Kiran R. Golwalkar

Integrated Maintenance and Energy Management in the Chemical Industries

Integrated Maintenance and Energy Management in the Chemical Industries

Integrated Maintenance and Energy Management in the Chemical Industries

Kiran R. Golwalkar Consulting Chemical Engineer Nagpur, Maharashtra, India

ISBN 978-3-030-32525-1 ISBN 978-3-030-32526-8 (eBook) https://doi.org/10.1007/978-3-030-32526-8

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Dedicated to those maintenance and operating technicians who work hard in a spirit of cooperation for the safe, pollution free, and efficient running of the chemical industries.

Preface

Chemical industries provide many essential products for meeting the daily requirements of the citizens and also for the economic growth of a country.

Managements run the chemical industries successfully by meeting the product quality and delivery schedules specified by the clients while operating safely and efficiently without causing environmental pollution.

It is well known that the cost of production depends on the yield of raw materials, smooth working of the plant, energy consumption, and recovery. However, it is very difficult to control the cost of raw material which depends on the availability as per specifications and certain external factors like weather conditions, transport bottlenecks, power tariff, etc.

Hence, it is very important to have an efficient integrated maintenance and energy management for ensuring smooth, efficient running of the chemical plant which can reduce the cost of production. It is also very important to keep in mind that the selling price of products will depend on the competition in market.

A large number of chemical industries need considerable energy (mainly electrical and thermal) for carrying out various operations like handling and pre-treatment of raw materials, operation of the reactors, further processing (purification) of crude products, and safe disposal of any hazardous waste generated. Senior engineers should look into all these activities carefully for reducing the need for energy.

The operating cost of the process units and machinery can thus be reduced by integrated maintenance and energy management (minimising losses, conservation of energy, and maximising recovery from process streams).

Conflicting Priorities

Important departments of the industry such as purchase and sales, production plants, maintenance section for process units and machinery, stores (inventory control), and utility arrangements (water, power, and fuels) face different situations and have

viii Preface

their own priorities in their working areas. Human resources, research and development, logistics, and finance also have their own priorities.

However, priorities of these departments/sections may not be concurrent.

Managements shall prepare guidelines and instructions for these various departments so that all of them understand each other's difficulties and work in close cooperation to meet the common goal of successful running of the organization while ensuring safety in all activities.

Revenue Allocation

The revenue obtained by sale of products shall be judiciously allocated to procure (i) necessary raw materials and other inputs; (ii) spares for maintenance of process units, plant machinery, energy recovery units and facilities for effluents treatment; (iii) wages to employees; (iv) provision for depreciation of equipments; (v) expenses on research and development; (vi) taxes to statutory authorities; and (vii) payment to investors.

Managements of running plants also have to consider and take decisions for:

- Acquiring idle plants (which may be available at low cost) and reviving them
- · Expansion of production capacity to meet increased demand
- Diversification to new products for increasing the presence in market
- Modernisation of existing process plants for improving efficiency
- Making certain changes in the plant for safer working and/or better pollution control

Suggestions can be generated in-house after consultation with various departments for all of the above to get improved design or better construction of processing units.

This book gives guidelines for:

Integrated Maintenance: Planning and Implementation

(Very important for a safe, efficient plant which does not cause environmental pollution):

(i) Assistance for preparing purchase orders for process units and machinery (see below), (ii) ensuring safety of human beings and plant assets, (iii) assistance to increase equipment life, (iv) guidance for operating the plant within safe limits as recommended by OEM, (v) regular condition monitoring of equipments and preventive maintenance, (vi) analysis of breakdowns, (vii) arranging timely repairs, (viii) replacement of components by procuring correct spares, (ix) planning for major maintenance jobs and safe procedures for all activities

Procurement activities: classification of process units, materials and machinery

• Capital equipments such as process units and machinery

Preface ix

• Process inputs such as *raw materials*, *catalysts*, *stabilisers*, *tower internals*, and *filter aids*

• Equipments related to energy and utilities such as waste heat recovery boilers, steam turbine/gas turbine driven generators, electrical motors, and refrigeration plants

Maintenance engineers have the responsibility to maintain the chemical plant so that it can work in a safe, smooth, pollution free, and efficient manner.

Their jobs involve not only looking after machineries like pumps, compressors, conveyors, and electrical equipments but also working in close cooperation with process operation engineers and plant operators for the cleaning of process units like reactors, converters, evaporators, and absorption towers, thorough inspection of their internals, and repair/replace the faulty units.

This may require entering inside such processing units and remain there for several hours for cleaning, inspection, and repairs till the units are ready for restart.

Assistance to Plant Management

The senior management must involve chemical process engineers along with maintenance engineers when selecting the process technology and machinery when a new plant is set up, an idle plant is revived, or an existing plant is diversified.

These engineers have to apply their knowledge and experience to check whether the process units and machinery will be able to deliver the required performance in terms of rated capacity per day and total production per annum (which depends on total running time per year), while handling the various chemicals in severe operating conditions. The design and construction of the equipments should be carefully checked during the procurement of machinery itself so that deterioration of performance shall not occur (less output, not able to meet quality, development of unsafe conditions) during operation of the plant and heavy costs are not incurred due to frequent breakdowns.

The required performance, necessary features, material of constructions, operating conditions etc shall be frozen and clearly mentioned in the inquiry document for process units and machinery.

Drafting the purchase orders: terms and conditions to be included

For a new plant: safe, efficient process units and machinery with proper conditions for performance guarantees for output and environmental pollution control

Expansion/diversification of existing plant: possibility for improving the plant layout, better process control by the use of appropriate *well-maintained* instrumentation, maximising energy efficiency

(Terms and conditions for performance guarantee for the machinery must be specified in the purchase order and agreed upon by the supplier. Include terms and conditions for annual maintenance contract also if required.)

x Preface

Maintenance of Plant:

• Process units along with their internals (absorption tower internals, filter cloth, etc.)

- Machinery essential for the safe and smooth operation
- Effluent treatment facilities for controlling environmental pollution
- Important electrical equipments such as transformers, motors, rectifiers
- Instrumentation and civil works

Inventory Control

Keeping adequate stock of essential inputs required for process units, Effluent treatment Plant

Maintaining sufficient spares for machinery in the plant

Energy Management: Maximizing Energy Efficiency

- Reduction of consumption by improving the plant layout, for easier handling of procurement of the right materials
- Minimisation of losses of energy by better refractory lining and insulation
- Evaluation of potential for energy recovery
- Selection, operation, and maintenance of efficient heat recovery equipments
- Cogeneration (power and heat)

Useful tips are also given for (i) increasing life of plant units, (ii) good lubrication of machinery, (iii) reducing vibrations in running units for better performance, and (iv) repairs to protective lining of process units.

These tips are useful as they can minimise the breakdowns and hence can reduce energy losses (which occur during frequent stop and restart of the plant).

The main aim of the book is to acknowledge the responsible hard work put in by the maintenance teams of various disciplines and to create an understanding among production, marketing, finance, and human resources departments to work in cooperation.

The book also aims to highlight the management of (i) maintenance of process units and their internal equipment *and* (ii) maintenance of the machinery used in the plant *for* (iii) safe and smooth operation thereby maximising energy efficiency of the production unit without causing environmental pollution.

The book thus aims to highlight the **Integrated Maintenance and Energy Management** for the successful running of a chemical plant.

This book has therefore been written in a simplified manner for a better appreciation of the practical situations by the readers (who could be plant managers, fresh engineers, and students of chemical, mechanical electrical, and industrial engineering).

Preface xi

Suggestions are welcome from the readers for including more information and improving the book further.

Nagpur, Maharashtra, India

Kiran R. Golwalkar

Acknowledgement

I am grateful to the following executives:

Mr Michael Luby, Senior Publishing Editor, Engineering (Springer Science + Business Media) New York, USA, for the permission to refer the following books published by Springer for information related to waste heat recovery boiler, steam turbines, electrical systems, converters, procurement of equipments, safety matters, cooling towers, history cards, etc.

- 1. Process Equipment Procurement in the Chemical and Related Industries
- 2. Production Management of the Chemical Industries

Mr Brian Halm, Project Coordinator, Springer Science+Business Media, New York, USA, for the support and guidance *in writing the present book*.

I am also especially grateful to **Mr Peter Shyamal N.**, Production Editor (Books), Springer Nature, SPi, Chennai (India), Mr Arun Pandian and Ms Priyanka for their support to complete this book.

I wish to thank the managements of the following organisations for providing the permissions to use the data and information related to their products:

- 1. SKG Refractories, MIDC Industrial Area, Butibori, India
- 2. Evergreen Technologies, Mumbai, India
- 3. V K Engineers, MIDC Tarapur, India
- 4. Calderys India Refractories Ltd, Mount Road, Sadar, Nagpur, India

Many useful suggestions were received from my colleagues, seniors, vendors of process units, machinery, and energy recovery units and the technicians who operated and maintained them. These have also been used while writing this book. I thank all of them.

I thank my students Chirag Thakur and Ms Shruti Bhoyar, who were helpful in writing this book.

Mr Shripad Paraskar gave sincere support for typing the manuscript and for preparing some drawings.

xiv Acknowledgement

I have referred to my class notes, standard textbooks on chemical engineering, *Chemical Engineers' Handbook*, technical literature advertised by suppliers, and my own experience of working in India and other countries for the procurement, commissioning, operation, and maintenance of various chemical plants.

I have referred to standard textbooks on chemical process industries, *Chemical Engineers' Handbook*, my own classroom notes, and the practical experience gained while working in various capacities for design, modernising, diversification, erection, commissioning, operation, and maintenance of chemical industries in India (GRASIM Industries, Gopalanand Rasayan, Kesoram Rayon, Tanfac Industries, Parksons Dyestuff, IDI Chemicals Ltd, National Rayon Corporation Ltd, SMS Infrastructure, Vidula Chemicals and Manufacturing Industries, V K Engineers, Evergreen Technologies, SKG Refractories, Calderys India, NEAT Consultancy Ltd, etc.), in Kenya (East Africa Heavy Chemicals), Thailand (Thai Rayon Co.), and Indonesia (PT Indo-Bharat Rayon) for writing on various process units, their construction, plant machinery, and their operation and maintenance in various chapters of the book.

Various advertisements by manufacturers of process units, plant machinery, and heat recovery equipments as well as technical discussions with sales engineers, technical representatives, and experienced operating and maintenance engineers of these units have also been used for the present book.

I am deeply grateful to **Respected Mr Michael Luby**, Senior Publishing Editor, Engineering (Springer Science + Business Media) New York, USA, for the permission to refer to the above books published by Springer for matters related to Waste Heat Recovery Boiler, Steam Turbines, electrical systems, converters, procurement of equipments, safety matters, cooling towers, etc and wish to acknowledge the same.

Kiran Golwalkar

Contents

1	Intr	oductio	n to Some Important Chemical Industries	1
	1.1	Introdu	action to Some Important Chemical Industries	1
	1.2	Import	ance of Process Units and Machinery	1
	1.3	Brief I	Description of Some Important Chemical Industries	2
		1.3.1	Manufacture of Sulphuric Acid	2
		1.3.2	Manufacture of 25%, 65% Oleum, Liquid SO ₃ Plants	3
		1.3.3	Manufacture of Papermaker's Alum	4
		1.3.4	Manufacture of Alum	4
		1.3.5	Manufacture of Single Super Phosphate	5
		1.3.6	Manufacture of Caustic Soda and Chlorine	
			by Electrolysis	6
		1.3.7	Manufacture of Nitric Acid	7
		1.3.8	Carbon Di-Sulphide (Electric Furnace Process)	8
		1.3.9	Manufacture of Viscose Rayon (Staple Fiber)	8
		1.3.10	Manufacture of Refractory Bricks	9
		1.3.11	Petroleum Industries	10
		1.3.12	Manufacture of Sugar	11
	1.4	Some 1	Important Equipments in Process Plants	
		Descri	bed Above	11
		1.4.1	Some Typical Process Units and Mechanical	
			Equipments	11
		1.4.2	Typical Essential Features of Equipments Used	
			in Above Industries	12
		1.4.3	Process and Operation which Have Considerable	
			Energy Changes	13
2	Mar	naging t	he Organisation	15
	2.1		l Features of Chemical Industries	15
	2.2		ines from Board of Directors for Integrated Management	16
	2.3		n Management: Aims, Policies and Priorities	16
			Typical Aims	17

xvi Contents

	2.4	Typica	ll Policies	17
	2.5	Typica	ll Priorities	18
	2.6	Integra	ated Management of Chemical Industries	19
	2.7		ar Interactions	20
	2.8	Guidel	lines and Instructions	20
	2.9		on of Policies	20
	2.10		tments in the Organisation	21
		2.10.1	Marketing	21
			Production Units	22
			Safety Department	23
			Environmental Pollution Control	24
			Maintenance Department	25
			Instrumentation	27
			Provision of Utilities	28
			Purchase	28
			Logistics	30
			0 Human Resources (HR)	30
			1 Innovation, Research & Development (R&D)	32
			2 Stores and Inventory Control of Machinery Spares	33
			3 Commercial Matters, Finance, Taxation,	33
		2.10.1.	and General Administration	34
		2 10 1	4 Project Planning, Future Expansion.	35
3	Inte		Maintenance: Aims, Responsibilities and Activities	37
	3.1		al Guidelines.	37
	3.2	Interna	al Discussion among Production	
		and M	aintenance Engineers	38
	3.3	Interna	al Study	38
		3.3.1	Plant Capacity	38
		3.3.2	Operational Safety	39
		3.3.3	Design of Process Units and Machinery	40
		3.3.4	Material Handling Equipment	41
		3.3.5	Essential Matters to Be Written in Purchase Order PO	
			for Project	41
		3.3.6	Plant Layout for Safe Operation and Ease	
			of Maintenance	43
		3.3.7	Performance Guarantee Test	44
		3.3.8	Annual Maintenance Contract	45
		3.3.9	Quality Assurance Plan QAP	45
	3.4	Respon	nsibility of Maintenance Engineers	47
		3.4.1	Useful Suggestions from Maintenance Engineer	48
	3.5		sing Life of Process Units and Machinery	50
		3.5.1	Some Suggestions for Better Life of Process Units	20
		2.2.1	and Equipments	50

Contents xvii

				54
		3.6.1	for Process Units and Internals/Accessories	54
		3.6.2	History Cards of Individual Process Unit	55
		3.6.3	Safety Margin for Higher Stock Level	55
		3.6.4	Considerations for Procurement and Storage	
			of Various Items	56
		3.6.5	Other Necessary Spares for Process Inputs,	
			Equipments, and Auxiliary Items	57
		3.6.6	Product Quality Control (Necessary Inputs	
			for Maintaining Product Quality)	60
		3.6.7	Auxiliary Facilities/Items for Process Plant	60
		3.6.8	Electrical Spares	61
		3.6.9	Refrigeration Units	62
		3.6.10	Diesel Generator Sets	62
		3.6.11	Instrumentation Spares	62
			Cooling System Based on NaOH or LiBr	62
			Heat Recovery Boiler and Economiser	63
			Process Control and Material Testing Laboratory	63
		3.6.15	Disposal of Hazardous Wastes (Please See Appendix	
			(IV) Also)	63
	3.7		1 Production Planning and Operation	63
		3.7.1	General	64
		3.7.2	Maintenance Engineer Can Propose Some Changes	
			in Operating Conditions in Consultation	
		2.7.2	with Production Engineers.	65
		3.7.3	Operation—Dos and Don'ts (Advice Given	67
		274	by Original Equipment Manufacturer)	67
		3.7.4	Some Preventive Steps for Longer Equipment Life	68
		3.7.5	Installation of Special Equipments	68
		3.7.6	Management Support for Innovation, Research	60
		277	and Development	68 69
	3.8	3.7.7	General Guidelines for Maintenance	69
	3.9		Activities of the Maintenance Department	71
			ting for Maintenance Jobs	71
	5.10	_	Observations	71
			Estimate Cost of Maintenance	72
			Contingency	73
	3 11		Typical Accidents and Their Prevention	73
			al Matters/Issues to Be Looked into	74
4			the Process Plant.	77
	4.1		ion Monitoring of Process Units	77
		4.1.1	Some Typical Symptoms	77
		4.1.2	Examples from Some Chemical Industries	80

xviii Contents

	4.2	Likely Reasons for Unsatisfactory Output/Performance	89
		4.2.1 Some Typical Causes for Unsatisfactory Performance	90
	4.3	Typical Conditions Exceeding the Design Values	
		or Recommendations from OEM	91
	4.4	Technical Planning for Maintenance Work	92
		4.4.1 Planning for Maintenance Work	92
	4.5	Examples of some Typical Cleaning Jobs of Process Units	95
	4.6	Record Keeping for Maintenance of Plant Units and Machinery	95
		4.6.1 Typical Operating Conditions	97
		4.6.2 Maintenance History	97
	4.7	Considerations for Further Improvement	98
	4.8	Cost of Maintenance	98
		4.8.1 Direct Costs	98
		4.8.2 Indirect Costs of Maintenance	99
_	TO I		101
5		uning for Maintenance Work	101
	5.1	Coordination of Maintenance Activities	101
		5.1.1 Typical Symptoms Which Indicate Chance	
		of Breakdown	101
	5.2	Check List for Planning of Major Maintenance	102
	5.3	Advancing the Shutdown	103
	5.4	Postponing the Plant Shutdown	104
	5.5	Carrying out Maintenance Jobs In-House	104
		5.5.1 By Own Technicians/Engineers	104
		5.5.2 Through Contractors/Externals Parties	105
		5.5.3 Site Fabrication Jobs (May Be Done Through	
		External Agencies)	106
		5.5.4 Award of Contract for Maintenance Work	106
		5.5.5 Quality Assurance Plan for Contract Work	107
		5.5.6 Conditions to Be Included in a Maintenance Contract	107
		5.5.7 Controversies During Maintenance Work	
		by Contractors/External Parties	107
		5.5.8 Additional Work Given During Execution or End	
		of Contract	109
6	Mai	ntenance of Process Units	111
U	6.1	Material Handling System	111
	0.1	6.1.1 Pneumatic Conveyors.	111
		6.1.2 Electrical Overhead Travelling (EOT) Cranes	111
		6.1.3 Hoists	112
		6.1.4 Belt Conveyors.	113
		· · · · · · · · · · · · · · · · · · ·	113
	6.2	6.1.6 Screw Conveyors	114
	6.2	Crushers, Grinders, Pulverisers	115
		6.2.1 Air Classifier	115

Contents xix

6.3	Units Operating at High Temperatures (Furnaces,	
	Reactors, Oxidisers.)	116
6.4	Process Reactors (Fixed Unit with No Moving Parts)	116
	6.4.1 Reactors with Heating/Cooling Arrangements	117
6.5	Absorption Towers	118
	6.5.1 Observations During Operation	118
	6.5.2 Fibre Bed Mist Eliminators (FBME)	120
	6.5.3 Drying and Final Absorption Towers	122
6.6	Catalytic Converters (Fixed Beds of Catalyst)	123
	6.6.1 Heat Exchange Surfaces	123
	6.6.2 Converter Overhaul	126
	6.6.3 Conversion System with Fluidised Bed	128
6.7	Filter Press FP	128
6.8	Pressure Leaf Filter- (Example: For Liquid Sulphur)	131
	6.8.1 Observation During Running	131
	6.8.2 Maintenance Work	132
6.9	Trombone Coolers	132
	6.9.1 Observations for Trombone Cooler	133
	6.9.2 Maintenance: (Check and Attend)	133
6.10	Shell and Tube Heat Exchangers	134
	6.10.1 Allowable Pressure Drop	134
	6.10.2 Materials of Construction–Typical	135
	6.10.3 Maintenance: Check the Following Thoroughly	135
6.11	Plate Heat Exchangers	136
6.12	Condensers for Volatile Materials	137
	6.12.1 Observation during Operation of Incoming	
	Vapors/Gaseous Streams	137
	6.12.2 General	137
	6.12.3 Vertical Unit	138
	6.12.4 Condenser (Horizontal Units)	138
6.13	Rotary Dryers	138
6.14	Tray Dryers	139
6.15	Hot Gas Filter	139
	6.15.1 Observations to Be Made During Operation	
	of the Plant	140
	6.15.2 Maintenance	140
6.16	Multiple Effect Evaporators	140
	6.16.1 Important Components of a Multiple Effect	
	Evaporation System	141
	6.16.2 Observations to Be Made During Operation	142
	6.16.3 Maintenance Procedure	142
	6.16.4 Items to Be Inspected and Attended	143
6.17	Water Treatment Plants	143
	6.17.1 Main Components of a Typical Water Treatment Plant	144
	6.17.2 Observations to Be Made During Operation	144
	6.17.3 Maintenance	145

xx Contents

	6.18	Sludge	e Settler	145
		_	ollution Control System	146
			Observation on Individual APC Units	146
		6.19.2	Cyclones	147
			Impingement Separators	148
			Bag Filters	149
			Ventury scrubber	149
			Packed Scrubbing Tower	151
	6.20		ed Draft Fans (Rubber Lined)	152
			o Static Precipitators (ESP) – Dry/Wet Type	152
7	Mai	ntenan	ce of Common Machinery, Process Units	
	and	Equipr	nents	153
	7.1	Station	nary or Static Equipments	153
		7.1.1	Chimney	153
		7.1.2	Steel Structural Members: Regularly Inspect	
			and Attend Any Weak Spots	154
		7.1.3	Elevated Storage Reservoirs (ESR)	155
		7.1.4	Vertical Storage Tanks	155
		7.1.5	Horizontal Cylindrical Storage Tanks	157
		7.1.6	Weigh Bridges	158
		7.1.7	Ducts and Piping	158
		7.1.8	Metering Tanks	158
	7.2	Electri	ical Items	159
		7.2.1	Erection and Commissioning Activities (Including	
			Site Fabrication)	160
		7.2.2	Power Required for Operation	160
		7.2.3	Equipments and Facilities to Be Installed	160
		7.2.4	Maintenance of Other facilities	164
		7.2.5	Diesel Generators	165
		7.2.6	Captive Power Generation	165
		7.2.7	Uninterrupted Power Supply UPS	166
	7.3	Rotary	Equipments	166
		7.3.1	Typical Rotary Equipments	166
		7.3.2	Features Required	167
		7.3.3	Type of Speed Control Required	167
		7.3.4	Types of Relief Mechanisms	168
		7.3.5	Installation in Plant	168
		7.3.6	Fans, Blowers, Compressors, Exhausters	168
		7.3.7	Reciprocating Compressor	171
	7.4	Some	Auxiliary Equipments	173
		7.4.1	Typical Effluent Treatment Plant	173
		7.4.2	Dissolvers	175
		7.4.3	Melters, Ball Mills, Ribbon Blenders	176
		7.4.4	Oil Firing System	178
		7.4.5	Rotary Screen	179

Contents xxi

		7.4.6	Pumps for Process Liquids	180
	7.5	Pressu	re Vessels	181
		7.5.1	Classification of Pressure Vessels: Fired and Unfired	181
		7.5.2	Some Examples of Pressure Vessels	182
		7.5.3	Considerations for Procurement of Pressure Vessels	183
		7.5.4	Further Considerations for Design and Fabrication	184
		7.5.5	Materials of Construction (MOC)	185
		7.5.6	Heads for pressure vessels	186
		7.5.7	Checking Fabrication Activities	186
		7.5.8	Documents to Be Available to Plant Engineers	187
		7.5.9	Quality Assurance Plan	188
		7.5.10	Statutory Documents: To Be Made Available	
			to Purchaser by Vendor	189
		7.5.11	Safety Valves	189
		7.5.12	Pre-commissioning Checks	190
			Operation of Pressure Vessels	191
			Additional precautions	191
			Maintenance of Pressure Vessels	192
	7.6	Civil V	Vorks and Their Maintenance	194
		7.6.1	Preventive Steps for Civil Structures and Foundations	194
		7.6.2	Safe Load Bearing Capacity of Soil	194
		7.6.3	Alternative Plant Layouts	194
		7.6.4	Civil Structures and Foundations	195
		7.6.5	Other Civil Works	195
		7.6.6	Observations and Maintenance	196
8	Too	ls and F	acilities for In-House Maintenance	197
	8.1		ging Facilities for In-House Maintenance	197
		8.1.1	Maintenance Tools and Facilities	197
		8.1.2	Dynamic Balancing Machine	198
		8.1.3	Maintenance Tools and Facilities for Process Units	199
		8.1.4	Refractory, Rubber, and Other Linings	200
		8.1.5	Equipments for Fabrication	200
	8.2	Instrur	mentation Control	200
		8.2.1	Introduction	200
		8.2.2	Parameters Generally to Be Measured and Controlled	201
		8.2.3	Procurement of Instruments	202
		8.2.4	Some Special Instruments	202
		8.2.5	Typical Working Principle of Some Instruments	203
		8.2.6	Procure Necessary Accessories	203
		8.2.7	Controlling Instruments	203
		8.2.8	Precautions to Be Taken During Installation	
			of Instruments	204
		8.2.9	Auxiliary Facilities and Equipments to Be Kept Ready	204
		8.2.10	Some Common Reasons for Wrong Indications/	
			Malfunctioning of Instruments	205

xxii Contents

		8.2.11 Corrective Actions	205
		8.2.12 Maintenance of Instrumentation on Regular Basis	206
		8.2.13 Some Typical Thermocouples	207
		8.2.14 Selection of the Thermocouple	207
9	Tria	Runs and Restarts of Equipment After Maintenance Work	209
	9.1	Analysis and Planning for Maintenance	209
	9.2	Mechanical Trials	210
	9.3	Pumps Used in the Plant	210
		9.3.1 Vertical Submerged Pumps	210
		9.3.2 Horizontal Pumps Installed Outside	211
	9.4	Steam Jacketed/Heating Jacketed Pumps, Pipelines and Valves	211
		9.4.1 Reciprocating Pumps	211
	9.5	Metering Pumps	212
		9.5.1 Check Points	212
	9.6	Corrosion and Erosion of Pumps in Chemical Plant	212
	9.7	Filter Press	213
	9.8	PHE (Plate Heat Exchanger)	214
		9.8.1 Checking Before Trial Run	214
	9.9	Air Pollution Control System (Venturi and Packed Tower)	215
	9.10	Wet Electro Static Precipitator WESP	215
		9.10.1 Checking Before Trial Run	215
		9.10.2 Maintenance Check	215
		9.10.3 Wet ESP	216
	9.11	Oil Firing System	216
		9.11.1 Check During Maintenance and Trials Thereafter	216
	9.12	Rotary Screens (for Separation)	217
		9.12.1 Trial Run of Rotary Screens	217
	9.13	Condensers (Check After Maintenance)	218
	9.14	Converter (Check After Maintenance)	218
	9.15	Ball Mill (Maintenance and Subsequent Check)	218
	9.16	ID Fans (Check During Maintenance and Trials Thereafter)	219
	9.17	Melter/Dissolver (Steam Heated with Agitator) During	
		Maintenance and Trials Thereafter	219
	9.18	Heat Exchanger (Check After Maintenance)	219
	9.19	Hoists and Electrically Operated Travelling EOT Crane	
		(Check After Maintenance)	219
	9.20	Belt Conveyor, Bucket Elevator (Check After Maintenance)	220
	9.21	Screw Conveyor (Check After Maintenance)	220
	9.22	Disposal of Waste from Various Units	220
10	Man	agement Approach to Increasing Energy Efficiency	223
	10.1	Erection	223
		10.1.1 Mechanical Trials	223
		10.1.2 Trials of More Machines/Sub-Sections of the Plant	224
		10.1.3 Dry Run of the Plant (Without Feeding Raw Materials)	224

Contents xxiii

	10.1.4	Restart of the Plant After Major Stoppage/	
		Annual Shut Down	225
10.2	Better	Technology	226
	10.2.1	Better Technology for Oleum	226
	10.2.2	Continuous Process for 65% Oleum	226
	10.2.3	Better Process for Liquid SO ₂	228
10.3	Better	Plant Layouts: Some Examples	228
	10.3.1	Layout for Sulphuric Acid Plant	228
	10.3.2	Guidelines for Improving Plant Layout	229
	10.3.3	Layout for a Typical Viscose Rayon Plant	230
10.4	Packag	ged Boilers	230
10.5	Heatin	g Systems	232
	10.5.1	Electrical Heating	232
	10.5.2	Heating by Steam	234
	10.5.3	Oil Fired Heating System	235
	10.5.4	Coal Fired Heating	238
	10.5.5	Fuel Gas Fired Heating (Natural Gas, LPG, Propane)	239
	10.5.6	Heating by Hot Process Gases	240
	10.5.7	Heating by Heat Transfer Oils (Hot Thermic Fluids)	241
	10.5.8	Format	242
10.6	Selecti	on of Better Design of Process and Equipments	244
10.7		ring More Sources for Heat Recovery for Further	
		vement	246
10.8		on Criteria for Energy Saving/	
		Recovery Equipment	247
	10.8.1	Design of the System	247
	10.8.2	Define Required/Expected Performance from	
		the Proposed Equipment	248
	10.8.3	Calculate Requirement of Energy	248
	10.8.4	Materials of Construction	249
	10.8.5	Convenience During Operation and Maintenance	249
	10.8.6	Introducing New Units in the Plant	250
	10.8.7	Estimated Cost for the Energy/Heat Recovery	
		Proposal	250
	10.8.8	Time Required for Implementation	250
	10.8.9	General Considerations	250
		Examples of Some Heat Recovery Systems	251
10.9		ise Production Cycles	252
	10.9.1	Optimise Batch Size	253
	10.9.2	Avoid Frequently Starting and Stopping the Plant	253
10.10		g Electrical Energy in Chemical Plants	253
		Variable Frequency Drives (VFD) for Speed Control	255
		Flectrolysis Process Plants	255

xxiv Contents

11	Example	es of Modified Methods for Reducing Energy	
		ption	259
	11.1 Ex	camples of Process Intensification	259
		ooling Systems and Refrigeration	263
	11.3 Sp	oray Ponds for Cooling Water	264
	11.4 Co	poling Towers	264
	11.4	4.1 Observations during Operation	264
	11.4	4.2 Maintenance	265
	11.5 Co	onventional Refrigeration Plants	266
	11.5	5.1 Main Components and Machinery	266
	11.5	5.2 Observations to Be Made for Safe	
		and Smooth Working	267
	11.5	5.3 Safety Valves	267
	11.5	5.4 Some Precautions for Maintenance Work	268
	11.5	5.5 Additional Safety Precautions	268
	11.6 Ur	nconventional Chilled Water Systems	269
	11.6	6.1 Caustic Soda Based System	269
	11.6	6.2 Libr Based System	269
	11.6	6.3 For Safety of Personnel	270
	11.7 Ot	ther Cooling Arrangements	270
	11.8 St	eam Jet Cooling	270
12	Methods	for Minimising Consumption of Energy	271
_		oject Planning	271
		educe Consumption by Process Units by Better Design	
		d Construction	271
		onsiderations for Reducing Energy Consumption	272
		nergy Saving by Improved layout for Safe Convenient	
		ovements	273
		ontrolled/Modified Operations for Reducing Energy	
		onsumption	273
		onitor Losses from Equipments and Ducts	
		Jse Thermography Camera)	274
	12.7 Ch	neck Losses During Plant Operation: (Some Typical Cases)	274
		camine Potential for Energy Recovery:	
	(P	Please See Sect. 10.7 Also)	275
	12.9 En	nergy Audit	275
	12.10 Co	omparison with Ideal Conditions	276
		xamine the Loss of Energy During Maintenance Work	278
	12.12 M	inimise Energy Consumption by Procuring Better	
	Ra	aw Materials	278
	12.13 Sit	tuations to be Addressed	279
	12.14 Ex	camples of Saving Energy and Heat Recovery	280
		ocess Boilers	281
	12.16 Or	ptimising Power Consumption for Agitated Vessel	283
	-	ual Drive System	283

Contents xxv

13	Retai	ining Tl	hermal Energy While Simultaneously		
	Prote	ecting E	Equipment	285	
	13.1	Refrac	ctory Materials and Their Properties	285	
	13.2		ation of Refractory	289	
	13.3		al Curing Procedure	289	
	13.4		vations during Running of the Process Units	290	
	13.5		enance of Refractory Lining	291	
	13.6		nal Thermal Insulations	291	
			Ducts Carrying High Temperature Gases	292	
14	Equi	pments	for Energy Recovery	293	
	14.1		ion of Waste Heat Recovery Boilers (WHRB)	293	
		14.1.1	Scope of Supply (Shall Be as per Battery Limits		
			Agreed Between Vendor and Purchaser)	294	
		14.1.2	Performance Guarantees (as agreed mutually)	294	
	14.2	Select	ion of Economiser	295	
		14.2.1	Considerations and Scope of Supply	295	
		14.2.2	Performance Guarantees (as agreed mutually)	295	
	14.3		ems for WHR Systems	296	
	14.4		ations for Operation of Boiler	296	
	14.5		eneration	297	
		14.5.1	Condensing Type Turbine	297	
		14.5.2	Back Pressure Turbine	298	
		14.5.3	Extraction Type	298	
		14.5.4	Estimation of Power and Steam Requirement	298	
		14.5.5	Numerical Example	298	
		14.5.6	Some Important Considerations for Selecting	270	
		11.5.0	Steam Turbines.	299	
		14.5.7	Steam Turbine Driven Generators	300	
		14.5.8	Check List Before Commissioning of Steam Turbine	300	
	14.6		nissioning	301	
	1 1.0	14.6.1	Maintenance of Steam Turbine	302	
	14.7		ns to Be Looked in to for the Chemical Plant	303	
	14.8		urbine Generators	304	
	1 1.0	14.8.1	These Can Be Considered in Following	501	
		14.0.1	Typical Situations	304	
		14.8.2	Gas Turbo Generator: System Components		
		14.8.3	Combustion System of Gas Turbine	305	
		14.8.4	Turbine	306	
	14.9			306	
	J.				
			Maintenance	307 310	
			ing of Economiser.	311	
			omiser Maintenance	311	
	14.13	Leono	THISCI INTAINICE	311	
15	Safet	y Preca	nutions During Maintenance and Energy Recovery	313	
	15.1		Precautions During Maintenance: General	313	
	15.2	Typica	al Guidelines for Safety Precautions	314	

xxvi Contents

	15.3	Checks by Safety Officer	314	
	15.4	Maintenance of Equipment Handling Dangerous Items/		
		Work Inside a Closed Vessel	316	
	15.5	Personal Protective Equipments	316	
	15.6	Alarms, Safety Devices and Interconnections		
		(for Electrical Tripping)	317	
	15.7	Safe Commissioning of Energy Recovery Units	318	
		15.7.1 HAZOP Study	319	
		15.7.2 Checks Before Erection	319	
		15.7.3 Checks Before Commissioning	320	
		15.7.4 Observation During Operation	321	
	15.8	Safety Organisation	321	
		15.8.1 Safe Expansion of Capacity	322	
		15.8.2 Important Inputs from Safety Officer	322	
		15.8.3 Assistance by Safety Organisation	323	
		15.8.4 Emergency Response Training to Personnel	324	
		15.8.5 Safety Organisation to Arrange the Following	324	
		15.8.6 Coordination with External Parties	324	
	15.9	Guidelines for Storage of Petroleum Products and Fuels	324	
16	Evar	mples of Waste Heat Recovery in Chemical Industries	327	
	16.1	Sulphuric Acid	327	
	16.2	Nitric Acid	328	
	16.3	Hazardous Waste Destruction Plant.	329	
	16.4	Distillery Spent Wash Incineration (Fig. 16.4)	329	
	16.5	Sugar Industry	330	
	16.6	Production of SO ₃ by Boiling Oleum	330	
	16.7	Rotary Dryer Unit of Rice Husk Ash Pelletisation Plant	330	
	16.8	Heat Recovery (as Hot Air) From Hot Bricks	332	
	10.0	11000 11000 (the 1100 110) 1 10 th 1100 210 th		
Apr	endix	(I: Lubrication	333	
Apr	endix	(II: Vibration	337	
Apr	endix	III: Some Typical Non-destructive Tests	343	
•		**		
Ap p	endix	x IV: Disposal of Hazardous Waste	345	
App	Appendix V: Hydraulic Motors and Systems			
			255	
App	endix	VI: Protective Lining for Process Units	351	
Apr	endis	VII: Some Welding Processes	355	
•ት}	, chui	VIII. Donic Willing Hocesses	555	
nd	ex		357	

Chapter 1 Introduction to Some Important Chemical Industries

1

1.1 Introduction to Some Important Chemical Industries

Process units, machineries and equipments in many chemical industries are operated at high temperatures, high pressures and/or are subjected to corrosive and erosive conditions.

Typical equipments used in chemical plants are:

- Crusher, pulveriser, grinders, calciners, melters, filters for pre-treatment of raw materials
- · Conveyors of various types
- Process units operating at high temperatures
- · Reactors, condensers, waste heat recovery units
- Water treatment, effluent treatment, air pollution control
- Steam heated (jacketed/traced) process units, pipes, pumps and storages
- Cooling systems
- Electrical equipments

1.2 Importance of Process Units and Machinery

Production engineers and maintenance engineers should carefully understand properties of all materials being handled. Material Safety Data Sheets (MSDS) as well as the operating conditions of the process units and machinery in the plants must be carefully looked in to.

Some typical units used for carrying out reactions are process reactors (specially operating at high pressures) while units like filters, melters, calciners are used for pre-treatment of raw materials. Heat exchangers are necessary for heating and cooling of process streams for efficient running of the plant. Condensers are required for condensation of reaction products and recovery of volatile materials; while

© Springer Nature Switzerland AG 2019
K. R. Golwalkar, *Integrated Maintenance and Energy Management in the Chemical Industries*, https://doi.org/10.1007/978-3-030-32526-8_1

absorption towers are necessary for completing the reactions, for absorbing valuable volatile materials and for pollution control.

It is necessary to operate and maintain all of them always in proper working condition for **safe**, **pollution free and smooth working of the process plant**.

Careful monitoring of process operations and condition of equipments is required to prevent any mishap since many of these materials being handled are corrosive, inflammable/dangerous and high temperature/high pressure units are involved.

Statutory rules must be complied with to produce, store, handle, operate and maintain the production facilities at site.

Certain mechanical equipments in these process plants need considerable energy for their operation and careful attention during operation. They operate almost continuously and are subject to erosion and corrosion. Some typical equipments and machinery required in these plants are highlighted in the section following description of the processes.

The actual process design, machinery required, installation, operation and maintenance efforts required will depend on product mix, scale of operations, local climatic conditions, quality of raw materials available.

1.3 Brief Description of Some Important Chemical Industries

1.3.1 Manufacture of Sulphuric Acid

Raw sulphur is molten by steam coils and filtered by Pressure leaf filters. It is fed to the furnace at a controlled rate to produce SO_2 . Temperature of the exit gases is reduced by the WHRB before passing through the multistage converter for oxidising the SO_2 to SO_3 . It is then absorbed in Inter Pass and Final absorption towers in stream of circulating sulphuric acid. Product acid is transferred to storage tanks. The drying tower serves to dry the air for the plant.

Main Equipments

- Steam coils in sulphur meltersubjected to corrosion (free acidity in sulphur)
- Filtration system for liquid sulphur... subjected to corrosion (free acidity in sulphur)
- Sulphur feeding pumps......subjected to corrosion (free acidity in sulphur) and erosion due to some particulate matter (ash)
- Sulphur burning Furnace.....operation at high temperature; corrosive gases are present.
- Air Blowerrequired to supply air to run the plant, very important machine
- Water treatment plant..... required. to supply DM water to the WHRB and process units plant

- Waste heat recovery boilers WHRB..... required to cool the furnace exit gases and recover heat as steam. Subjected to corrosive gases at high temperature; covered by statutory regulations.
- Economiser(s) ... required to cool the converter exit gases and recover heat as hot water; subjected to corrosive gases at high temperature; covered by statutory regulations due to high pressure working.
- Boiler feed water pump(s) and piping ... required. to supply DM water to the WHRB, covered by statutory regulations due to high pressure working.
- Converter system and heat exchangers...... required to convert SO₂ to SO₃; subjected to corrosive gases at high temperature
- Acid Circulation Tank, Acid Towers, Pumps, acid coolersrequired to operate the SO₃ absorption system and supply dry air to furnace; subjected to corrosive concentrated acid
- Water Pumps...for producing DM water for boilers, for producing acid, for cooling acid
- Instrumentation subjected to corrosive gases at high temperature, and to concentrated acid

1.3.2 Manufacture of 25%, 65% Oleum, Liquid SO₃ Plants

- These plants are add-on units to a sulphuric acid plant. Gases from exit of converter third pass are passed through cold heat exchanger CHE and economiser (optional). The gases are now passed through 25% oleum tower to absorb SO₃ and thereafter through Inter pass absorption tower for further absorption of SO₃ if sulphuric acid is also to be produced. Exit gases from IPAT are reheated by CHE and hot heat exchanger HHE to conversion temperature again; and passed through fourth and fifth passes of converter. Exit gases from converter are passed through economiser and oleum boiler (if SO₃ vapours are to be produced). The equipments required are:
- 25% oleum circulation tower with internals.
- 25% oleum circulation pumps and cooling system.
- Oleum boiler for generating SO₃ vapours. (it can be heated by process gases or steam).
- Heat exchangers for hot oleum exiting from boiler/incoming oleum to boiler
- 65% oleum tower with internals.
- 65% oleum circulation pumps and cooling system.
- SO₃ condenser of special design
- · Cooling tower
- Storage tanks
- Dispatch pumps for 25% and 65% oleum tower.
- Steam tracing of piping for 25%, 65% oleum lines and liquid SO₃ tank.

1.3.3 Manufacture of Papermaker's Alum

Alumina hydrate is a pure raw material. It is reacted with sulphuric acid in a reactor with acid resistant lead and brick lining and equipped with steam coils to initiate the reaction. The reacted material is heated in evaporator to remove excess water and is then taken out for pouring in to moulds. Sulphuric acid to be used for this product should not contain more than 50 ppm iron. Only demineralised water should be used. The steam coils shall be of stainless steel 316 L or of hardened lead (if permitted by client).

- Hoist ... required to take up alumina hydrate bags to reactor
- Main reactor with lead and brick lining (MS-LL-BL)... subjected to corrosion due to free acidity
- Boiler with accessories...essential to supply steam to reactor and evaporator
- Fuel tank, Fuel oil pump, Air Blowerto operate the boiler
- Water treatment plant...to feed the boiler and reactor
- Steam coils...to run the reactor and evaporator; subjected to acidic corrosion
- Acid transfer pump, and acid day tank... to feed the reactor; subjected to corrosive concentrated acid

1.3.4 Manufacture of Alum

Bauxite lumps are crushed and ground to 150 mesh (about 85%) and then fed to reactor lined with acid resistant bricks. 98% sulphuric acid and filtrate (with recovered alum) from filter press is added to the reactor. Live steam or specially lined steam pipe is used for stirring and reaction. The reaction mass is sent to clarifier to settle the unreacted impurities. Clarified solution is evaporated by using steam coils made from stainless steel 316 L or hardened lead. The concentrated solution is poured in moulds, crushed and bagged.

- Bauxite feeder ...to feed bauxite lumps to crusher; subject to erosion
- Crushing and Grinding Machines...to produce bauxite powder; subject to erosion
- Bag filter for dust control...for pollution control
- Acid Resistant Brick lined Reactor...for main reaction, subjected to erosion as well as acidic corrosion
- Sulphuric acid main storage tank, transfer pump and day tank...for the reactor; subjected to corrosive concentrated acid
- Boiler with accessories, Fuel storage, Oil firing system, air blower..... essential to supply steam to reactor and evaporator.
- (Steam is available from exit of back pressure type steam turbine in some plants).
- Thickener (settler and clarifier tanks) with acid resistant lining ... subjected to acidic corrosion

- Filter press with accessories (air compressor)...to recover alum solution from waste water; subjected to pressurised liquor and acidic corrosion
- Evaporators with SS 316 L or lead steam coils ... subjected to acidic corrosion;
- Dispatch section.....Weighing and Packing of alum slabs/crushed pieces...

1.3.5 Manufacture of Single Super Phosphate

Rock phosphate is ground to about 100 mesh and mixed with 65–70% sulphuric acid in a mixer with Ni-hard blades. Gases are evolved with fluorine compounds, acid mist, CO_2 and water vapour due to reaction with sulphuric acid (a small quantity of CaF_2 is generally present in rock phosphate).

Some un-reacted particles of rock phosphate also get entrained. The gases are scrubbed in wet cyclone, venturi scrubber, spray tower and polishing alkali scrubber (optional). Generally rubber lined induced draft fan is used to suck the gases from mixers-reactors. The outgoing scrubbing liquor contains silica and H2SiF6 solution. The silica is taken out from bottom as precipitated material and the acidic solution is recycled to the mixer-reactor. Reaction material is dropped to a vessel below and reaction is allowed to continue for a few hours. It is then cured for a few days in the shed before bagging.

Important units and machines are:

- Storage shed for rock phosphate lumps...large shed subject to dust, movement of material handling machinery
- Pulveriser/grinder...subjected to big lumps; and can cause dust pollution during operation (which is controlled by providing cyclone separator, bag filter and suction fan)
- Bucket elevator, screw feeder
- AR brick lined mixer (reactor) with paddles of special alloy...for main reaction; subjected to acidic corrosion, erosion due to particles and higher temperature,
- Den Cutter for reacted mass...for continued reaction; subjected to acidic corrosion, erosion due to un particles of rock phosphate
- Acidic liquor (H2SiF6) recycle system from scrubbers... subjected to acidic corrosion and erosion due to particles of silica
- Dilution of sulphuric acid and sending to feed tank for mixer (reactor)... subjected to acidic corrosion
- Air pollution control units (scrubbing liquor circulation pumps for ventury scrubber, spray tower, polishing tower, induced draft fan)... subjected to acidic corrosion and erosion due to particles of silica and unreacted particles of rock phosphate
- ID fan...(rubber lined)...subject to erosive particles of silica and acidic gass
- Precipitated Silica removal from APC units...essential to control erosion due to particles of silica

- Effluent Treatment Plant...to treat acidic liquor which cannot be reused
- Covered Storage shed is provided with hoists, electrical overhead travelling crane (with operator console). The shed is for curing reacted material and storing finished product.

1.3.6 Manufacture of Caustic Soda and Chlorine by Electrolysis

Common Salt is dissolved in depleted brine (with fresh water if required) and treated to remove impurities. It is filtered and fed at controlled rate to the electrolysis cell with nafion membranes (which allow migration of sodium ions to cathode). Dil. NaOH solution with DM water is fed to cathode chamber. Reaction with OH(–) ions produce NaOH while hydrogen gas is evolved. Chlorine gas (it is generally with water vapour) evolved from anode chamber. DC power for electrolysis is supplied by rectifiers.

NaOH solution exits from cathode chamber with higher concentration.

The wet chlorine gas is dried, compressed, cooled and liquefied. It is then filled in cylinders.

Likewise, hydrogen is also compressed and filled up in cylinders.

Hydrogen and Chlorine are reacted in a graphite furnace to produce HCl gas which is absorbed in DM water to produce HCl acid.

- Salt feeder and dissolver ...for maintaining concentration of feed brine to electrolytic cells Brine Purifying units and filters..... subject to corrosive conditions
- Brine Feeding system, Flow meters... subject to corrosive conditions
- Electrolytic cells with accessories (Anodes, and Cathodes assemblies) ... subject to corrosive conditions
- Membranes and fixing arrangements ... subject to corrosive conditions
- Rectifiers...for supply of DC power to electrolysis cells
- Bus-bars...carry heavy currents; even minor resistance/any loose contact can waste lot of power
- Gas evacuation from Electrolytic cell... subject to corrosive conditions due to wet chlorine; any leak can be dangerous
- Chlorine compressor (very important machine) Dryers, Liquefaction system... Any leak of pressurised chlorine gas is dangerous
- Chlorine Cylinders filling arrangement... ... Any leak of pressurised chlorine gas is dangerous
- Hydrogen gas compressor (very important machine) dryers and filling in cylinders... Any leak of pressurised hydrogen gas is dangerous