’s model is that variations in the number
of switch-on events per day cannot be replicated because switch-on events occur
as a result of random trials made at each time step. Flett and Kelly [18] overcame
this weakness by first determining the number of switch-on events for a simulated
day based on empirical data. Switch-on events are then allocated to the timeline
considering occupancy.

1.2.2 Activity-Based Approach

The second type of model explicitly simulates household member activities, such
as watching television and cooking. Simulated activity classification depends on
available TUD. Activities are then converted to switch-on event occurrences. There
are two approaches that can be considered for this model type. First, Widen and
Wackelgard [64] and Widen et al. [65] proposed a discrete-time Markov chain model
in which activities are defined as transition states. Random trials of transitions from
one state to another are conducted in each time step.
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Secondly, Wilke [66] proposed a discrete-event model in which household
member activities are simulated by repeating the following two processes: selecting
an activity starting from the examined time of day and selecting the selected
activity’s duration. For activity selection, the starting probability, at which each
considered activity starts, is calculated using multinomial logit models developed
for each time of day. Markov chain transition probability can also be used to model
the sequence of discrete activities as transition probabilities from one activity to
another and is quantified based on TUD as a semi-Markov process. Tanimoto and
Hagishima [62] proposed to use the activity probability. Yamaguchi and Shimoda
[68], whose work is explained in detail in Section 4, proposed a similar approach
and compared how model design influences activity modeling performance.

An appliance switch-on event occurrence is examined in relation to the stochas-
tically determined activity, and both discrete-time and discrete-event trials can
be adopted for this process. In discrete-time trials, switch-on event occurrence is
examined at each time step during an activity. In a discrete-event trial, occurrence is
examined only once during an activity, such as at the activity’s beginning or end.

The most important difference between occupancy-based and activity-based
approaches is that in an occupancy-based approach, appliance use is modeled
independently from other appliances, thus possibly resulting in an unrealistic
appliance use sequence. One extreme example is that all appliances in a house
are operated simultaneously. In contrast, such unrealistic sequences do not occur in
activity-based approaches, as a sequence of activities is generated before a switch-
on event occurrence is examined.

1.2.3 Time-Based Household Energy Demand Model

There is another model variety that does not simulate occupancy and activity. In
these models, time represents household member activity by assigning appliance
switch-on probabilities as a time-dependent quantity. To construct a model, switch-
on event occurrence is identified from measurements of appliance power demands
(i.e., empirical data). For example, Yilmaz et al. [70] constructed a cumulative
distribution function (cdf) for the number of switch-on events for a simulated
household. The number of switch-on events is first assigned each day using this
cdf. Then the switch-on event occurrence time is randomly determined based on the
switch-on probability, which is the sum of observed “switches on” divided by the
total number of days. This improves modeling accuracy in terms of the daily number
of switch-on events and includes variations in the number of switch-on events for
different days within the same household. Paatero and Lund [46] and Gruber et al.
[23] developed similar models.
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1.2.4 Important Factors in Energy Demand Modeling

Yamaguchi et al. [69] conducted a cross-analysis of these existing household
appliance use modeling methods and found that model performance depends heavily
on modeling contexts. A model developed based on empirical data of appliance
use can replicate household-specific characteristics in appliance use, including both
intra/inter-household variation as these variations can be captured from empirical
data. However, empirical data availability is limited in many modeling contexts,
which is critical when the developed model is applied to contexts outside of
where empirical data were collected. TUD-based models have advantages in this
aspect, as their analyses revealed that demographics and household characteristics
significantly influence household appliance use. Thus, considering their significance
will improve model performance. The ability of TUD-based models to reflect
demographics and household characteristics enables models to be applied to areas
where such conditions are available. In contrast, it is difficult to address cross-area
variation in models based on empirical data if empirical data lacks information on
demographics and household characteristics.

1.3 Energy Demand Modeling for Transportation

Activity in transportation demand modeling is modeled as a sequence of in-home
and out-of-home activities [58]. Activity-based transportation implies that travel
derives from daily activities. For example, a person leaves home for work in the
morning and travels to an office. That person then leaves the office in the evening
and travels back home. Typical activity-based models simulate such sequences,
including timing, location, and mode of travel. Transportation energy demand can
thus be quantified based on this information.

Transportation research has a long history of modeling travel demand con-
sidering the influence of socioeconomic conditions and land-use configuration
[4]. Earlier travel demand research focused on evaluating long-term investment-
based capital improvement to execute regional planning strategies. Since 1970,
attention has shifted to short-term behavior analysis to understand travel schedules
of individuals to frame congestion management policies.

Travel demand modeling can be broadly classified into two categories: trip-based
modeling and activity-based modeling. Trip-based modeling relies on a top-down
nature as it uses overall person-trips in the studied area and is disaggregated into
those with different trip origins, destinations, modes, routes, and so on. In contrast,
activity-based modeling relies on a bottom-up nature as travel demand is modeled
as an aggregation of trips made by independently modeled individuals.
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1.3.1 Trip-Based Modeling

Trip-based modeling evolved tremendously in the early days of travel demand
modeling [13]. This approach uses trip data collected by individuals, known as
person-trip data, and consists of four sequential processes: trip generation, trip
distribution, modal split, and trip assignment [45]. Trip generation estimates the
number of person-trips emanating from or terminating at an aggregated level of
zones. The trip distribution process distributes person-trips from each origin to
various destinations. The modal split process assigns travel modes to person-trips
with origin-destination pairs. Lastly, the trip assignment process assigns network
links or routes to each person-trip. The results illustrate traffic volume on all roads in
a traffic network link. This four-stage approach has been widely used for congestion
management in transportation planning.

1.3.2 Activity-Based Modeling

The travel activities of individuals can be identified in terms of time, origin, des-
tination, purpose, mode, and route of travel. An activity-based modeling approach
considers the decision to travel as a choice among alternatives known as a discrete
choice set with alternatives that are exhaustive and mutually exclusive. Discrete
choice models are used to model such decision-making and predict the likelihood
of an alternative to be selected based on certain input variables. Examples of the
most frequently used models are multinomial logit, nested, and mixed logit models
[1, 7, 16, 28, 34, 35]. A hazard duration-based model is also often used to model
the time until an event is of interest. Mannering et al. [37] developed hazard-based
models to analyze time spent by individuals at home before conducting another trip.
Bhat and Koppelman [5] analyzed the duration of shopping on the way to work.

Activity-based approaches consider travel a derived demand. The most important
feature of discrete choice models is that various factors’ influence can be reflected
in predicted likelihoods. The seminal works of Chaplin [8], Hagerstrand [24], and
Cullen and Godson [11] were based on travel activity analysis and revealed that
travel demand is complex and elucidates the relationship between land-use and
transportation demand in association with constraints individuals encounter during a
particular travel activity. The following factors have been recognized as significantly
influencing many papers: socio-demographics and household type and [31, 36, 38–
40, 47, 61, 63], land-use and built environment and [12, 16, 32, 49, 55], and travel
conditions, including activity duration and [19, 33, 50].

Structural equation modeling, a multivariate statistical technique, is also used
for activity modeling. This technique assumes a hierarchical structure among influ-
encing factors, which are classified as exogenous and endogenous variables. This
approach considers the influence of exogenous variables on endogenous variables.
Activity-based travel demand models are used extensively as this approach captures
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(1) direct relationships between activity demand and the need to travel and (2)
relationships between participations in various activities. It is also advantageous
in modeling joint demand for activity duration and travel [21, 29]. Lu and Pas [36]
developed a structure equation-based activity-based travel demand model to analyze
the influences of socioeconomic variables on in-home and out-of-home activities.

Conducting higher activity participation within a stipulated time period requires
the combination of several trips in a single journey. Such a sequence of activities
is described by a trip chain [25, 57]. Henser and Reyes [25] considered seven
different trip chains that originated and ended at home that had simple to complex
combinations of work and non-work travel alternatives to demonstrate the influence
of trip chains on the likelihood of using public transit. Pitombo et al. [48] developed
14 distinct trip chain combinations using activity sequence (home, work, school, and
other activities), travel mode sequence (private, public transit, and non-motorized),
and the distance between the destination and home traffic zone centroids. This
approach is beneficial as energy demand can be quantified more accurately if data
describing trip chains are available.

In recent years, interpersonal dependencies among household members have
been recognized as a significant factor in modeling travel demand as some travel
activities are conducted jointly with other members of the family. In their research,
Srinivasan and Athuru [59] investigated the activity allocation and participation of
household members for maintenance activities, examining whether an activity is
conducted alone or jointly with other household members. They found that gender,
working status, household role, and presence/absence of children were significant
factors determining joint or solo travel. Srinivasan and Bhat [60] examined the
role of intra-household interactions on time consumed by household heads on
maintenance activities and household chores in nuclear family households. They
observed that gender plays a significant role in executing in-home activities, with
non-working women undertaking a considerable share of such activities and that
resource constraints such automobile availability are of significant importance in
deciding whether an out-of-home maintenance activity is undertaken jointly or
individually. An interesting outcome of Kato and Matsumoto [27] revealed that
having more children in a household increases the likelihood of conducting joint
husband and wife out-of-home leisure activity. Additionally, more non-working
days for husbands tends to lower the likelihood of individual out-of-home leisure
activities.

Some models constituting sets of rules to establish condition-action pairs have
been implemented on an urban scale to schedule traffic volume in congestion
management-related studies. CARLA [9] and STARCHILD [51] and [52] were
among some of the earliest scheduling models developed for this purpose. CARLA
uses a complex combinatorial algorithm based on spatio-temporal and interpersonal
constraints to model scheduled activities and their associated durations to decide
viable activity patterns. STARCHILD also employs a combinatory approach to
select activities before applying a logit choice model to devise the highest utility
activity pattern choices. Other models that have been widely accepted are SCHED-
ULER [20], SMASH [15], and AMOS [30].
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As described above, the activity-based approach models travel demand as an
accumulation of trips made by individuals. The advantages of an activity-based
approach can be summarized as follows: (1) the relationship between trips and
factors such as demographics and land-use accessibility can be addressed; (2)
the approach provides an effective way to analyze travel demand by aggregating
demand considering factors such as travel purpose, travel mode, and locations; (3) it
enables consideration of complex behavior such as intra/inter-households activity
participation and joint travel decision-making; (4) temporal resolution is well-
defined, with activities spread over 24 h in a continuous manner; and (5) travel and
energy demands are quantified at various scales from a single house to a community
to a nation.

1.4 Case Study

This section presents an activity-based modeling example in which household
member activities are randomly simulated for integrated analysis considering a
house and an EV. In the analysis, household member daily activities, including
those undertaken inside the house and outside the house, are simulated, enabling
the energy demand of the house and EV to be quantified in a consistent manner.
Activities conducted inside the home such as sleeping, laundry, and cooking are
designated as “in-home” activities, whereas activities conducted outside of the home
such as leisure outings, going to the supermarket, and commuting to the office
are designated as “out-of-home” activities. In the model, out-of-home activity is
categorized into two sub-types: home-work-home (HWH) and home-other-home
(HOH) as listed in Table 1.1. HWH refers to daily travel related to job, work, or
school that originates and terminates at home after conducting the activity. HOH
signifies activities other than HWH that originate from and terminate at home.

Figure 1.1 provides an overview of the modeling framework, which consists
of the household generation model, the in-home activity model, and out-of-home
activity model. The household generation model generates simulated households
living in a simulated area based on population census data published in e-Stat
[56], which has various datasets available at different spatial boundaries from
postcode zone, city, and prefecture to nationwide [26]. Generated households are
modeled as a combination of household members to which specific demographic
conditions, listed in Table 1.2, are assigned. To assign demographic conditions
and combinations of household members, various probability distributions were

Table 1.1 Definition of out-of-house activities

Purpose of travel Description

Home–work–home (HWH) Going for work/school and returning back to home

Home–others–home (HOH) Going for other activities and returning back to home
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Household generation model based
on population census

In-house activity model based on
TUD

Household energy demand model
corresponding to in-house activity

Integrated energy management
between house and EV

In-house activity Out-of-house activity
(HWH and HOH schedule)

Travel mode
Destination

EV energy demand model
corresponding to out-of-house activity

Out-of-house activity model based
on person trip and GIS data

Demographics,

household characteristics

and residual location

Fig. 1.1 Framework for the activity-based modeling

Table 1.2 Demographics and household characteristics

Category Item Note

Demographics Age Categorized with 5-year age range

Gender Male or female

Employment type Full-time, part-time, and unemployed

School status Preschool, elementary, junior, and high
school, and university

Occupation Occupational category

Household characteristic Member composition One-person, couple, couple with children,
one person with children, couple with par-
ents and children

Existence of children Existence of school child, Existence of
preschool child

Household size Number of household members

House specification Ownership Owner or renter

Housing type Single detached house or multi-family
building

House size Total floor area of house

Residence location City size Population size of city

Land use and accessibil-
ity to public transport of
the area

Population, bus stop and train station den-
sity (number of unit per land area)

developed based on population census data. The conditions listed in Table 1.2 are
used to select a dataset for the in-home activity model that generates in-home HWH
and HOW activities with 5 min intervals for a given period. The in-home activities
profile is used in the household energy demand model that quantifies the simulated


