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Preface

Possibility theory is a mathematical theory, coined by L.A. Zadeh in the late 1970s
(1978) to deal with vague pieces of information described by means of fuzzy sets and
fuzzy logic. Thereafter, Didier Dubois and Henri Prade have been the main founders
of this theory to the extent that we have today, a credible alternative to probability
theory. A considerable body of literature has flourished around fuzzy sets and
possibility theory concepts in a very wide range of applications, from mathematics
and logics to advanced engineering methodologies, from medical domain to finance,
from human factors to consumer products, and so on. There is a plethora of books
and papers describing this rich domain of applications.

The ambition of this book is to address a niche still uncovered by the existing
available books: a comprehensive assemblage of the basic concepts, the mathemat-
ical developments, and the engineering methodologies to position and exploit
possibility theory for the design of computer-based decision-support systems. Usu-
ally, decision-support systems comprise three main parts: analysis (analytics), syn-
thesis (information fusion), and prescription (decide and act). Literature shows that
possibility theory can be applied to the three parts.

This book consists of nine chapters. The first three chapters discuss the funda-
mental possibilistic concepts: distribution, necessity measure, possibility measure,
joint distribution, and the important concept of conditioning. Chapter 4 examines the
concept of similarity that plays an essential role in a wide range of application fields
like pattern recognition, reasoning, data and knowledge mining but with respect to
what can possibility theory bring to implement that complicated concept. Chapter 5
addresses the links and transformations between the interrelated uncertainty model-
ing theories. The following next two chapters treat aspects of decision-making
through possibilistic and fuzzy integrals, fusion operators, and decision-making
criteria in the framework of possibility theory. Chapter 8 presents three low-level
complexity applications of possibilistic concepts: (1) on pixel-based image classifi-
cation, (2) on spatial unmixing, and (3) on image segmentation.

The book is concluded by Chapter 9 on the use of possibility theory in the design
of information fusion systems in today’s ever-increasing complexity of our real
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world. Information overload and complexity are core problems to most organiza-
tions of today. The advances in networking capabilities have created the conditions
of complexity by enabling richer, real-time interactions between and among indi-
viduals, objects, systems, and organizations. Fusion of Information and Analytics
Technologies (FIAT) are key enablers for the design of current and future decision-
support systems to support prognosis, diagnosis, and prescriptive tasks in such
complex environments. Hundreds of methods and technologies exist, and several
books have been dedicated to either analytics or information fusion so far. This book
presents the overall picture in which possibility theory can be of any use.

Brest, France Basel Solaiman
Brest, France Éloi Bossé
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Chapter 1
Introduction to Possibility Theory

1.1 Introduction

The problem of decision-making, arising from everyday practice, belongs to the
oldest problem types studied from the seventeenth century, and since then the best
reference decision-maker is certainly the human brain. For this reason, modeling of
the human brain reasoning operation in decision-making has been a topic of intense
studies in many application domains leading to creative methodologies, algorithms,
and deductive approaches giving, thus, way to sustainable researches and develop-
ments. The major difficulty faced by systems supporting decision-making is due to
the fact that we have to deal with imperfect decision-relevant information. At this
level, we have to admit a basic assumption that human knowledge, reasoning, and
exchanged evidences and information are intrinsically, for the most part, character-
ized and expressed by a degree of ambiguity and uncertainty rather than in a
probabilistic uncertainty manner. In fact, uncertainty and ambiguity capture two
rather different types of information imperfections.

Uncertainty is the main cognitive process that makes human free to choose. Its
presence (due to lack of knowledge, imperfect, or insufficient information) is the
price affecting experts’ decision when handling complex systems. It is derived by the
nondeterministic membership of a point from the set of decisions containing all
possible elementary decisions (called singletons, states of the world, basic events,
decisions, etc.). The framework of uncertainty modeling has been rooted in proba-
bility theory in which the analyst’s uncertainty about the integrity of the model is
expressed in probabilistic terms. For a long time, probability theory has been
considered as the unique normative model to cope with imperfection by presenting
a classical well-founded framework manipulating uncertain but precise information.
Nevertheless, probability theory, as good as it is, does not remain the best alternative
where imprecision is inherent in the studied domain, where available information is
simply preferences or ambiguous. In fact, ambiguity is derived from the partial
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membership of one or several points from the set of decisions. Thereby, over the last
five decades, a lot of effort has been put into developing new nonclassical uncer-
tainty theories (fuzzy sets theory, belief functions or evidence theory, imprecise
probability theory, and possibility theory). Among the new theories, possibility
theory is said to be amenable to the framework for representation of human percep-
tive uncertainty. This point has been suggested by prominent systems scientists such
as Shackle [1] and Cohen [2]. They argue that the traditional approaches for choice
modeling using probability theory do not completely represent the true level of
uncertainty in people’s behavior. Possibility theory deals with uncertainty when the
evidence points to a nested set of propositions; and hence, it can deal with propo-
sitions that refer to an interval as well as a single value. Possibility theory deals with
uncertain information where the available knowledge is expressed in an ambiguous
framework and representing our inability to distinguish which of several alternatives
is the true one in a particular situation. The word “possibility” can be interpreted in
several ways: physical, epistemic, and logical [3].

In the physical sense, “possible” refers to feasibility or easiness. For example, in
the sentence “it is possible for a vehicle to hold six passengers,” possibility means
the physical capacity of the vehicle. In the epistemic sense, “possible” means
plausible. Finally, in the logical point of view, possibility provides a means to deal
with incompleteness. With a given piece of incomplete information about an event,
logical interpretation of possibility gives a degree of confidence in the occurrence of
the event as in it is possible that it will rain tomorrow.

The concept of possibilities was, first, mooted by the economist G. L.S. Shackle
[1, 3] who, unhappy with the use of subjective probability for handling uncertainty,
proposed an alternative formalism. This formalism was the calculus of potential
surprise where uncertainty about an event is characterized by a subjective measure
of the degree to which the observer in question would be surprised by its occurrence.
Potential surprise is clearly linked to the intuitive notion of possibility. If an event is
entirely possible, then there is no surprise attached to its occurrence. If an event is
wholly impossible, or is believed to be so, then if it occurs, it will be accompanied by
the maximum degree of surprise.

Nevertheless, possibility theory was later introduced again by L. Zadeh [4], who
related possibility theory to fuzzy sets theory. Consider the following example to
show the scope of application of possibility theory. Let Ω denote a collection of
individuals within which we are looking for precisely one and only one person but
we don’t know the person who we are searching for looks like. This uncertain
environment, or situation, constitutes the global framework of application of possi-
bility theory (which is exactly the same as the framework of other uncertain
information processing theories like probability theory and belief functions theory).
Now, imagine the available knowledge, called evidence, to identify our individual is
given as a fuzzy evidence such as the individual we are looking for is young. Faced
with this situation, our human reasoning will:

(i) “Indirectly” attribute, to each individual in Ω, a membership degree, or a
belongingness value, on the scale from 0 to 1, to the fuzzy evidence young
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(ii) Project this membership degree into a kind of mental possibilistic space of
representation, where each individual in Ω has a possibility degree of being the
one we are looking for.

This operation is referred to as the projection of the available evidences into a
possibilistic knowledge representation form. In possibility theory, the result of this
projection is called a possibility distribution defined on the set Ω.

In the case where the available evidence is not fully reliable, the obtained
possibility distribution has to be “adjusted” taking into account this important
knowledge of what is called information sources reliability. This possibility distri-
bution adjustment is called possibility distributions discounting. If several sources of
knowledge are available (the individual we are looking is young, tall, etc.), then and
after the first step of transforming these sources into possibilistic knowledge repre-
sentation form, the resulting possibility distributions have to be “merged” together,
using adequate possibilistic fusion operations, in order to “resume” our global state
of knowledge into a single possibility distribution over Ω. An important question is
related to the decision-making process. In fact, as possibility theory operates in
uncertain environments, the ultimate expected output is, therefore, to identify one
and only one individual within the set Ω. At this level, possibility theory offers some
interesting decision-making tools like the possibility measure (producing a degree of
possibility that the individual we are looking for lies within a subset A ⊆ Ω of
individuals) and the certainty measure (producing a degree of trust that the individ-
ual we are looking for lies within a subset A ⊆ Ω of individuals).

This simple example of searching for an individual within a set can be extended to
extremely important categories of engineering problems: pattern recognition, invest-
ment risk evaluation, classification, estimation, automatic target recognition and
tracking, etc. Before going in-depth through different concepts of possibility theory,
it is important to precisely define the concept of “information,” hereafter called
information element, as well as different forms of information imperfections and
make a brief visit to some existing theories allowing to process imperfect
information.

1.2 Information Concept

1.2.1 Information Element Definition

One of the historical barriers to technology transfer in information processing
systems has been the lack of a unifying terminology. Information, by contrast, is a
most heterogeneous term. What is information? While there exists a conventional,
commonsense hierarchy of information ranging from data (usually raw) to informa-
tion (processed data) to knowledge (synthesized information), even these are not
precise distinctions. The dividing lines are blurry and partly subjective. Recall that
the success of an information processing system is strongly related to the way its
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basic components are defined and to the quality of their associated knowledge as
well as to the knowledge produced by the processing system.

Nevertheless, there is a relatively small body of literature in the information
processing community that addresses this topic; moreover, there is no precise
definition of what information is and what defines information characteristics. A
clear statement of what is information and what is informative can lead to a strong
qualitative understanding of the fundamental nature of information. A definition of
information should capture the essential nature of the information and should allow
frameworks, theories, and results to be transferred across disciplinary boundaries
[5, 6]. According to Losee [5], information can be defined in terms of a process, or a
function, in the following way: “Information is the value currently attached or
instantiated to a characteristic or a variable returned by a function, or a process.
The value returned by a function is informative about the function’s argument, or
about the function, or about both.” This definition has the merit of positioning
information as a relational concept linking data sets [7]. Asking for the meaning,
the word “information” seems trivial since we use this word so frequently. Consider
a simple example. What does it mean if we are given the value x ¼ 39? From a
mathematical point of view, it is just a positive integer; it is simply data. If
x ¼ 39 �C, then this becomes more “informative” since x certainly refers to the
temperature (i.e., x denotes an element from a set of meaningful semantics). Never-
theless, this is still not enough informative because we still don’t know the temper-
ature of what! Now, if we are given that this concerns the temperature of Paul, then
we possess a real information element concerning the temperature of Paul, and we
can even start “reasoning” on this information by saying that Paul has a fever and
must be examined by a physician. In other words, observing a data value from a
given set isn’t enough to make the observed data an informative act [7]. We need the
context in which that information has been obtained. Having real information means
that we know the concern of the information and how the content outcome is
obtained. This leads to the following pragmatic definition of information [7, 8]
which extends the definition proposed by Losee [5] by including a formal structure
associated with important information characteristics:

Definition An information element is a functional relation between two data sets:
definition and content sets, through an informative function1. Here, the “informative
function” has to be understood in its cyber-physical sense.2

Therefore, the main components of an information element are (Fig. 1.1):

1. A definition set: representing the potential information input elements

1Here, “function” has to be taken not in its formal mathematical sense but rather as an activity or
purpose natural to or intended for a person or thing.
2Cyber-physical means a mechanism (or a machine) that is controlled or monitored by computer-
based algorithms. See https://en.wikipedia.org/wiki/Cyber-physical_system for a definition of a
cyber-physical system.
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2. A content set: encoding the possible knowledge produced by the information
such as measurements or estimations of physical parameters, decisions,
hypothesis, etc.

3. An input-output relational function: producing the mathematical or physical
model representation associating the input elements with the produced informa-
tion contents

An information element is always informative about something, being a compo-
nent of the output or result of the informative relation.3 In fact, having the sole
information content isn’t enough to make an input object/event as an informative act;
the information meaning as an entity (definition set, informative relation, content set)
must be perceived to make the “information” informative. This aspect has already
been pointed by Stonier [9]: “we must not confuse the content reading and/or
interpretation of information with information itself.”

An information element is called exhaustive if and only if the content set contains
all possible outcomes produced by the informative relation. This property, related to
the information content set, is also called the closed world assumption. Otherwise,
the information is said to be operating under the open world assumption.

Another important property is also used to characterize an information element:
exclusivity. In fact, an information element is called exclusive if and only if two
different information contents cannot be simultaneously produced as the outcome of
the informative function.

Consider, for instance, the case of a digital image. In this case, if we consider the
digital image as a 2D array representing gray levels, then what is considered is not
information but just a kind of abstract data (i.e., observed pixel gray levels). This
abstract data becomes a full information element when it is associated with the basic
objects we are imaging as well as with the physical model leading to obtain the

Fig. 1.1 Basic information element structure

3A relation between two sets is a collection of ordered pairs containing one object from each set. If
the object is from the first set and the object is from the second set, then the objects are said to be
related if the ordered pair is in the relation. A function is a type of relation. But, a relation is allowed
to have the object in the first set to be related to more than one object in the second set. So a relation
may not be represented by a function machine, because, given the object to the input of the machine,
the machine couldn’t spit out a unique output object that is paired to.
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digital image (i.e., the physical process used by the imaging sensor). In Fig. 1.2,
image information elements of the Québec City are given using two imaging
modalities (i.e., two distinct informative physical functions: radar imaging and
optical panchromatic imaging).

The knowledge of the informative function is crucial for all information
processing tasks that some call as “intelligent” tasks like scene interpretation,
information fusion, data/knowledge mining, etc. For example, in remote sensing,
let us imagine that a resolution cell (i.e., input object) is “observed” as having a zero
gray level (i.e., information content). The interpretation of this cell in terms of its
thematic contents (i.e., giving a semantic meaning to the observed gray level) cannot
be conducted if the physical model of the sensor is not known. If the used sensor is an
imaging radar, then, the resolution cell contents can be interpreted as being a flat
surface or may correspond to a shadow area. On the other hand, if the imaging sensor
corresponds to a given spectral band in multispectral imaging, then the resolution
cell thematic content corresponds to the content absorbing the emitted electromag-
netic signals in the considered spectral band. From this example we can easily
understand that the adjunction of the physical model (i.e., informative function)
and the resolution (i.e., input element) makes the essential difference between data
and information.

If we go further in this explanation, we can easily understand the difference
between “generic” data processing techniques and what can be called “knowledge-
based” processing techniques. To illustrate this idea, we can simply imagine the
difference between classical image filtering techniques and filtering techniques
adapted to speckled images (radar, sonar, ultrasound, etc.). In fact, the knowledge
incorporated in speckled images filtering techniques corresponds to the mathemat-
ical modeling of the physical model exploited by the imaging sensors (i.e., a
multiplicative Rayleigh noise). Moreover, the explicit positioning of the informative
function within the basic information element structure clarifies the concept of
information partiality or incompleteness (i.e., the information does not capture all

Fig. 1.2 Remote sensing examples of information using two informative functions (active radar
imaging and passive panchromatic imaging functions)
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relevant aspects of a phenomenon, an entity, or an input object). In fact, considering
a sensor-based information element and since a sensor exploits a specific physical
process in order to extract one or several “facets” of the observed objects, then the
huge informative aspects of an observed object will be restricted to those acquired
through the “physical” window of the considered sensor. For instance, the spectral
signature of objects is only measured in few small spectral bands in a multispectral
imaging system. In radar imaging systems, this partial sensor vision is related to the
frequency, polarization, and geometrical acquisition configuration used by the
sensor. As a direct consequence, and to overcome information incompleteness, the
use and the development of information fusion systems are very desirable and even
become crucial.

It is important to notice that this information element definition and structure are
extremely general and can be applied to all types of encountered information
elements: sensor issued information, data transformation information, feature extrac-
tion information, decisional information, etc.

1.2.2 Intrinsic Information Imperfection Types

Information imperfection usually arises at the early stages of the development of
information processing systems, since it pervades the description of the domain or
the real-world situation. It can be considered as the multifaceted concept character-
izing the fact that a considered information element lacks fulfilling a predefined
targeted objective. Most efforts for handling imperfect information have focused on
“modeling” imperfections and on “processing” imperfect information elements
through mature mathematical theories and approaches.

Quality of information (QoI) [10] provides the foundation and the reasoning
framework for the conception, design development, operation of information
processing, and fusion systems. Considerable research on studying and classifying
various quality aspects into broad categories has been conducted. Wang and Strong
[11] have classified QoI into four major categories: intrinsic, contextual, represen-
tational, and accessibility.

In the framework of information processing systems, QoI is addressed at only two
levels: intrinsic and contextual levels. The intrinsic level concerns information
characterization in terms of imperfection nature, interpretation, and modeling
while considering the information element as an “independent” entity out of the
global fusion context, whereas the contextual level concerns the information char-
acterization in terms of its impact, completeness, relevance, conflict, redundancy,
etc. within the global fusion context.

From an intrinsic point of view, various sources of imperfections are encountered
ranging from the early input definition to the content outcome of the information
element (including the nature of the informative function, or relation, as well as the
available external sources of knowledge used by the information element).
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Consider the information element I ¼ (Θ, X, Ω) of Fig. 1.1, where Θ (resp. Ω)
denotes the definition (resp. content) set and X the informative relation. Imperfection
modeling is studied in terms of impact of different information imperfection sources
on the information content outcome. Three major intrinsic imperfection types are
considered: uncertainty, imprecision, and ambiguity.

I. Uncertainty: Most information processing systems efforts are concerned with
adequate modeling of information uncertainty, which is the result of noisy,
imprecise, erroneous or ill-suited to the problem data, ambiguous observations,
and incomplete and poorly defined prior knowledge [12].

Assume the two following conditions hold:

1. The informative relation, X, is a punctual outcome relation (i.e., one information
content, xTrue from Ω is produced by X).

2. The set of information contents Ω is exhaustive and exclusive (i.e., the informa-
tion content produced by X is unique and certainly belongs to Ω).

The information is said to be affected by uncertainty, if and only if the true
information content xTrue is unknown with certainty. The main objective of uncer-
tainty imperfection modeling and processing is to represent and to deal with this lack
of knowledge and to “determine” with total certainty the unknown true content
outcome of the considered information (the class of an observed object, the decision
to consider, etc.). Two major approaches are used to model and to process uncer-
tainty type of imperfection: probabilistic and evidential approaches. Given that
uncertainty affects punctual outcome informative functions and relations, both
probabilistic and evidential approaches consider the total certainty as having a
global measure of unity. Depending on the available knowledge concerning the
true information content, xTrue, both approaches differ in the way this global measure
is distributed into different elements from Ω.

The probabilistic approach makes a “punctual certainty distribution” of the unity
total certainty on different information contents (i.e., each information content, x2Ω,
called a singleton, captures a partial amount of certainty Pr{x} where different Pr{x}
add to one). Pr{x} is interpreted as the probability that x is the true information
content. An information element I ¼ (Θ, X, Ω) affected by uncertainty type of
imperfection and for which a probability distribution of uncertainty is available is
called a probabilistic information.

The evidential approach (based on belief functions theory [13]) constitutes an
excellent alternative to the probabilistic approach when the available knowledge
does not allow making a punctual certainty distribution. In fact, evidential approach
is based on making a “subset certainty distribution” of the unit total certainty on
different subsets of Ω (i.e., each information content subset, A ⊆ Ω, captures a
partial amount of certainty m(A) with different m(A) add to one). m(A) is interpreted
as the mass of belief that the true information formation content xTrue is in A. An
information element I ¼ (Θ, X, Ω) affected by uncertainty type of imperfection and
for which a mass distribution of uncertainty is available is called an evidential
information.
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Notice that the probabilistic approach can be considered as a special case of the
evidential approach. Relaxing the punctual certainty distribution constraint, by the
evidential approach, gives a “practical” dimension and a “facility” of knowledge
representation. Nevertheless, this relaxation reduces the precision and the quality of
information processing results when compared to the probabilistic approach.

II. Imprecision: Imprecision type of imperfection is an issue pertaining to the
intrinsic quality of information. It refers to the case where the available knowl-
edge about the true information content is available as a subset Ω1 of the
information content set Ω (i.e., xTrue2 Ω1 ⊆ Ω). In this case, the information
I ¼ (Θ, X, Ω) is called an imprecise information. Therefore, imprecise informa-
tion involves the lack of precise knowledge of the information content and, thus,
should not be considered as erroneous. In the decision-making domain, impre-
cision represents the uncertainty as “a state of mind” of an agent which does not
possess the needed information or knowledge to make a precise decision; the
agent is in a state of uncertainty: “I’m not sure that this object is a table”
[14]. Special kinds of imprecise information include:

• Disjunctive information content subset (e.g., John’s age is either 31 or 32, the
class of the object is either C1 or C2, etc.).

• Negative information content subset (e.g., John’s age is not 30, etc.).
• Range information content subset (e.g., John’s age is between 30 and 35, or
John’s age is over 30).

• Error Margins content subset (e.g., measured missile range is 100 � 5 Km).

The two “boundary” kinds of imprecision are precise information (i.e.,
Ω1 ¼ {xTrue}), and null (also called missing data or total ignorance) information
(i.e., Ω1 encompasses the entire set of possible information content Ω). Notice that
imprecise information is generally associated with an accuracy measurement quan-
tifying the closeness of agreement between the information produced outcome (i.e.,
Ω1) and the true information content, xTrue. From an information processing point of
view, an imprecise information is considered as a special case of evidential infor-
mation where the total certainty is attributed to the subset Ω1 (i.e., m(Ω1)¼ 1, and m
(A) ¼ 0 for all A 6¼ Ω1).

Remarks

• The aim of information processing approaches when dealing with both forms of
imperfection (imprecision and/or uncertainty) is mainly to determine the unique
true information content xTrue with the highest precision and certainty degrees.

• Imprecision is often confused with uncertainty because both imperfection types
are related to the same root (i.e., originated by punctual informative function
where the “unique” true content is unknown: precisely, case of imprecision; or
certainly, case of uncertainty). Also, both imprecision and uncertainty can be
present at the same time, and one can cause the other. It is important to be able to
tell the difference between these two antagonistic concepts, even if they can be
included in a broader meaning for uncertainty (knowing that xTrue2 Ω1 ⊆ Ω
does not imply the precise and certain knowledge of xTrue). To illustrate the
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difference and potential “mixture” between imprecision and uncertainty, consider
the following two situations:

1. Paul has at least two children and I’m sure about it.
2. Paul has three children but I’m not sure about it.

In the first information, the number of children is imprecise but certain; whereas,
in the second information, the number of children is precise but uncertain [15].

III. Ambiguity: Literally, information is said to be ambiguous if it is unclear what
the information refers to the fact that it can be interpreted in several ways or that
its truth or validity is not totally verified. From an informational point of view
and assuming that the information content setΩ is exhaustive, then two types of
ambiguity are encountered:

• Non-specificity: i.e., multiple content outcomes are produced simultaneously
by the informative function.

• Partial truth: i.e., the information content is partially produced.

L. Zadeh [16] has proposed to model this imperfection type as a fuzzy set defined
on the information content set, where each content outcome x is associated with a
membership value μ(x)2[0,1] representing the “strength” or the “truth” of production
of the outcome x by the informative function: μ(x) ¼ 0 means that x is not produced
(obtained or concerned); and μ(x) ¼ 1 means that x is fully produced.

An information element I ¼ (Θ, X, Ω) affected by the ambiguity type of
imperfection and for which a membership function μ(.) is available is called an
ambiguous (or fuzzy) information. Notice that in this case, it is nonsense to deter-
mine single information content. Therefore, the major objective of the application of
fuzzy concepts is to combine and to conduct the fusion of multiple ambiguous
information elements.

1.3 Possibilistic Information Concept

A particular situation, of high importance, where “hybrid” forms of imperfections is
frequently encountered. This concerns the case where the information element is
affected by the uncertainty imperfection type (i.e., having a punctual informative
function where the true output xTrue is unknown with certainty), but the available
knowledge about xTrue is “weaker” than probabilities (subjective knowledge, ambig-
uous, etc.). In this case, each content outcome x is associated with a possibility value
π(x)2[0,1] representing the possibility strength that the outcome x to be the unique
true information content. This type of information imperfection is called epistemic
uncertainty, and the associated information element is referred as a possibilistic
information [4]. A practical feature of possibility theory that is worth emphasizing is
its interest for modeling uncertainty as well as preferences. This theory is detailed in
the next chapters.
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Chapter 2
Fundamental Possibilistic Concepts

2.1 Introduction

In the real-world problems, it is impossible to avoid uncertainties. Uncertainty
sources are diverse: incomplete domain knowledge, noisy and conflicting data,
incomplete information, linguistic imprecise and ambiguous knowledge, etc. Up to
middle of the twentieth century, most theoretical advances were devoted to the
theory of probabilities. The second half of the twentieth century was very prolific
for the development of new theories dealing with uncertainties [1, 2]. One of these
theories is possibility theory [3, 4] that was introduced to allow reasoning to be
carried out in the framework of a vague knowledge about the uncertainties. In fact,
possibility theory can be described as a collection of techniques centered on the
concept of a possibility distribution used for the representation and manipulation of
the ambiguous or vague knowledge about the encountered uncertainty. In this
chapter, the fundamental concept of possibility distributions is detailed in terms of
its definition, its informative facets, and its different distribution models. Two
important concepts are also detailed: the discounting concept (allowing to adjust a
possibility distribution in order to take into consideration some external reliability
knowledge) and the extension principle that allows to compute the new possibility
distribution resulting from the projection of the set of alternatives using a determin-
istic extension projection function. Different operators allowing the merging of
several possibility distributions are then detailed. Two set measures allowing to
characterize subsets occurrence (i.e., possibility and necessity measures) are defined
and their different characteristics are expressed. An important issue detailed within
this chapter is related to subnormal possibility distributions where the available
ambiguous knowledge is inconsistent.
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2.2 Possibility Distributions Concept

In a similar way to all theories dealing with uncertainty, through possibility theory,
the estimation of the tendency, or likelihood, of the occurrence of an elementary
event (i.e., singleton) is represented by a possibility distribution (π � d ) depicting
our state of knowledge of what is plausible from what is less plausible. The π � d
shows the graded partial belief of the occurrence of an elementary event ranging
from “0” (for impossible ones) to “1” (for absolutely possible ones). Namely, let Ω
denote a finite set of mutually exclusive alternatives that are of concern to us
(diagnosis, hypothesis, classes, decisions, etc.). This means that in any situation,
one and only one of these alternatives, called the true alternative, occurs at a time,
and thatΩ contains all potential alternatives that may occur.Ω is called reference set,
universe of discourses, frame of discernment, decision set, set of alternatives, set of
states of the world, etc. In this document, Ω will be called the set of alternatives.
Each element x from Ω is called: elementary alternative, basic hypothesis, elemen-
tary decision, state of the world, singleton, etc. In this document, x will be simply
called an alternative.

2.2.1 Defining a Possibility Distribution

Let Ω denote a finite set of mutually exclusive alternatives, where the unique
occurring alternative, i.e., the true alternative, is unknown. This, in fact, resumes
the uncertainty type of information imperfection where we face the problem of
“discovering” or identifying the identity of the true occurring alternative. A possi-
bility distribution π, defined on the set of alternatives Ω, is a point-wise mapping
from the set Ω into the unit interval, i.e.,

π : Ω ! 0, 1½ �
x ! Poss xf g ¼ π xð Þ

The value π(x) is interpreted as being our degree of belief or as representing a
flexible restriction (i.e., a constraint) of the value of x on the set of alternatives Ω. It
shows the graded partial belief of the occurrence of different alternatives with the
following conventions:
• π(x) ¼ 1 means that the alternative x is believed to be fully possible (i.e., the

occurrence of x is totally compatible with the knowledge available about Ω).
• π(x) ¼ 0 means that the alternative x is believed to be fully impossible to be the

true alternative (i.e., the occurrence of x is totally incompatible, or in a total
contradiction, with the knowledge available about Ω).

• π(x) ¼ p2]0,1[ indicates that the alternative x is considered as having a partial
possibility to degree p of being the true occurring alternative.
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• π(x1) > π(x2) means that x1 is a preferred alternative to x2 for being the true
alternative.

Note that:
• Most of the authors “impose” a normalization condition to the possibility

distribution meaning that at least one alternative should be fully possible (i.e.,
∃x02Ω: π(x0) ¼ 1). In this case, the possibility distribution is referred to as
being normal. Otherwise, the possibility distribution is called subnormal, i.e.,
8x2Ω: π(x) < 1 (subnormal distributions will be discussed in detail later in this
chapter).

• The unit interval [0, 1] of π may be replaced by any linearly ordered, possibly
finite scale.

• As possibility distributions are defined over basic alternatives (also called single-
tons) and not on the events (i.e., not on subsets of Ω), they are called point
functions.

• A possibility distribution, π, could be viewed as describing possible values that
could be assigned to some unknown variable X taking values in the finite set of
alternatives Ω ¼ {x1,. . ., xN} and assuming that X represents a possibilistic
information. The unique true alternative is known through the possibility distri-
bution π which acts as an elastic constraint on the alternatives that can be assigned
to X. Therefore, π(x) represents to what extent it is possible that x is the true
alternative: π(x) ¼ Poss{X ¼ xTrue}.

• (X, π) is called a possibilistic variable.

The two extreme forms of knowledge, i.e., the complete knowledge and the total
ignorance, are simply modeled by the two following possibility distributions:
• Complete knowledge, CK, (i.e., the occurring true alternative xTrue is known):

πCK xTrueð Þ ¼ 1 and πCK xð Þ ¼ 0, 8x 6¼ xTrue

• Total ignorance, TI, (i.e., total lake of knowledge concerning the occurring
alternative):

πTI xð Þ ¼ 1, 8x 2 Ω:

A possibility distribution π defined on the set of alternatives Ω such that π(x) > 0
for all x2Ω is called nondogmatic as it does not definitely exclude any alternative
x from Ω (all x2Ω are considered as being possible alternatives). The height of a
possibility distribution π, denoted by h(π), is the highest possibility value taken by
different alternatives:

h πð Þ ¼ max x2Ω π xð Þf g

The core of a possibility distribution π, denoted by Core(π), is defined as the subset
of fully possible alternatives:
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Core πð Þ ¼ x : x 2 Ω, π xð Þ ¼ 1f g

In general, a possibility distribution π defined on a set of alternativesΩ vehicles three
main informative knowledge facets (Fig. 2.1).

1. The domain of possible, Supp(π), is also called the support of the possibility
distribution. In fact, the set of alternatives Ω is partitioned into two domains: the
domain of possible containing alternatives having a possibility degree different
from zero (i.e., Supp(π) ¼ {x2Ω such that π(x) > 0}) and the domain of
impossible Ω/Supp(π) ¼ {x2Ω such that π(x) ¼ 0}.

2. Possibilistic ordering: The second informative source of knowledge is related to
relative possibility degrees attributed to different alternatives. In fact, considering
two alternatives x1, x22Ω for which the possibilistic source of information has
attributed the two possibility degrees π(x1) and π(x2). Besides the importance of
the values of the possibility degrees attributed to both alternatives, the fact that
π(x1) > π(x2), for instance, encapsulates a relevant informative aspect for which
the possibilistic source of knowledge “considers” the occurrence of the alterna-
tive x1 as more credible than the alternative x2.

3. Inconsistency: The third informative source of knowledge encapsulated in a
possibility distribution is its degree of inconsistency defined as:

Inc πð Þ ¼ 1� h πð Þ

(Inc(π)2[0,1]), where h(π) indicates the height of the possibility distribution (i.e., the
highest possibility degree). In fact, this element reflects the degree to which the
possibility distribution can confirm, or not, if at least one of the alternatives is fully
possible to occur. Unfortunately, this important informative knowledge source
element simply “disappears” when a possibility distribution is normalized (forcing,
thus, to have at least one alternative to be fully possible).

2.2.2 Possibility Distribution Models

Different types of encountered possibility distributions are detailed in this section.
Each type is assumed to model a given form of the available knowledge about the
identity of the true, unique but unknown alternative from Ω.

h(π)

1

Supp(π)
Ω

Inc(π)

π

Fig. 2.1 Informative facets
embedded in a possibility
distribution
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(A) Imprecise type possibility distribution Imprecise information on the set of
alternatives Ω, assumed to be exhaustive and the alternatives are mutually exclusive
(i.e., one and only one alternative occurs at time), is defined as an uncertain
information for which the knowledge about the true alternative is expressed as a
subset A ⊆ Ω. This type of information is frequently encountered and is more
natural than giving a “point” alternative. Some examples of imprecise information
are encountered when an expert claims that the true value x lies within the interval
x0 � Δx or when a physician declares that the patient’s illness is certainly one out of
a subset of mutually exclusive illnesses.

The following distribution, called imprecise information possibility distribution,
allows representing easily this type of information (Fig. 2.2a):

π : Ω ! 0, 1½ �

x ! π xð Þ ¼ 1I Að Þ ¼
1 if x 2 A

0 if x =2 A

(

where 1I (A) denotes the classical algebraic characteristic function of the subset A.
Nevertheless, imprecise information possibility distributions are too restrictive. In
fact, claiming that π(x) ¼ 0 for some x =2 A means that x is fully impossible to occur.
This is too strong for the expert who is then tempted to give a wide uninformative
interval support of π. It is worthwhile to notice that this type of possibility distribu-
tions assumes binary values and doesn’t offer the possibility to express partial
degrees of possibility.

(Β) α-Certain imprecise type possibility distribution An imprecise information
with a certainty factor α, (also called α-Certain imprecise information) is an impre-
cise information where the available knowledge about the true alternative is
expressed as a subset A ⊆ Ω associated with a certainty level of trust α2[0,1]
concerning the occurrence of A, for instance, the information delivered by a
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Fig. 2.2 Some types of imprecise type possibility distribution functions. (a) Imprecise information,
(b) α-Certain imprecise information
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physician declaring that the patient’s illness is certainly one out of the two mutually
exclusive illnesses {H1, H2} and that he is 90% sure. In this case, A¼ {H1, H2} with
a certainty factor α ¼ 0.9. The possibility distribution modeling this type of
information has been suggested in [5] as follows (Fig. 2.2b):

π : Ω ! 0, 1½ �
x ! π xð Þ ¼ max 1I Að Þ, 1� αf g

which expresses that the “remaining trust,” i.e., 1 � α, will be considered as the
possibility degree that the true alternative lies outside A.

(C) Epistemic type possibility distribution The objective of a possibilistic assess-
ment is to produce a measure of the degree to which the available/acquired
knowledge supports each alternative in the set of alternatives Ω. The result of
this assessment is a possibility distribution. In several cases, the available knowl-
edge about the true alternative is given as a constraint defined in terms of a “fuzzy
concept” defined on Ω. It is important to notice that the concept of possibility
distributions is closely related to that of fuzzy sets. Let Ω denote an exhaustive set
of mutually exclusive alternatives, on which a fuzzy evidence A is defined, and
denote μA(x) the corresponding membership function:

μA : Ω ! 0, 1½ �
x ! μA xð Þ

Assuming that A is the available knowledge about the true occurring alternative,
the question is then: “How can we obtain a possibility distribution on the set of
alternatives?”

L. Zadeh [3] has formulated the so called possibility postulate which may be
considered as the basis for a possibilistic interpretation of the fuzzy evidence:

Possibility postulate In the absence of any information regarding the true alterna-
tive from Ω than that conveyed by the fuzzy evidence A, then, μA(.) induces a
possibility distribution πA(x) which equates the possibility for an alternative x2Ω,
be the true one, to the grade of membership μA(.).

Example Assume that we are to assess the possibility of the occurrence of a
number from 0 to 10 given that the available evidence is that the number is small
(Fig. 2.3).

Since we know that the compatibility of the concept Small with the number “4” is
0.6, μSmall(4) ¼ 0.6, we conclude that the occurrence possibility degree of 4 is
considered as being 0.6. By a similar argument, the possibility of 0, 1, 2, and 3 is
1 and of the numbers greater than 5 is 0. Notice that the membership function, μA(x),
is viewed as computing a degree of assurance, certainty, or possibility that an
alternative x2Ω satisfies the property of being a member of the fuzzy set (or the
ambiguous piece of information) defined by μA. Therefore, if we were to select a
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given x2Ω as being the true alternative, we would be only certain to a degree μA(x)
that x satisfies the aforementioned ambiguous information. For instance, if our goal
is to know the exact height of Peter, and we only know that Peter is Tall, then the
possible values of Peter’s height are restricted by the possibility distribution associ-
ated with the fuzzy set Tall and defined by (Fig. 2.4):

πPeter’s height xð Þ¼def μTall xð Þ

It is crucial to understand that the values duplication (i.e., πPeter’s
height(x) ¼ μTall(x)) is to be positioned at the numerical and not at the semantical
level. In fact, μTall(x) reflects the compatibility of one “feature” of persons (here, the
size) with the fuzzy property Tall. This compatibility value is extended (or projected)
to become representing the possibility degree for a given size to be the true one for a
given person. An interesting example in mammographic image interpretation can be
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Fig. 2.3 Epistemic possibility distribution assessment
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considered (Fig. 2.5). In this example, physicians express their knowledge describ-
ing normal and tumor tissues by characterizing these tissues as being “observed” as
dark and bright pixels in mammographic images.

Notice that this description represents two fuzzy sets (dark and bright) defined on
the observed gray levels definition set. The membership functions of these fuzzy sets
constitute the epistemic constraints allowing to define the possibility degrees for an
observed pixel to belong to a normal or to a tumor tissue.

It is worthwhile to mention that all standard types defining membership function
and representing the fuzzy constraints (i.e., triangular, trapezoidal, Gaussian,
singleton-based, piecewise linear, etc.) can be applied for the definition of the
epistemic type possibility distributions.

(D) Qualitative possibility distributions Experts frequently meet difficulties in
providing precise numerical values of possibility degrees. It seems, thus, more
natural for them to give an “order relation” between different alternatives of the
universe Ω.

Consider a finite universe of alternatives Ω ¼ {x1, . . ., xN} and an ordered scale
ℒ ¼ {a0 ¼ 1, a1, . . ., aL, aL + 1 ¼ 0} such that a0 ¼ 1 > a1 > � � � > aL > aL + 1 ¼ 0. A
qualitative possibility distribution is defined as a function associating to each
alternative (from the universe Ω) an element a 2 ℒ (from the ordered scale ℒ)
enabling, thus, to express that some alternatives are “more possible” than others
(without referring to any numerical value, and this, makes the difference with other
quantitative possibility distributions setting. In other words, assigning “qualitative”
values ak as possibility values (i.e., π(xn) ¼ ak) implies alternatives ranking impor-
tance representation rather than pure numerical possibilistic degrees. However, we
can derive an infinity of quantitative possibility distributions from a qualitative one.
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(Tumor)

Epistemic constraints
characterizing different classes

x
mDark(x)

mDark mBright

mBright(x)
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Fig. 2.5 Possibility distribution functions associated with normal tissue and tumor classes in
mammography
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