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Preface

The purpose of this book is to reflect the frontiers of statistical modeling in
biomedical research, stimulate new research, and provide great opportunities
for further collaborations. We received high-quality papers from distinguished
researchers in biostatistics and biomedical research and have invited them to prepare
book chapters. Finally, we selected 19 excellent papers for this book. All of the book
chapters have been thoroughly peer-reviewed and revised several times before the
final publication. This timely volume presents new developments in biomedical
research, introduces innovative procedures, presents interesting applications in
statistics and biomedical investigations, and contains the potential to impact
statistics and biomedical research. This book makes contributions to biomedical
studies in the data science era and provides new insights for biomedical researchers,
postdocs, graduate students, applied investigators, and industry practitioners.

The 19 chapters are organized into five parts: Part I includes four chapters, which
present next-generation sequence data analysis. Part II consists of three chapters on
deep learning, precision medicine, and applications. Part III is composed of four
chapters that present large-scale data analysis and its applications. Part IV outlines
the biomedical research and the modeling. Part V consists of three chapters on
survival analysis with complex data structures and its applications. The chapters are
organized as self-contained units. In addition, we have included references at the
end of each chapter. Furthermore, readers can easily request from us or the chapter
authors computer programs or data sets used to facilitate the application of these
statistical approaches in practice.

Part I: Next-Generation Sequence Data Analysis
(Chapters 1–4)

The chapter, “Modeling Species-Specific Gene Expression Across Multiple Regions
in the Brain,” presents a new statistical approach for identifying genes with species-
specific expression. This new approach avoids multiple pairwise comparisons and
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vi Preface

can be susceptible to small changes in expression as well as intransitivity. In this
chapter, Diao, Zhu, Sestan, and Zhao show that the proposed model can better
identify human-specific genes than the naive approach. The authors also show that
the new approach produces more robust gene classifications across regions and
greatly reduces the number of human-specific genes.

In the chapter, “Classification of EEG Motion Artifact Signals Using Spatial
ICA,” Huang, Condor, and Huang proposed a new procedure, which reduces dimen-
sion by applying spatial independent component analysis (SICA) and classifies
the gait speed for a given subject by the projected EEG motion artifact signals.
The authors use SICA and principal component analysis for the dimensionality
reduction before applying classifiers such as support vector machines, naïve Bayes,
and multinomial logistic regression.

In the chapter, “Weighted K-means Clustering with Observation Weight for
Single-Cell Epigenomic Data,” Zhang, Wangwu, and Lin develop a weighted K-
means algorithm. By down-weighting cells, the authors show that the new algorithm
can lead to the improved detection of rare cell types. The authors finally investigated
the proposed methods using extensive simulation studies.

In the chapter, “Discrete Multiple Testing in Detecting Differential Methylation
Using Sequencing Data,” Hao and Lin present the multiple testing issue in detecting
differential methylation in next-generation sequencing studies. The existing FDR
control procedures are often underpowered in methylation sequencing data analysis
due to the discreteness. In this chapter, the authors also discussed several FDR
control methods that can accommodate such discreteness.

Part II: Deep Learning, Precision Medicine, and Applications
(Chapters 5–7)

The chapter, “Prediction of Functional Markers of Mass Cytometry Data via Deep
Learning,” presents a novel deep learning architecture for predicting functional
markers in the cells given data on surface markers. The proposed approach can
automate measurements of functional markers across cell samples, and the proposed
procedure demonstrates the improved prediction performance of the deep learning
architecture.

In the chapter, “Building Health Application Recommender System Using
Partially Penalized Regression,” the authors proposed to estimate the optimal policy,
which maximizes the expected utility by partial regularization via orthogonality
using the adaptive Lasso (PRO-aLasso). The chapter also shows that PRO-aLasso
estimators share the same oracle properties as the adaptive Lasso.

In the chapter, “Hierarchical Continuous-Time Hidden Markov Model, with
Application in Zero-Inflated Accelerometer Data,” Xu, Laber, and Staicu propose
a flexible continuous-time hidden Markov model to extract meaningful activity
patterns from human accelerometer data and derive an efficient learning algorithm
for the proposed model. In this chapter, the authors also develop a bootstrap
procedure for interval estimation.
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Part III: Large-Scale Data Analysis and Its Applications
(Chapters 8–11)

In the chapter, “Privacy-Preserving Feature Selection via Voted Wrapper Method
for Horizontally Distributed Medical Data,” Lu and Zhang propose a privacy-
preserving feature selection method, “privacy-preserving feature selection algorithm
via voted wrapper methods (PPFSVW).” The experimental results show that the new
algorithm workflow can work effectively to improve classification performance by
selecting informative features and genes and can also make the classifier achieve the
higher classification accuracy.

The chapter, “Improving Maize Trait Through Modifying Combination of
Genes,” proposes a computational method for detecting complex traits associated
with gene interactions using a combination of gene expression and trait data across
a set of maize hybrids. This new method represents changes of expression patterns
in a gene pair and employs network topology to describe the inherent genotype–
phenotype associations. In this chapter, the authors also investigate the proposed
method on several phenotypic traits and achieved consistent results.

In the chapter, “Molecular Basis of Food Classification in Traditional Chinese
Medicine,” the authors used machine learning methods by using food molecular
composition to predict the hot, neutral, or cold label of food, and achieved more
than 80% accuracy, which indicated that TCM labels have a significant molecular
basis. This research is the first study to quantitatively investigate the relationship
between TCM labels and the molecular composition of food.

The chapter, “Discovery Among Binary Biomarkers in Heterogeneous Popu-
lations,” presents jointly modeled binary and continuous disease outcomes when
the association between predictors and these outcomes exhibits heterogeneity. In
this chapter, Geng and Slate use ideas from logic regression to find Boolean
combinations of these biomarkers and adopt a mixture-of-finite-mixtures fully
Bayesian approach to simultaneously estimate the number of subgroups, the
subgroup membership structure, and the subgroup-specific relationships between
outcomes and predictors.

Part IV: Biomedical Research and the Modeling
(Chapters 12–16)

In the chapter, “Heat Kernel Smoothing on Manifolds and Its Application to Hyoid
Bone Growth Modeling,” Chung, Adluru, and Vorperian propose a unified heat
kernel smoothing framework for modeling 3D anatomical surface data extracted
from medical images. In this chapter, the authors apply the proposed method in
characterizing the 3D growth pattern of human hyoid bone between ages 0 and 20
obtained from CT images. A significant age effect is detected on localized parts of
the hyoid bone.
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In the chapter, “Optimal Projections in the Distance-Based Statistical Methods,”
Yu and Huo propose a new way to calculate distance-based statistics, particularly
when the data are multivariate. The main idea is to pre-calculate the optimal
projection directions given the variable dimension and to project multidimensional
variables onto these pre-specified projection directions. In this chapter, the authors
also show that the exact solution of the nonconvex optimization problem can be
derived in two special cases and propose an algorithm to find some approximate
solutions.

The chapter “Kernel Tests for One, Two, and K-Sample Goodness-of-Fit: State
of the Art and Implementation Considerations,” discusses statistical distances in
the goodness-of-fit and reviewed multivariate two-sample goodness-of-fit tests from
machine learning point of view. In this chapter, Chen and Markatou introduce a class
of one- and two-sample tests constructed using the kernel-based quadratic distance.
The implementation of these tests, with emphasis on the kernel-based two-sample
test, is provided.

The chapter, “Hierarchical Modeling of the Effect of Pre-exposure Prophylaxis
on HIV in the US,” centers on the effectiveness of chemical prophylaxis on the
populations involved in the HIV epidemic in the US. In this chapter, the authors use
a system of nonlinear differential equations to represent the system of populations
involved in the HIV epidemic and define model parameters for both the national and
the urban case, representing low and high sexual network densities. These results
indicate that the undiagnosed high-risk infected group is the largest contributor to
the epidemic under both national and urban conditions.

The chapter, “Mathematical Model of Mouse Ventricular Myocytes Overex-
pressing Adenylyl Cyclase Type 5,” studies a new model of transgenic (TG)
mouse ventricular myocytes overexpressing adenylyl cyclase type 5. The proposed
model describes β1- and β2-adrenergic signaling systems very well. In this chapter,
Bondarenko finds that the overexpression of AC5 results in an increased basal
cAMP production.

Part V: Survival Analysis with Complex Data Structure
and Its Applications (Chapters 17–19)

The chapter, “Non-parametric Maximum Likelihood Estimator for Case-Cohort
and Nested Case–Control Designs with Competing Risks Data,” assumed cause-
specific hazards given by the Cox’s regression model and provided non-parametric
maximum likelihood estimators (NPMLEs) in the nested case–control or case-
cohort design with competing risks data. In this chapter, the authors propose an
iterative algorithm based on self-consistency equations to compute the NPMLE and
established the consistency and asymptotic normality of the proposed estimators.

In the chapter, “Variable Selection in Partially Linear Proportional Hazards
Model with Grouped Covariates and a Diverging Number of Parameters,” Afzal
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and Lu proposed a hierarchical bi-level variable selection approach for censored
survival data in the linear part of a partially linear proportional hazards model. The
benefit of the proposed method is that it enables us to conduct a simultaneous group
selection and individual variable selection within selected groups. The chapter also
develops computational algorithms and establishes the selection consistency, and
asymptotic normality of the proposed estimators.

The chapter, “Inference of Transition Probabilities in Multi-State Models using
Adaptive Inverse Probability Censoring Weighting Technique,” develops a model-
specific, state-dependent adaptive IPCW (AIPCW) technique for estimating transi-
tion probabilities in multi-state models. In this chapter, Zhang and Zhang conduct
intensive simulation studies and the results show that the proposed AIPCW pro-
cedure improves the accuracy of transition probability estimates compared to the
existing SIPCW approach.

The two editors are so grateful to all of the people who have provided the great
support for the publication of this book. We deeply thank all the chapter authors (in
the “Contributors”) for their excellent contributions to this book. We sincerely thank
all the reviewers (in the “List of Chapter Reviewers”) for their insightful and helpful
reviews, which significantly improved the presentation of the book. Moreover,
our deep appreciations go to the organizers of the 6th Workshop on Biostatistics
and Bioinformatics since several book chapters are based on the presentations
in this workshop. Last but not least, our sincere acknowledgments go to the
wonderful support of Laura Aileen Briskman (Editor, Statistics, Springer Nature)
from Springer New York and Gerlinde Schuster (Editorial Assistant, Statistics,
Springer), who made this interesting book publish on time. We look forward to
readers’ comments on further improvements for the book. Please contact us: Dr.
Yichuan Zhao (email: yichuan@gsu.edu) and Dr. Ding-Geng (Din) Chen (email:
dinchen@email.unc.edu).

Atlanta, GA, USA Yichuan Zhao
Chapel Hill, NC, USA Ding-Geng (Din) Chen
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Modeling Species Specific Gene
Expression Across Multiple Regions in
the Brain

Liyang Diao, Ying Zhu, Nenad Sestan, and Hongyu Zhao

Abstract Motivation: The question of what makes the human brain functionally
different from that of other closely related primates, such as the chimpanzee,
has both philosophical as well as practical implications. One of the challenges
faced with such studies, however, is the small sample size available. Furthermore,
expression values for multiple brain regions have an inherent structure that is
generally ignored in published studies.

Results: We present a new statistical approach to identify genes with species
specific expression, that (1) avoids multiple pairwise comparisons, which can be
susceptible to small changes in expression as well as intransitivity, and (2) pools
information across related data sets when available to produce more robust results,

Electronic Supplementary Material The online version of this chapter (https://doi.org/10.1007/
978-3-030-33416-1_1) contains supplementary material, which is available to authorized users.

Availability and Implementation: Code for estimating the Markov random field parameters and
obtaining posterior probabilities for the MRF can be found in the data package attached. All code
is written in R.
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such as in the case of gene expression across multiple brain regions. We demonstrate
through simulations that our model can much better identify human specific genes
than the naive approach. Applications of the model to two previously published data
sets, one microarray and one RNA-Seq, suggest a moderately large benefit from
our model. We show that our approach produces more robust gene classifications
across regions, and greatly reduces the number of human specific genes previously
reported, which we show were primarily due to the noise in the underlying data.

Keywords Gene expression · R code · Posterior probabilities · Markov random
field · RNA sequencing · Akaike · Bayes

1 Introduction

As the human genome was first being sequenced, a natural question began to
emerge: Can we determine what parts of our genomes differentiate us from our
closest primate relatives? The origins of characteristic human abilities, such as
speech, social behaviors, and abstract thinking, might be uncovered by comparing
the genomes of humans, chimpanzees, and outgroups such as gorillas and macaques.
Beyond the questions of our innate “human-ness”, comparisons of the genomic
differences between humans and other great apes have potentially wide-ranging
practical effects: see [27] for an extensive collection of possible phenotypic compar-
isons of interest, ranging from differences in female reproductive biology, to brain
size, to control of fire, and to usage of toys and weapons. In addition to observational
phenotypic differences, the authors also note widely different incidence rates for
certain diseases in humans and chimpanzees which have long been known. Diseases
such as the progression from HIV to AIDS, infection by P. falciparum malaria,
and occurrence of myocardial infarction, for example, are common in humans yet
very rare in the great apes. Alzheimer’s disease is a neurodegenerative disease
characterized by the presence of amyloid plaques and neurofibrillary tangles in the
brain, resulting in memory loss, dementia, and eventually death. While the diagnosis
of these symptoms in primates may be difficult, one comparison that can be made
is in age-matched dissections of human and primate brains. In such studies, human
brains show development of these signature plaques as well as the neurofibrillary
tangles, whereas chimpanzee brains show neither [26].

There are many approaches to finding the differences between human and
primate genomics, several of which are delineated in [27]. We could analyze
various kinds of genomic differences, such as indels, chromosomal changes, gene
duplications, and repetitive element insertions. In this manuscript we will focus
on differences in gene expression as measured by microarray and RNA-Seq
technologies, which have been used in several studies [4, 9, 13, 14]. In the first
study [9], only a single region of the brain, the left prefrontal lobe (Brodmann
area 9) was analyzed. However, all subsequent studies have sampled at least three
regions of the brain. In these studies, the analysis was conducted by performing
pairwise comparisons and setting a cutoff for whether a gene has human specific
gene expression or not in each region.
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There are some issues with this straightforward approach, one of which is due to
issues arising with pairwise comparisons: When all three pairwise comparisons are
performed among three species, for example, intransitive results can easily result.
When pooled pairwise comparisons are performed, i.e. by pooling two species and
comparing the pooled species against the remainder, results are highly subject to
slight changes in expression, as demonstrated in the following. The second issue is
related to the structure of the data. Namely, while there are sure to be genes with
differential expression patterns across brain regions, we expect that most genes do
not. Thus, instead of analyzing each region separately, we should be able to use the
gene expression in other regions to inform the analysis of a given region. Particularly
in the case of primate studies, samples are difficult to attain, so sample sizes tend
to be very limited. By pooling information, we can obtain more robust estimates of
differential gene expression.

In this manuscript, we propose a method which overcomes the two issues
described above. The problem of intransitivity in pairwise comparisons is well
known, and examples are detailed in [6, 7]. We follow the author’s suggestion
here and propose an information criterion based model selection approach, testing
various information criteria for which performs best for small sample sizes. An
additional benefit of using an information criterion is that it produces a relative
class membership probability for each gene, for each class. This enables us to use
a Markov random field (MRF) to “smooth” assigned class memberships across
brain regions, so that in regions with less certainty, we can use information from
neighboring regions to inform the decision.

We demonstrate through simulations that the Bayesian information criterion
(BIC) performs best for small sample sizes, and that the addition of the MRF can
significantly reduce the number of classification errors when the neighbor effect
is moderate, particularly for those genes with high variance. We then apply our
method to two recently published brain expression data sets, one microarray and one
RNA-Seq [14]. In these data, three brain regions were sampled: the caudate nucleus
(CN), frontal pole (FP), and hippocampus (HP). We find evidence of a moderate
neighbor effect among the three regions, and demonstrate that the Markov random
field is able to reduce the number of incorrect classifications compared to the naive
approach. Among the top genes we identified as being human specific include those
associated with various neurological disorders and neural function, which we did
not find using the naive ANOVA approach described in the original paper.

2 Methods

2.1 Overview

2.2 Use of Information Criterion for Model Selection

For each gene, we determine the appropriate latent model based on its expression
levels. The latent models are described in Table 1. For this model selection
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Table 1 Description of
latent classes for a three
species comparison

Model Description

M1 Hu = Ch = Ma

M2 Ma �= Hu = Ch

M3 Hu �= Ma = Ch

M4 Ch �= Hu = Ma

M5 Hu �= Ch �= Ma

step, we evaluate the performance of three types of information criteria: Akaike’s
information criterion (AIC), the small sample size corrected version of the AIC
(AICc), and the Bayesian information criterion (BIC) [1, 11, 22]. These are given in
Eqs. (1)–(3), where L is the likelihood of the model, k is the number of parameters
in the model, and n is the sample size.

AIC = −2 · ln(L)+ 2 · k (1)

AICc = AIC + 2k(k + 1)

n− k − 1
(2)

BIC = −2 · lnL+ k · ln(n) (3)

Let I = (I1, . . . , I5) be the vector of information criteria calculated for each of the
5 models, for a particular gene g. Then the probability of g belonging to model i is
given by

pi = 1

W
exp (0.5 (min(I)− Ii)) (4)

where W is the normalizing constant W =∑
i Ii .

We choose to use information criteria as a natural approach to performing model
selection. In particular, we choose to perform model selection in lieu of multiple
pairwise comparisons because the latter can often result in intransitivity. For
example, we may find that B > A, A > C, and yet B = C. With model selection,
such a nonsensical result is not possible. Use of model selection was advocated in
[6, 7], which also extensively pointed out the problem of intransitive decisions.

2.3 Estimating Prior Probabilties of Class Membership

For the information criteria described above, we must first determine which models
to use for microarray and RNA-Seq data types. Differential expression testing
for microarray data has often been carried out using the t-test, but this can be
problematic particularly when sample sizes are small, as variance estimates become
unstable. Several methods have attempted to pool information across multiple genes
in order to better model the variance [8, 10, 24]. Jeanmougin et al. [12] found in
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a comparison of multiple methods that appropriate modeling of the variance can
significantly reduce the number of false positives found.

Here we assume that the data follow a Gaussian distribution after appropriate
normalization just as in the standard t-test, and do not perform any moderated
estimates of variance. We therefore simply estimate standard deviations of the
microarray data. In simulations we find that both the unmoderated t-test and the
information criteria perform relatively well under reasonable variances.

RNA-Seq data are widely modeled according to the negative binomial model
[18, 19]. We use DESeq2 [18] to estimate the mean and dispersion parameters of
the negative binomial model for the RNA-Seq data.

Let yg be the vector of normalized microarray expression values for a given gene
g, where we drop the subscript g for clarity. In the remainder of this manuscript, we
adopt the following shorthand when referencing the three species, human, chimp,
and macaque: Hu, Ch, and Ma, respectively.

Then let yHu, yCh, and yMa denote vectors of expression values for human,
chimp, and macaque samples, respectively, for the given gene. We estimate the
means μ and standard deviations σ (likewise dispersions φ) for each of seven
species groupings separately. i.e., μMa is the mean expression value for macaque
samples, σHu the standard deviation of human samples, μHu,Ch the mean of the
pooled human and chimp samples, and so on. The seven species groupings are
Ma,Hu,Ch, {Ma,Hu}, {Ma,Ch}, {Hu,Ch}, {Ma,Hu,Ch}.

Then the model likelihood can be computed as:

P(y|M1) = P(y|μ, σ)
P (y|M2) = P(yMa |μMa, σMa) P (yHu,Ch|μHu,Ch, σHu,Ch)
P (y|M3) = P(yHu|μHu, σHu) P (yCh,Ma |μCh,Ma, σCh,Ma)

P (y|M4) = P(yCh|μCh, σCh) P (yHu,Ma |μHu,Ma, σHu,Ma)

P (y|M5) = P(yMa |μMa, σMa) P (yHu|μHu, σHu) P (yCh|μCh, σCh) (5)

Here P indicates Gaussian densities, e.g., the probability of observing microarray
values yMa for macaque samples, given mean and standard deviations μMa and
σMa , respectively. We can obtain similar model likelihoods for the RNA-Seq data,
with mean and dispersion parameters estimated using DESeq2, and based on
negative binomial probability densities. The model is specified as:

y ∼ NB(mean = μ, dispersion = α) (6)

μ = sq (7)

log(q) =
∑

r

xjβj (8)

s is a factor unique to each sample that accounts for differences in library size among
samples, xj are covariates (species, batch effects, etc.), and βj are the corresponding
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coefficients. For the [14] RNA-Seq data, no batch effects were identified, so that
log(q) simply equals β for the species grouping.

2.4 Empirical Bayes Shrinkage Priors for Negative Binomial
Model

For the negative binomial model, we find that using the DESeq2 estimate of μ
can result in overfitting when the absolute count values are small, thus leading to
genes with low expression and/or high variability being ranked as highly species
specific. To avoid this, we propose a shrunken mean model, which is derived from
the interpretation of the negative binomial distribution as a hierarchical gamma-
Poisson mixture.

In particular, we assume that the counts for each gene g arise from a Poisson
distribution, whose mean itself is gamma distributed:

p(kg; λg) =
n∏

i=1

e−λgλkgig

kgi ! (9)

λg ∼ �(αg, βg) (10)

Here n is the number of samples. We drop the subscript g in the following for
clarity, understanding that we are calculating the posterior mean for a particular
gene g. Then the posterior mean of λ = λg takes on the form

λ̂ = n

n+ β

(∑
ki

n

)

+ β

n+ β

(
α

β

)

= nμ

nμ+ α

(∑
ki

n

)

+ α

nμ+ α
μ (11)

We get Eq. (11) by noting that the mean of �(α, β) isμ = α/β and the dispersion
parameter of the negative binomial is the same α in �(α, β). Thus, when the mean μ
and/or sample size n is large with respect to the dispersion α, λ̂ is shrunken towards
the average count value, whereas if the dispersion parameter is large, it is shrunken
towards the mean of the underlying �.

In practice, we must obtain λ̂ while taking into consideration differences in
library size among samples. To do this, we take the ki above to be k∗i = ki/si ,
where si is the size factor for sample i.
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2.5 Leveraging Gene Expression Profiles over Several Brain
Regions Using a Markov Random Field

While different regions of the brain may have different expression patterns, in
general we find that the correlation of gene expressions across different regions
is very high (see Fig. S2). Further, when sample sizes are small, robust estimates
of model parameters can be difficult to obtain, even when borrowing information
across genes as both limma and DESeq2 do. We propose to address this issue
by utilizing prior model probabilities in neighboring regions to obtain more stable
posterior model probabilities.

To do so, assume that the underlying “true” states of the genes are an instantiation
of a locally dependent Markov random field (MRF) [3]. Let zg,r denote the unknown
true model membership of gene g in region r , zg,r ∈ {M1, · · · ,M5}. Intuitively, if
zg,r1 = M2, then we are more likely to believe that zg,r2 = M2 as well, for regions
r1, r2 ∈ R. Under this model, only the neighboring regions of R, R \ {r}, have
an effect on zg,r . We will assume that all brain regions are thus neighbors of each
other.

Generally speaking, the issue of finding the most likely Z,

Pr(Z|Y ) ∝ l(Y |Z)P r(Z) (12)

is extremely difficult. We use the simulated field approximation proposed in [5],
which produces a solution via the expectation-maximization (EM) algorithm, and
which the authors showed performed favorably compared to other approaches.

Let the conditional probability p(zgr = Mi |R \ {r}) be

p(zg,r = Mi |V \ {gr}) ∝ exp

⎧
⎨

⎩
αi + β

∑

r ′∈R\{r}
IMi

(zg,r ′)

⎫
⎬

⎭
(13)

where IMi
(zi) is an indicator variable, such that IMi

(zi) = 1 if zi = Mi and 0
otherwise.

Thus we see that the probability of model membership is proportional to the
number of neighbors belonging to the same model. The strength of this “neighbor
effect” is given by β. In total we have five parameters that need to be estimated,
denoted by � = {α∗1 , α∗2 , α∗4 , α∗5 , β} (here we have taken α∗i = αi − α3 to avoid
identifiability issues).

The steps of the simulated field algorithm are as follows:

1. Initialization:

(a) Set the initial parameters �.
(b) Obtain an initial estimate of the modelsZ. These are the states corresponding

to maximum relative BIC prior probabilities.
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2. For each gene g and region r:

(a) Calculate the model probability, for each model, of zg,r .
(b) Sample z∗g,r accordingly.
(c) Move to the next region and/or gene and repeat.

3. Once we have obtained Z∗, an updated state matrix for all genes and regions,
re-estimate the parameters �.

4. Repeat 2–3 until convergence.

We update the parameters � using the Newton Raphson method.
After obtaining estimates of the MRF parameters, we can obtain the posterior

model membership probabilities using Markov chain Monte Carlo (MCMC).

2.6 Simulations

We perform three types of simulations to evaluate each of the following:

1. Best information criterion to use for model selection
2. Accuracy of estimation of Markov random field parameters using the simulated

field algorithm
3. Reduction of classification errors due to implementation of Markov random field

In each set of simulations, we generate gene expression values based on the
gene’s classification into one of five latent models, listed in Table 1. We generate
expression values for three simulated “species” according to a Gaussian distribution,
with species means given in Table 2. We tested three values of σ : 0.15, 0.25,
and 0.5. For each species, we simulate five samples, comparable to the number
of samples present in the Konopka experimental data. Simulations by both the
DESeq [2], DESeq2 [18], and a similar method edgeR [21] have shown that these
negative binomial approaches model the variances well. Thus, we will assume that
the parameter estimates produced by DESeq2 of the means and dispersions are
reasonable, and so evaluation of the information criteria on Gaussian simulated data
is sufficient.

Table 2 Gaussian simulation
parameters

Model μCh μHu μMa

M1 2 2 2

M2 2 2 2.5

M3 2 2.5 2

M4 2.5 2 2

M5 1.5 2 2.5

We test σ = 0.15, 0.25, and 0.5
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2.6.1 Selection of Information Criterion

We test three different information criteria to see how well they classify genes
belonging to each of the five models Mi : the AIC, AICc, and BIC. Additionally,
although they are not directly comparable, we use two types of t-tests as a
benchmark against which to compare the information criteria: the pairwise t-test
as well as the pooled t-test. In the pairwise t-test, a gene is determined to be human
specific if the comparisons Hu vs. Ch and Hu vs. Ma are both significant, while
Ch vs. Ma is not significant (at p = 0.05). Species specificity for the other two
species is similarly defined. Note that in some cases a gene will not be classifiable
by this method.

In the pooled t-test, a gene is determined to be human specific if the comparison
Hu vs. Ch,Ma is significant. If more than one such comparison is significant, then
the mean difference between Hu and Ch,Ma must be larger than the difference in
means of the other comparison in order for the gene to be declared species specific.
This is similar to the approach taken by [14].

Performance is assessed according to the percentage of misclassified genes,
which we call the classification error. For the information criterion approaches, we
choose Mi with the highest probability. We perform 100 such simulations.

2.6.2 Estimation of Markov Random Field Parameters

To determine how well we are able to estimate the true parameters � of an MRF,
we simulate the latent models according to an MRF model, then generate gene
expression values as before, and see if we can recover �.

The latent class matrix Z of G = 1000 genes by R = 3 regions is generated as
follows: first, we randomly assign to each zgr one of the five classes M1, · · · ,M5.
Then, given MRF parameters � = {α∗1 , α∗2 , α∗4 , α∗5 , β}, we update each element
of the Z matrix according to the probability given in Eq. (13). We perform five
complete steps of updating to obtain the final Z matrix. In practice, very few steps
are required for the Z matrix to converge.

We take α = (0.8, 0.3, 0.1,−0.1) and let β vary as one of (1, 1.5, 2).
From these simulations, we can determine how well � is estimated, given (a)

the underlying Gaussians are known, and (b) the prior probabilities are determined
using the BIC. The former gives us an indication of how well the simulated field
algorithm is able to estimate the MRF parameters when the prior probabilities are
“exact”; the latter introduces noise from “inexact” priors. We calculate “exact”
priors by taking, for each Mi , the probability of observing the values x given the
known μi and σi corresponding to Mi . i.e.,

p(Mi) = 1

W

∏

x

p(x|μi, σi) (14)
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where W is a normalizing constant. In theory it is possible that Ii = Ij for i �= j ,
though we did not observe this in practice. In such cases of tied values of information
criteria, we can divide

We run 20 steps of the simulated field algorithm for parameter estimation, and
50 steps of burnin and 100 steps of sampling for posterior probability estimation.
We perform 20 simulations for each value of β.

2.6.3 Improvement in Performance Due to Markov Random Field

In the previous section all expression values are generated from Gaussians with the
same variance, and thus all are equally noisy. Conceivably, when data are very noisy
to begin with, borrowing information from neighbors does not improve predicted
classification. However, in the case where some genes are less noisy than others, we
may expect to observe an improvement.

To evaluate this effect, we perform a similar set of simulations as in Sect. 2.6.2,
but this time randomly selected genes to have different variances. Out of a total of
G × R = 1000 × 3 = 3000 genes, we let 50% be generated from a Gaussian with
means given in Table 2 and σ = 0.15, 30% be generated with σ = 0.25, and the
remaining 20% be generated with σ = 0.5. All other simulation parameters follow
those in Sect. 2.6.2.

2.7 Experimental Data

We analyze two data sets published in [14]. The authors collected samples from
three regions in human, chimp, and macaque brains, and compared their expression
patterns using two microarray platforms (Affymetrix and Illumina) as well as next-
generation sequencing (NGS). Since the authors found in their original manuscript
that the Affymetrix arrays were able to capture more genes than the Illumina arrays,
here we focus our analysis on the Affymetrix microarray and Illumina NGS data.

We downloaded the log transformed and quantile normalized microarray data
deposited at the NCBI Gene Expression Omnibus (GEO) under accession number
GSE33010. For genes corresponding to more than one probe, we took the maximum
value over all probes. We mapped probes to their appropriate gene symbols from the
downloaded .soft file. The RNA-Seq expression counts table was downloaded
from GEO under accession number GSE33587. Only genes that were uniquely
aligned to the genome were retained.

Konopka et al. [14] filtered both microarray and RNA-Seq data to retain only
those genes which they deemed “present”. For the Affymetrix microarray data, they
defined such genes to be those which had a detection score of 0.05 or less in all
samples, for each region and species. For RNA-Seq data, a gene was considered
“present” if for each individual of a species and in a brain region, at least 2 reads
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aligned to the gene. Additional details of the processing steps can be found in the
Supplementary Experimental Procedures of the original manuscript.

Here we did not filter the RNA-Seq genes for “presence”, or perform additional
filtering of the microarray data. In total, we retained 18,458 genes in the microarray
data and 16,036 in the RNA-Seq data. We used the same set of genes for analysis of
each brain region.

3 Results

3.1 Simulation Results

3.1.1 BIC Produces Best Classifications Overall Under a Variety of
Different Scenarios and Parameters

We evaluate five different criteria for model selection: the three information criteria
(AIC, AICc, and BIC), as well as the pooled and pairwise t tests. The t tests we use
here only as a benchmark with which to compare the information criteria, because
such tests do not produce relative model likelihoods and thus are not useful for the
Markov random field part of our model.

We noticed marked differences in classification error depending on the criterion
used and σ (see Figs. S3, S4, and S5). Additionally, some criteria are better at
distinguishing particular classes of Mi than others.

Unsurprisingly, all classifiers perform best for σ = 0.15, and poorly for σ = 0.5.
In comparison, half of the estimated σ over all genes and all models fitted in Table 1
were less than or equal to 0.2 for each of the three regions, with 95% of the estimated
σ being less than 0.61, suggesting that the classifiers should perform relatively well.
In particular, we find that the pooled and pairwise t test classifiers make virtually no
errors for σ = 0.15 for any Mi . However, as σ increases, we find that the pairwise
t test classifier performs substantially worse than the others at differentiating genes
which are species specific to at least one species. The pooled t test classifier has
among the lowest classification error rates across all σ tested and for all Mi except
M5, which it is unable to distinguish.

Of the three information criteria, the AIC incurs the most errors at detecting
nonspecific genes, and AICc is significantly worse at detecting genes of class M5.
Overall, the BIC model selection criterion maintains relatively low error across the
five classes compared to the other methods under the various σ , with error rates
similar to that of the pooled t test classifier. Thus, we choose to use the BIC to
determine prior probabilities for use in our downstream analyses. However, the best
choice may change on a case to case basis, with considerations for sample size. In
our particular case where the sample size is very small for each region and species,
the BIC appears to perform the best.
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3.1.2 Estimation of Markov Random Field Parameters is Precise for
Exact Priors

We perform extensive simulations to study how well we are able to correctly
estimate the parameters of the MRF using the simulated field algorithm, both for
exact and BIC priors (see Sect. 2.6.2).

The value of β and most values of α are well estimated for exact priors (Fig. S6).
For larger values of β, we observe higher estimation error for αi . If we fix α = 0, the
estimate of β does not suffer. In fact, we surprisingly observe a greater decrease in
classification error of the MRF model compared to the naive prior model when we
hold α fixed, compared to using the estimated α. This is reasonable if we consider
that, in the context of Eq. (13), the magnitude of αi indicates the prior likelihood
a gene is classified as class Mi in the absence of any other information. Thus,
incorrectly estimated values of αi may skew the results. However, if we fix α = 0,
we are essentially only using the classifications of neighboring regions and not these
prior beliefs to influence p(zg,r = Mi).

Overall the classification errors under the exact model are extremely low for
σ = 0.15 and σ = 0.25, being less than 5%. However, when σ is increased to 0.5,
the classification error jumps to nearly 30%. In the latter case, the MRF model can
significantly reduce the error, even for moderate values of β (Fig. S9). For β = 1,
1.5, and 2, the reduction in classification error from nearly 30% is to 21%, 16%, and
11%, respectively.

The picture is less clear when using BIC priors. Notably, parameter estimates
become significantly worse at σ = 0.5. This is unsurprising, as we saw in our
previous simulations comparing the different information criteria and the pairwise
classifier that all methods make many classification errors when σ is large. Thus,
when priors are very noisy, MRF parameter estimation is poor. In both cases of
α free and fixed, we find a small reduction in classification errors for σ = 0.25
(Fig. S10). However, when σ = 0.5, we find no improvement for α fixed, and in
fact find that the MRF model performs slightly worse for α free.

Parameter estimation and classification results for AICc priors are given in
Figs. S8 and S11, respectively, to demonstrate that noisier priors produce poorer
results: Here we find no improvement from the MRF model for σ = 0.5.

3.1.3 Markov Random Field Can Significantly Improve Classification
Errors When Some Neighboring Genes Have Smaller Variance

In the previous section, we find that when the priors are noisy, the MRF model yields
little improvement. However, that is under the assumption that all gene expression
values arise from distributions with the same high variance. In reality this is not
always the case, as a few randomly selected genes demonstrate (Fig. S12). It is thus
reasonable to ask if the MRF can improve the classification of such genes, which
have high variability in one region but lower variability in others.


