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Preface

The primary intention of this book is to examine the efficiency of various wavelet
methods when applied to multiple problems of nonlinear and fractional-order
reaction–diffusion equations of substantial importance. Having an easy-to-fallow
scientific insight and being sufficiently realistic for studying important design
problems, reaction–diffusion models of enzyme kinetics play an important role in
chemical kinetics theory. The characterizing equations of enzyme kinetics models
are highly nonlinear reaction–diffusion equations which do not have analytical
solutions. As existing methods can only handle a limited range of these equations,
many computational methods have been developed in recent years, having either
equal or better performance. In general, the qualitative behavior of the solutions
may not always be fully exposed by semi-analytical method results. In order to
achieve this goal, discrete wavelet transform is studied first, followed by their
properties, convergence, and computational complexity for addressing a few issues
of enzyme kinetics. Therefore, this book investigates theoretically a few steady- and
unsteady- state reaction–diffusion problems arising in enzyme kinetics models.

Wavelet method is a recently developed tool in applied mathematics.
Investigation of various wavelet methods for their capability of analyzing various
dynamic phenomena has gained more attention in engineering research. Starting
from offering good solutions for differential equations to capturing the nonlinearity
in data distribution, wavelets are used as appropriate tools at various places to
provide a decent mathematical model for scientific phenomena, usually modeled
through linear or nonlinear differential equations. Review shows that the wavelet
method is efficient and powerful in solving wide class of linear and nonlinear
reaction–diffusion equations. This book also intends to provide great utility of
wavelets to science and engineering problems which owe its origin to 1919.

Chapters maintain a balance between mathematical rigor and practical applica-
tions of wavelet theory, thereby, catering to students and researchers with particular
needs, wanting to understand not only the reaction–diffusion problems but also
wavelets theory in order to have a broader understanding. Operational matrices
have been introduced to convert the given nonlinear and fractional differential
equations into a system of nonlinear algebraic equations. Applications of Haar,
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Legendre, and Chebyshev wavelet methods and wavelet-based hybrid methods in
the field of nonlinear and fractional-order reaction–diffusion equations are also
included for the first time. This book also includes innovative techniques for finding
the approximate solutions of highly nonlinear boundary value problems. Wavelet-
based methods have been used to combine the strength of both analytical and
numerical methods to produce efficient hybrid techniques.

When compared to other numerical methods of solutions, discrete wavelet
transforms (Haar, Legendre and Chebyshev) have some preferences such as
mathematical efficiency, simplicity, and possibility to implement standard algo-
rithms and high accuracy for a small number of grid points. Solutions based on the
wavelet methods are usually simpler and faster than in case of other methods. For
these reasons, wavelets have obtained greater popularity and the number of papers
about discrete wavelets is rapidly increasing. For a reader, it is difficult to find his
way among a large number of publications.

Therefore, a book like this, explaining the applications of the discrete wavelet
transform in calculus, is extremely necessary. As different variants of the wavelet
methods exist, it is not reasonable to handle and analyze all of them in detail.
Therefore, we have decided to choose a method of solution, which is sufficiently
universal and is applicable to solve all the problems by a unit approach. Other
treatments will be referred to and discussed in the section-related papers added to
each chapter. To demonstrate the efficiency and accuracy of the proposed method, a
number of examples are solved. Mostly test problems, for which the exact solution
or solution obtained by other methods is known, are considered.

The book is meant for researchers, teachers, and students of applied mathe-
matics, physics, engineering, and related disciplines. To make the book accessible
for a wider circle of readers, some mathematical finesse is left out.

Thanjavur, Tamil Nadu, India Dr. G. Hariharan
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Chapter 1
Reaction–Diffusion (RD) Problems

1.1 Reaction–Diffusion Equations (RDEs)

Reaction–diffusion equations (RDEs) are nonlinear parabolic Partial Differential
Equations (PDEs). RDE arises in many applications which include physical sci-
ences, biological sciences, ecology, physiology, finance, to name a few. Reaction–
diffusion systems are usually coupled systems (multiple numbers) of parabolic
partial differential equations. In population dynamics, the reaction term models
growth, and the diffusion term accounts for migration. A few reaction–diffusion
(RD) models are models for pattern formation in morphogenesis, for predator–prey
and other ecological systems, for conduction in nerves, for epidemics, for carbon
monoxide poisoning, and for oscillating chemical reactions.

A simplest form of RDE:

ut ¼ @u
@t

¼ D
@2u
@x2

þ f uð Þ

where u ¼ u x; tð Þ is the vector of dependent variables, f uð Þ is a nonlinear
vector-valued function of u (the reaction term), and D is the diffusion coefficient.
The reaction term arises from any interaction between the components of u. The
parameter u may be a vector of predator–prey interactions, competition, or sym-
biosis. The diffusion terms may represent molecular diffusion or some ‘random’
movement of individuals in a population.

A simplest form of reaction–diffusion–convection type is given by

@u
@t

¼ ut ¼ f uð ÞþD
@2u
@x2

þC
@u
@x

;

where C is the convection coefficient.
The diffusion mechanism model is the movement of many individuals in an

environment or media. The particles reside in a region, which we call X is open set
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of Rn (the nth-dimensional space with Cartesian coordinate system) with n� 1. The
diffusion coefficient D xð Þ is not a constant in general since the environment is
usually heterogeneous. But when the region is approximately homogeneous, we can
assume that D xð Þ ¼ D; the above equation can be simplified to

@P
@t

¼ DDPþ f t; x; Pð Þ;

where DP ¼ div rPð Þ ¼Pn
i¼1

@2P
@x2i

is the Laplacian operator.

In order to develop reaction–diffusion models as dynamical systems, we need to
define appropriate state spaces of functions and determine how the models act on
them.

1.2 Importance of Reaction–Diffusion (RD) Problems

(i) Chemical Engineering: Theoretical models of steady- and unsteady-state
reaction–diffusion problems have been developed to obtain the substrate and
product concentrations for enzymes immobilized within particles. Reaction–
diffusion models are characterized by carbon monoxide poisoning, nitrogen
oxide removal, oscillating chemical reactions, pulse splitting and shedding,
Rayleigh–Benard convection, and kinetics of methylene blue adsorption
(film–pore diffusion model). A theoretical model based on the Michaelis–
Menten enzymatic conversion of the substrate and the diffusion of the sub-
strate was created. They also describe the steady-state oxygen diffusion in a
spherical cell and equilibrium of isothermal gas sphere, flame propagation,
autocatalytic chemical reactions, and neutron population in a nuclear
response and branching.

(ii) Biological and Medical Sciences: A few important applications of reaction–
diffusion equations include population dynamics models, gene propagation
models, ecological invasions, a spread of epidemics, tumor growth, and
wound healing, distribution of heat sources in a human head, transmission of
pulses in nerves, and neurophysiology.

(iii) Mechanical Engineering: A simplified kinematical description of a rigidly
rotating spiral induced in a general two-component reaction–diffusion
medium is elaborated by application of a free-boundary approach. The
potential energy generated by an external force as a result of a deformation is
propagated among mass points by the principle of reaction and diffusion.

(iv) Civil Engineering: A theoretical model based on fundamental reaction–
diffusion principles has been formulated to describe the process of concrete
carbonation. It is a major time-limiting factor for the durability of reinforced
concrete.
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1.3 A Few Familiar Reaction–Diffusion Equations (RDEs)

1.3.1 Nonlinear Singular Boundary Value Problem (Lane–
Emden Type) and Wavelets

Nonlinear singular boundary value problem (Lane–Emden type) is a significant
model in the theory of stellar structure. It models many phenomena in mathematical
physics and astrophysics. Most of the work in the stellar structure was initiated by
Chandrasekhar [1]. It is a nonlinear differential equation which describes an equi-
librium density distribution in the self-gravitating sphere of polytrophic isothermal
gas and has a regular singularity at the origin. This model equation was first studied
by the astrophysicist Lane [2] who considered the temperature variation of a
spherical gas cloud under the mutual attraction of its molecules and subject to the
laws of classical thermodynamics. The polytrophic theory of stars was studied by
Davis [3]. It primarily deals with the issue of energy transport, through the transfer
of material between levels of the star and modeling of clusters of galaxies. Mostly,
problems with regard to the diffusion of heat perpendicular to the surfaces of
parallel planes are represented by the heat equation. In particular for a polytropic
equation of state, the Lane–Emden equation arises.

Due to the simplicity, the wavelets are very effective for solving ordinary dif-
ferential and partial differential equations [4–9]. Therefore, the idea, to apply
wavelet technique also for solving reaction–diffusion problem, arises. The wavelet
methods with far less degrees of freedom and with smaller CPU time provide better
solutions than classical ones [10–19]. The accuracy and effectiveness of the method
are analyzed; the results obtained are compared with the results of other authors
(using classical numerical techniques) and with the exact solution, evaluating the
error.

1.4 Fractional Differential Equation (FDE)

Fractional calculus is a field of mathematical study that deals with investigations
and applications of derivatives and integrals of noninteger orders. In recent years,
fractional differential equations have been applied for efficient models in research
areas as diverse as dynamical systems, control systems, mechanical systems, chaos,
anomalous diffusive and subdiffusive systems, continuous time random walks,
wave propagation, and so on.
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