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Preface

Hybrid materials, i.e., composites made or joined from several materials, including
fiber-reinforced composites with different fiber architectures, play an increasingly
important role in industrial applications. The general aim of a hybrid lightweight
design is the mass reduction of lightweight structures and simultaneously the in-
crease of performance of the construction, which is reflected in a higher strength,
stiffness, or in an improved fatigue strength. Nevertheless, the combination of dif-
ferent materials in hybrid composites results in the evolution of a process-related,
hierarchical microstructure, which defines the composite’s performance. Hence,
designing high performance hybrid materials needs a holistic approach in the in-
teraction between product design, processing technologies, material science, and
engineering mechanics.

The relevance of hybrid materials in lightweight structures in industry has in-
creased during the last years. The BMW electric car concept featuring a CFRP-
based life module and the use of composites in the aircraft industry are prominent
examples for the enhanced used of high-performance composites in vehicle struc-
tures. Composite use in aircraft cumulates today in the design of the Boeing 787
featuring a composite-based fuselage concept. Nevertheless, such designs mainly
based on the use of continuous carbon fibers are expensive in comparison to metal-
based solutions and the design freedom is also limited. Consequently, hybrids
based on a combination of cost-efficient long fiber-reinforced plastics and high-
performance continuous fiber-reinforced plastics - so-called continuous-discon-
tinuous fiber-reinforced polymers (CoDiCoFRP) - can help to overcome disadvan-
tages and enables an economical lightweight design approach.

In this book, the editors present the results of a transatlantic research cooperation
under the leadership of Karlsruhe Institute of Technology (KIT), Germany, and Uni-
versity of Western Ontario, Canada, directly focusing on the new material class of
CoDiCoFRP bringing together scientists from production science and development,
lightweight technology, mechanics, and material science. This International Re-
search Training Group, “Integrated engineering of continuous-discontinuous long
fiber-reinforced polymer structures” (GRK2078), has been fully funded by the Ger-
man Research Foundation (DFG).
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Preface

Divided between thematic chapters on technology (Chapter 2), characterization
(Chapter 3), simulation (Chapter 4), and design (Chapter 5), the results from the
first generation of doctoral researchers at KIT are presented. Especially, Chapter 6,
on establishing the process chain for a demonstrator product, clearly shows the
benefit of very strong interactions between all disciplines involved to realize a ho-
listic approach.

Thomas Bohlke
Frank Henning
Andrew Hrymak
Luise Karger

Kay A. Weidenmann
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Introduction to
Continuous-Discontinuous
Fiber-Reinforced Polymer
Composites
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Tarkes Dora Pallicity, Kay A. Weidenmann, Jeffrey T. Wood

B 1.1 Fiber-Reinforced Composite Materials

Composite materials have ushered in a new era in materials science and engineer-
ing, allowing the design of engineered materials with superior mass-specific me-
chanical properties. Current demand in the transportation and energy sectors to
reduce carbon dioxide emissions has motivated designs with such materials, a
trend expected to increase in the coming years. Fiber-reinforced plastics (FRP) are
an important class of such materials that have gained increasing attention due to
their characteristics of light weight, high strength, and stiffness [1, 2]. These mate-
rials are made of two constituents - fiber and matrix - that differ in their mechan-
ical properties. The role of the matrix is primarily to bind the fibers together, trans-
fer loads, and protect fibers from abrasion and the environment. The matrix
material is usually either a thermoset (TS) or thermoplastic (TP). The fibers pri-
marily carry the load transferred from the matrix and hence provide macroscopic
stiffness and strength to the structure. Glass fiber and carbon fiber are the two
most widely used reinforcements in FRP composites.

FRP materials can be broadly categorized as discontinuous FRP (DiCoFRP) and
continuous FRP (CoFRP), based on the length of the fibers. Further, these can be
either the TS or TP type, based on the matrix material used in the composite. Co-
FRP consists of aligned fibers similar in length to the dimensions of the structural
component. The alignment of fibers along the loading direction results in high stiff-
ness and strength. However, continuous fibers limit the design freedom and result
in high production costs. Fabricating components from DiCoFRP is easier, as this
material has better formability (i.e., the natural ability to conform to curved sur-
faces) and flow ability than CoFRP, thus making it easier to form complex geome-
tries, such as ribs. The mechanical properties of DiCoFRP, such as strength and
stiffness, are lower, but DiCoFRP provides increased design freedom and economi-
cal production costs. Figure 1.1 schematically shows the advantages and disadvan-



