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Foreword 

K-theory was introduced by A. Grothendieck in his formulation of the Riemann­
Roch theorem (cf. Borel and Serre [2]). For each projective algebraic variety, 
Grothendieck constructed a group from the category of coherent algebraic sheaves, 
and showed that it had many nice properties. Atiyah and Hirzebruch [3] con­
sidered a topologica! analog defined for any compact space X, a group K(X) 
constructed from the category of vector bundles on X. It is this "topological 
K-theory" that this book will study. 

Topological K-theory has become an important tool in topology. Using K­
theory, Adams and Atiyah were able to give a simple proof that the only spheres 
which can be provided with H-space structures are S 1 , S3 and S7 • Moreover, it is 
possible to derive a substantial part of stable homotopy theory from K-theory 
( cf. J. F. Adams [2]). Further applications to analysis and algebra are found in the 
work of Atiyah-Singer [2], Bass [1], Quillen [1], and others. A key factor in these 
applications is Bott periodicity (Bott [2]). 

The purpose of this book is to provide advanced students and mathematicians 
in other fi.elds with the fundamental material in this subject. In addition, several 
applications of the type described above are included. In general we ha ve tried to 
make this book self-contained, beginning with elementary concepts wherever 
possible; however, we assume that the reader is familiar with the basic definitions 
of homotopy theory: homotopy classes of maps and homotopy groups (cf. 
collection of spaces including projective spaces, ftag bundles, and Grassmannians. 
Hilton [1] or Hu [1] for instance). Ordinary cohomology theory is used, but not 
until the end of Chapter V. Thus this book might be regarded as a fairly self­
contained introduction to a "generalized cohomology theory". 

The fi.rst two chapters ("Vector bundles" and "First notions in K-theory") are 
chiefty expository; for the reader who is familiar with this material, a brief glance 
will serve to acquaint him with the notation and approach used. Chapter III is 
devoted to proving the Bott periodicity theorems. We employ various techniques 
following the proofs given by Atiyah and Bott [1], Wood [1] and the author [2], 
using a combination of functional analysis and "algebraic K-theory". 

Chapter IV deals with the computation of particular K-groups of a large 
The version ofthe "Thom isomorphism" in Section IV.5 is mainly due to Atiyah, 
Bott and Shapiro [1] (in fact they were responsible for the introduction ofClitford 
algebras in K-theory, one of the techniques which we employ in Chapter III). 



VIII Foreword 

Chapter V describes some applications of K-theory to the question of H-space 
structures on the sphere and the Hopf invariant (Adams and Atiyah [1]), and to 
the solution of the vector field problem (Adams [1]). We also present a sketch of 
the theory of characteristic classes, which we apply in the proof of the Atiyah­
Hirzebruch integrality theorems [1]. In the last section we use K-theory to make 
some computations on the stable homotopy groups of spheres, via the groups J(X) 
(cf. Adams [2], Atiyah [1], and Kervaire-Milnor [1]). 

In spite of its relative length, this book is certainly not exhaustive in its coverage 
of K-theory. We have omitted some important topics, particularly those which are 
presented in detail in the literature. For instance, the Atiyah-Singer index tbeorem 
is proved in Cartan-Schwartz [1], Palais [1], and Atiyah-Singer [2] (see also 
appendix 3 in Hirzebruch [2] for the concepts involved). The relationship between 
other cohomology theories and K-theory is only sketched in Sections V.3 and V.4. 
A more complete treatment can be found in Conner-Floyd [1] and Hilton [2] 
(Atiyah-Hirzebruch spectral sequence). Finally algebraic K-theory is a field which 
is also growing very quickly at present. Some ofthe standard references at this time 
are Bass's book [1] and the Springer Lecture Notes in Mathematics, Voi. 341, 342, 
and 343. 

1 would like to close this foreword with sincere thanks to Maria Klawe, who 
greatly helped me in the translation of the original manuscript from French to 
English. 

Paris, Summer 1977 
Max Karoubi 
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Remarks on Notation and Terminology 

The following notation is used throughout the book: Z integer~, CQ rational 
numbers, R. real numbers, a:: complex numbers, H quatemions; GL,.(A) denotes 
the group of invertible n x n matrices with coefficients in the ring A. The notation 
* · · · * signifies an assertion in the text which is not a direct consequence of the 
theorems proved in this book, but which may be found in the literature; these 
assertions are not referred to again, except occasionally in exercises. 

lf<6' is a category, and if E and F are objects of<6', then the symbol <6'(E, F) or 
Hom"(E, F) means the set of morphisms from E to F. 

More specific notation is listed at the end of the book. 
A reference to another part of tbe book is usually given by two numbers ( e.g. 

5.21) if it is in the same chapter, or by three numbers (e.g. IV.6.7) if it is in a 
different chapter. 
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Summary of the Book by Sections 

Chapter 1. Vector Bundles 
1. Quasi-vector bundles. This section covers the general concepts and definitions 
necessary to introduce Section 2. Theorem l.l2 is particularly important in the 
sequel. 

2. Vector bundles. The ··vector bundles" considered here are locally trivial vector 
bundles whose fibers are finite dimensional vector spaces over 1R or cr. To be 
mentioned: Proposition 2. 7 and Examples 2.3 and 2.4 will be referred to in the 
sequel. 

3. Clutching theorems. This technical section is necessary to provide a bridge 
between the theory of vector bundles and the theory of "coordinate bundles" of 
N. Steenrod [1]. The clutching theorems are useful in the construction of the 
tangent bundle of a differentiable manifold (3 .18) and in the description of vector 
bundles over spheres (3.9; see also 1.7.6). 

4. Operations on vector bund/es. Certain "'continuous" operations on finite dimen­
sional vector spaces: direct sum, tensor product, duality, exterior powers, etc .... 
can be also defined on the category of vector bundles. 

5. Sections of vector bundles. Only continuous sections are considered here. The 
major topic concerns the solution of problems involving extensions of sections over 
paracompact spaces. 

6. Algebraic properties of the category of vector bundles. In this section we prove 
that the category S(X) of vector bundles over a compact space X, is a "pseudo­
abelian additive" category. Essentially this means that one has direct sums of 
vector bundles (the "Whitney sum"), and that every projection operator has an 
image. From this categorica! description (6.13), we deduce the theorem of Serre 
and Swan (6.18): The category ..9'(X) is equivalent to the category &'(A), where A 
is the ring of continuous functions on X, and &'(A) is the category of finitely 
generated projective modules over A. 

7. Homotopy and representability theorems. This section is essential for the 
following chapters. We prove that the problem of classification of vector bundles 
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with compact base X depends only on the homotopy type of X (7.2). We also prove 
that «~>:(X) (the set of isomorphism classes of k-vector bundles, over X of rank n 
for k = IR or ~), considered as a functor of X, is a direct limit of representable 
functors. This takes the concrete form ofTheorems 7.10 and 7.14. 

8. Metrics and forms on vector bundles. It is sometimes important to have some 
additional structure on vector bundles, such as bilinear forms, Hermitian forms, 
etc. With the exception of Theorem 8.7, this section is not used in the following 
chapters (except in the exercises). 

Chapter Il. First Notions of K-Theory 

1. The Grothendieck group of an additive category. The group K(X). Starting with 
the simple notion of symmetrization of an abelian monoid, we detine the group 
K(l'{!) of an additive category using the monoid of isomorphism classes of objects 
of<t. Considering the case where <6' is tB'(X) and X is compact, we obtain the group 
K(X) (actually K11(X) or Kc(X) according to which theory of vector bundles is 
considered). We prove that KJR(X)~[X, Z x BO] and Kc(X)~[X,Z x BU] (1.33). 

2. The Grothendieck group of an additive functor. The group K(X, Y). In order to 
obtain a "reasonable" definition of the Grothendieck group K(qJ) for an additive 
functor qJ:<t~<t', which generalizes the definition of K(<t) when <6''=0, we 
assume some topologica! conditions on the categories <6' and <6'' and on the 
functor qJ (2.6). Since these conditions are satisfied by the "restriction" functor 
8(X) ~ 8( Y) where Y is closed in X, we then detine the "relative group" K(X, Y) 
to be the K-group of this functor. In fact, K(X, Y)~K(X/Y) (2.35). This iso­
morphism shows that essentially we do not obtain a new group; however, the 
groups K(qJ) and K(X, Y) will be important technical tools later on. 

3. The group K- 1 of a Banach category. The group K- 1(X). This section represents 
the first step towards the construction of a cohomology theory h* where the term 
h0 is the group K(X, Y) (also denoted by K 0 (X, Y)) considered in 11.2.·The group 
K- 1(<6'), where <6' is a Banach category, is obtained from the automorphisms of 
objects of<t. Again, ifwe consider the case where <6' is S(X), we obtain the group 
called K- 1(X). We prove that if Y is a closed subspace of X then the sequence 

K- 1(X) ~ K- 1( Y) ~ K(X, Y) ~ K(X) ~ K( Y) is exact. 

We also prove that Ki 1(X)~[X, O] and K; 1(X)~[X, U] (3.19). 

4. The groups K- "(X) and K-"(X, Y). The aim of this section is to detine the groups 
K-"(X, Y) for n~2 and to establish the exact sequence 
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One possible definition is K-"(X, Y) =K(S"(X/Y)) (4.12). We prove some "Mayer­
Vietoris exact sequences" (4.18 and 4.19) which will be very usefullater on. 

5. Multiplicative structures. The tensor product of vector bundles provides the 
group K(X) with a ring structure. It is more difficult to define a "cup-product" 

K(X, Y) x K(X', Y')--. K(Xx X', Xx Y'uYx X') 

or more generally 

K-"(X, Y) x K-"'(X', Y')--. K-n-n'(Xx X', Xx Y'u Yx X') 

when Y and Y' are non-empty. This is accomplished in a theoretical sense in 
proposition 5.6; however, in applications it is often useful to have more explicit 
formulas. For this we introduce another definition ofthe group K(X, Y) by putting 
metrics on the vector bundles involved (5.16). This will not be used before Chapter 
IV. The existence of such cup-products shows that there is a direct splitting 
K(X)r:::.H 0 (X; Z) EB K'(X) where K'(X) is a nil ideal (cf. 5.9; note that K'(X)r:::. 
K(X) if X is connected). 

Chapter III. Bott Periodicity 

1. Periodicity in complex K-theory. In this section we define an isomorphism 
Ki"(X, Y)r:::.Ki"- 2(X, Y). The method (due to Atiyah, Bott, and Wood) is to 
reduce this isomorphism for general n, to a theorem on Banach algebras ( 1.11): If 
A is a complex Banach algebra, the group K(A) (defined as K(&'(A)) is naturally iso­
morphic to n 1(GL(A)) where GL(A)=inj limGLiA). This theorem is proved 
using the Fourier series of a continuous function with values in a complex Banach 
space, and some classical results in Algebraic K-theory on Laurent polynomials. 
The original theorem follows when we let A be the ring of complex continuous 
functions on a compact space. 

2. First applications of Bott periodicity theorem in the complex case. As a first appli­
cation we obtain the classical theorem of Bott: for n > i/2, we ha ve n;( u(n))-::::. Zif 
i is odd and n;(u{n))=O for i even. We also prove that real K-theory is periodic of 
period 4 mod. 2-torsion: Ki"(X, Y) ®zZ'~Ki"-4(X, Y) ®zZ', where Z'= 
Z[t]. This theorem will be strengthened in 111.5. 

3. Clifford a/gebras. These algebras play an important role in real K-theory and 
will be used in Chapter IV in both real and complex K-theory. This section is 
purely algebraic. The essential result is Theorem 3.21, which establishes a kind of 
periodicity for Clifford algebras. This "algebraic" periodicity will be effectively 
used in III.5 to prove the "topologica!" periodicity of real K-theory and at the 
same time give another proof of the periodicity of complex K-theory. 
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4. The functors Kp,q(rc} and Kp,q(X). The idea of this section is to use the Clifford 
algebras Cp,q to algebraicly define new functors K"(X)=Kp,q(X) for n=p-qe Z. 
We prove that these functors are by definition periodic, of period 8 in the real case, 
and of period 2 in the complex case, and that K 0(X) and x- 1(X) are indeed the 
functors defined in Chapter Il. Bott periodicity will then be proved ifwe show that 
the two definitions of K"(X) agree for negative values of n. This is done in the next 
two sections. 

5. Thefunctors Kp,q(X, Y) and the isomorphism t. Periodicity in real K-theory. After 
some preliminaries introducing the relative groups Kp,q(X, Y) we present the 
fundamental theorem of this chapter: The groups KP,q+ 1(X, Y) and Kp,q(X x B1, 

X x S0 u Y x B1) are isomorphic. Assuming this theorem (the proof follows in 
Section III.6), we prove that K;"(X, Y)~K;"- 8(X, Y) with the definitions of 
Chapter Il. At the same time we prove the periodicity in complex K-theory 
(5.17) once more. Moreover, using Propositions 4.29 and 4.30 we prove the 
existence of weak homotopy equivalences between the iterated loop spaces 0'(0) 
and certain homogeneous spaces (5.22). We also compute the homotopy groups 
n;(O(n)) for n > i+ 1 (5.19) with the help of Clifford algebras. 

6. Proof of the fundamental theorem. The pattern of this section is analogous to 
that of Section 111.1, since the main theorem is likewise a consequence of a general 
theorem on Banach algebras (6.12). Moreover the proof of this general theorem 
uses the same ideas as the proof of Theorem 1.11. 

Chapter IV. Computations of Some K-Groups 

1. The Thom isomorphism in complex K-theory for complex vector bundles. The 
purpose of this section is to compute the complex K-theory of the Thom space of a 
complex vector bundle (1.9). In this computation a key role is played by bundles of 
exterior algebras. Theorem 1.3. is particularly important in the sequel. 

2. Complex K-theory of complex projective spaces and complex projective bundles. 
In this section ( classical in style ), we construct a method which may also be used for 
ordinary cohomology (see V.3). Using the technical Proposition 2.4 we are able to 
compute the K-theory of Pn=P(CC"+ 1 ) and more generally of P(V) where Vis a 
complex vector bundle (2.13). The ··splitting principle" (2.15) is used frequently 
later on. With this principle we are able to make the multiplicative structure of 
K*(P(V)) explicit (2.16). 

3. Complex K-theory ofjlag bundles and Grassmann bundles. K-theory of a product. 
This section is also classical in style, but is not essential to the sequel. We 
explicitly compute K*(F(V)) where F(V) is the flag bundle of a complex vector 
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bundle V. We also compute K*(Gp( V)) where GP(V) is the fiber bundle of p­
subspaces in V (3.12). These results are used to compute %(BU(n))=proj Iim 
K(G p(Cl:n) (3.22), and the K-theory of a product (3.27). 

4. Complements in Clifford algebras. The concept of "spinors" was not introduced 
in Section III.3, since it is not essential in proving Bott periodicity. However we 
now need this concept to prove the analog ofThom's theorem in K-theory (for real 
or complex vector bundles). After some algebraic preliminaries we study the 
possibilities of lifting the structural group of a real vector bundle to the spinorial 
group Spin(n) or Spin°(n). Theorem 4.22 is particularly important for our purpose. 

5. The Thom isomorphism in real and complex K-theory for real vector bundles. As 
in IV .1, the purpose of this section is to compute the K-theory of the Thom space 
of a vector bundle, but now the vector bundle is real, and the K-theory used is real 
or complex. With an additional spinorial hypothesis, we prove that K( V)~ K- n(X) 
if n is the rank of V. If the base is compact and n is a multiple of 8 (of 2 in complex 
K-theory), we prove that K(V) is a K(X)-module of rank one generated by the 
"Thom class" Tv. Finally, if f: X-+ Y is a proper continuous map between 
differentiable manifolds and ifDim( Y)- Dim(X) =O mod 8 (mod 2 in the complex 
case), we define, with an additional spinorial hypothesis, a "Gysin homomorphism" 
f.: K(X)-+ K(Y) which is analogous to the Gysin homomorphism in ordinary 
cohomology. This homomorphism is only used in V.4. 

6. Real and complex K-theory of real projective spaces and real projective bundles. 
This section is much more technical than the others (the results are only used in 
V.2). After some easy but tedious lemmas making systematic use of Clifford 
algebras, we are able to compute (up to extension) the real and complex K-theory 
of a real projective bundle (6.40 and 6.42). In the case of real projective spaces, the 
K-theory is completely determined (6.46 and 6.47). 

7. Operations in K-theory. One of the charms of K-theory is that we are able to 
define some very nice operations. For example, there are the exterior power 
operations )"k (due to Grothendieck). By a method due to Atiyah we determine all 
the operations in complex K-theory. With this method we show that the "Adams 
operations" t/Jk are the only ring operations in complex K-theory (7.13). They will 
be very useful in applications. 

The operations A_k and t/Jk may also be defined in real K-theory. However, their 
properties are more difficult to prove. We must refer to Adams [3] or Exercise 8.5 
for a complete proof. From the operations t/1\ we obtain the operations l. 
which will be very useful in V.2 and V.5. 

Chapter V. Some Applications of K-Theory 

1. H-space structures on spheres and the Hopfinvariant. Using the Adams opera­
tions in complex K-theory, we prove that the only spheres which admit an H-space 
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structure are S 1, S3 , and S7 . In fact, we prove more: iff: S2"- 1 - S" is a map of 
odd Hopf invariant, then n must be 2, 4 or 8. 

2. The solution of the vector jield problem on the sphere. Let us write every integer t 
in the form (2a-1)·2P, for P=y+41J with O~y~3, and detine p(t)=21 +8!5. Then 
the maximum number of independent vector tields on the sphere s- 1 is exactly 
p(t) -1 (2.10). The proof of this classical tbeorem is "elementary" (in the context 
of this book) and uses essentially the operations l in the real K-theory of real 
projective spaces. 

3. Characteristic classes and the Chem character. For each complex vector bundle 
V, we detine "Chem classes" c;(V) E H 2;(X; Z) in an axiomatic way (3.15). The 
construction of these classes is analogous to the construction of classes done in 
Section IV.3. By means of these classes, we construct a fundamental homomor­
phism, the "Chem character", from Kc(X) to neven(X; CQ). The Chem character 
induces an isomorphism between KJ.X) ®z CQ and neven(X; CQ) for every com­
pact X. 

4. The Riemann-Roch theorem and integrality theorems. To each complex stable 
vector bundle (resp. 0Spinorial real stable bundle) we associate an important 
characteristic class r(V), called the Todd class (resp. A(V), called the Atiyah­
Hirzebruch class). These classes play an important role in the "differentiable 
Riemann-Roch theorem": For each suitably continuous map f: X- Y and for 
each element x of KJX), we have the formula ch(f:(x))= f*H(A(v1 )· ch(x)) where 
A(v1 ) denotes the Atiyah-Hirzebruch class of the stable bundlef*(TY)-TX 
(assuming that Dim(Y)= Dim(X) mod 2 and that there is a stable 0 spinorial struc­
ture on v 1 ). From this theorem we obtain integral theorems for characteristic 
classes (4.21) and the homotopy invariance of certain characteristic classes (4.24). 

5. Applications of K-theory to slable homotopy. In this section we explain how 
K-theory may be applied to obtain some interesting information about the stable 
homotopy groups of spheres. We only include those partial results which can be 
obtained from the material in this book. More complete results are found in the 
series of J. F. Adams on the groups J(X) [2], and in Husemoller's book [1]. 



Chapter I 

Vector Bundles 

1. Quasi-Vector Bundles 

1.1. Let k be the field of real numbers or complex numbers1l, and let Xbe a topo­
logical space. 

1.2. Definition. A quasi-vector bundle with base X is given by 
l) a finite dimensional k-vector space Ex for every point x of X, 
2) a topology on the disjoint union E = U Ex which induces the natural 

topology on each Ex, such that the obvious projection re: E ~ X is continuous. 

1.3. Example. Let X be the sphere sn = {X E 1Rn+ 1 lllxll = 1 }. For every point X of 
sn we choose Ex tobe the vector space orthogonal to x. Then E= U Ex is naturally 
a subspace of sn x IRn+ 1 and may be provided with the induced topology. 

1.4. Example. Starting from the preceding example, let us arbitrarily choose a 
vector space Fx cEx for each x E sn; then if Fis given the induced topology again 
we ha ve a quasi-vector bundle on X. 

More examples are given in the following sections. 

1.5. A quasi-vector bundle is denoted by ~ = (E, re, X) or simply by E if there is 
no risk of confusion. The space E is the total space of ~ and Ex is the fiber of ~ 
at the point x. 

1.6. Let ~=(E, re, X) and ~'=(E', re', X') be quasi-vector bundles. A general 
morphism from ~ to ~· is given by a pair (/, g) of continuous maps f: X-~ X' and 
g: E -~ E' such that 

l) the dia gram 

E~'E' 

nl ln' 
xLx· 

is commutative. 

'lIn general, these are the most interesting cases; however, sometimes we will use the field of 
quatemions H. 
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2) The map gx: Ex -~ Ef(xl induced by g is k-linear. 
General morphisms can be composed in an obvious way. In this way we con­

struct a category whose objects are quasi-vector bundles and whose arrows are 
general morphisms. 

1.7. lf ~ and ~' have the same base X=X', amorphism between ~ and ~' isageneral 
morphism (f,g) such thatf=Idx. Such a morphism will be simply called g in the 
sequel. The quasi-vector bundles with the same base X are the objects of a sub­
category, whose arrows are the morphisms we ha ve just defined. 

1.8. Example. Let us return to Example 1.3, and let n=l. Let e'=(E',n',X') 
where X=X'=S 1 , and E'=S 1 x 1R with the product topology. Ifwe identify 1R2 

with the complex numbers as usual, we can define a continuous map g: E -~ E' 
by the formula g(x, z)=(x, iz/x) (this is well defined because x is orthogonal to z 
in JR2 = cr). In fact g is an isomorphism between E and E' in the category described 
in 1.7. 

1.9. Example. Let E" be the quotient of E' = S 1 x 1R by the equivalence relation 
(x, t)-(y, u) if y= ex and u= et with B= ± 1. Then E" is the total space of a quasi­
vector bundle over P 1(1R) called the infinite Moebius hand. By identifying P 1(1R) 
with S 1 by the map z ~---* z2 , we see easily that E" is also the quotient of 1 x 1R by 
the equivalence relation which identifies (0, u) with (1, -u). If we restrict u to 
ha ve norm less than 1, we obtain the classical Moebius band. 

We claim that the bundles E' and E" over S 1 are not isomorphic. Suppose 
there exists an isomorphismg: E' -4 E"; then we must ha ve E'- X' homeomorphic 
to E"- X" where X' (and X") denote the set of points of the form (x, O) with 
xE S 1 (note that X" ~X'). ButE" -X" is connected and E' -X' is not. 

1.10. Let Vbe a finite dimensional vector space (as always over k). The preceding 
examples show the importance of quasi-vector bundles ofthe form E=Xx V, as 
models. Tobe more precise, Ex= V and the total space may be identified with 
Xx V provided with the product topology. Such bundles are called trivial quasi­
vector bundles or simply trivial vector bundles. 

1.11. LetE=Xx VandE'=Xx V'betrivialvectorbundleswithbaseX. Wewant 
to explicitly describe the morphisms from E to E' (again in the category defined 
in 1.7). Since the diagram 

Xx V---+ Xx V' 

\/ 
X 

is commutative, for each point x of X, g induces a linear map Ux: V -4 V'. Let 
g: X-~ !l'(V, V') be the map defined by g(x)=gx. 
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1.12. Theorem. The map g: X--+ .P(V, V') is continuous relative to the natural 
topology of .P(V, V'). Conversely, let h: X--+ .P(V, V') bea continuous map, and 
let Îz: E----+ E' be the map which induces h(x) on eachfiber. Then Îz is a morphism of 
quasi-vector bundles. 

Proof To prove this theorem we choose a hasis e1, ••• , en of V and a hasis 
e1, •.. , eP of V'. With respect to this hasis, Bx may be regarded as the matrix 
(ocu(x)) where aii(x) is the ;th coordinate of the vector gx(e1). Hence the function 
x ~--+ aiix) is obtained from the composition of the following continuous maps. 

X~XxV~XxV'~V'~k, 

where P1(x)=(x, e1), y(x, v')=v', and Pi is the i1h projection of V'2kP on k. 
Since the functions aix) are continuous, the map g which they induce is also 
continuous according to the definition ofthe topology of .P(V, V'). 

Conversely, leth: X----+ .P(V, V') bea continuous map. Thenfz is obtained from 
the composition of the continuous maps 

Xx V~ Xx .P(V, V') x V ------4 Xx V', 

where c:5(x, v)=(x, h(x), v) and e(x, u, v)=(x, u(v)). Hence fz is continuous and 
defines a morphism of quasi-vector bundles. O 

V 

1.13. Remark. Clearly we have the identities !J=g and h=h. 
* The reader may also note that the second part ofthe theorem can be generalized 
to Banach bundles (see Lang [2]), but not the first part.* 

1.14. Remark. As we have seen in Example 1.9, it is not obvious whether or nota 
given quasi-vector bundle is isomorphic to a trivial bundle. Let TS" denote the 
quasi-vector bundle considered in 1.3 (this is the "tangent bundle" ofthe sphere). 
Then it is only at the end of this book that we are able to show that TS" is not 
isomorphic to a trivial bundle unless n = 1, 3, or 7 (cf. Section V.2). 

1.15. Let e = (E, n, X) be a quasi-vector bundle, and let X' be a subspace of X. 
The triple (n- 1(X'), nl,.-•<x'>' X') defines a quasi-vector bundle f which is called 
the restriction of e to X'. We denote it by e1X', Elx·, or even simply EX'. The fibers 
of e' are just the fibers of e over the subspace X'. If X"cX'cX, we have 

Wx·)IX"=elx"· 

1.16. More generally, Jet f: X'----+ X be any continuous map (X' is not necessarily 
a subspace of X). Foreverypointx' of X', letE~.=Ef<x'>· Then the setE'= U E~. 

x'eX' 

may be identified with the fiber product X' x x E, i.e. with the subset of X' x E 
formed by the pairs (x', e) such that f(x')=n(e). lf n': E'----+ X' is defined by 
n'(x', e)=x', it is clear that the triple (E', n', X') defines a quasi-vector bundle over 
X', when we provide E' with the topology induced by X' x E. We write e' as 
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f*(C,) or f*(E): this is the inverse image of C, by f We havef*(C,)=C, for f=ldx, 
and also (jf')*W=f'*(f*(~)) if f': X"~ X' is another continuous map. lf 
X' cX andfis the inclusion map, thenf*(~)= ~lr. 

1.17. Let (f, g):E~ ~ E be a general morphism of quasi-vector bundles with 
f: X'~ X (1.6). This general morphism induces a morphism h 1 : E~ ~ E'=f*(E) 
as shown in the diagram 

where h is induced by the projection of X' x E on its second factor. The general 
morphism (f, g) is called strict if h 1 is an isomorphism. 

1.18. Let us now consider two quasi-vector bundles over X and a morphism 
ce E ~ F. If we let E' = f*(E) as in 1.16 and F' = f*(F), we can also define a 
morphism rx'=f*(rx) from E' to F' by the formula rx~,=rxf<x'>· Ifwe identify E' 
with X' x x E and F' with X' x x F, then rx' is identified with Idr x x rx, which proves 
the continuity of the map rx'. 

f*(F) ------+ F 

rcy ; Ey) 
f*(E)~ j 

X' ~X 
In particular, if X' cX and iffis the inclusion map, thenf*(rx) is the restriction of rx. 
We denote it by rxlr or simply rxx,. The proof ofthe next proposition is easy and is 
left as an exercise for the reader: 

1.19. Proposition. Let f: X'~ X be a continuous map. Then the correspondence 
E r-7 f*(E) and rx r-7 f*(rx) induces a functor between the category of quasi-vector 
bundles over X and the category of quasi-vector bundles over X'. 

Exercises (Section 1.9) l-4 and 6. 

2. Vector Bundles 

A vector bundle is a quasi-vector bundle which is locally isomorphic to a trivial 
vector bundle. The next definition will make this idea more precise. 
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2.1. Definition. Let e=(E, n, X) bea quasi-vector bundle. Then e is said tobe 
"locally trivial" or a "vector bundle" if for every point x in X, there exists a neigh­
bourhood U of X SUCh that elu is isomorphic to a trivial bundle. 

2.2. The last condition may be expressed in the following way: there exists a finite 
dimensional vector space Vand a homeomorphism q>: Ux V- n- 1(U) such that 
the diagram 

commutes, and such that for every point y in U, the map q>Y: V- EY is k-linear. 
We call U a trivialization domain ofthe vector bundle e. A cover (U;) of Xis called 
a trivialization cover if each U; is a trivialization domain. 

Of course, there exist quasi-vector bundles which are not locally trivial (1.4). 

2.3. Example. Let us prove that Example 1.3, where E= TSn, is in fact a 
vector bundle. Let x E sn and let U be the neighbourhood of x defined by 
U={yE sn 1 (y, x) #o 

p 

Fig. 1 

where ( , ) denotes the usual scalar product in Rn+ 1 . Let P 0 be the subspace of 
Rn+ 1 which is orthogonal to x, and let q>: TSniu- U x P 0 be the map taking the 
pair (y, v) to the pair (y, w), where w is the orthogonal projection of v on P0 • 

Explicitly w=v-(x, v)x. Conversely, v may be obtained from w by the formula 

V=W- ((y, W)) X, showing that q> is a homeomorphism, and hence that TSn is 
x,y 

locally trivial. 

2.4. Example. Let V bea finite dimensional vector space over k, and let P(V) be 
the associated projective space (provided with the quotient topology). The sub­
space E of P(V) x V which consists of pairs (D, e) where DE P(V) and eE D, is 
fibered over P(V) by the first projection. More precisely, the fiber ED, where 
D E P( V), is the one-dimensional vector space whose elements are the vectors e 
such that eE D. We prove now that E is actually a vector bundle. Ifwe provide V 
with a positive Hermitian form when k = cr, or a positive quadratic form when 
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k = IR, for each line D we can consider the neigh bourhood U v which consists of 
the lines d which are not orthogonal to D. Now a trivialization of El un is given by 
the map cp: Elun __. Uv x D defined by cp(L\, e)=(d, e'), where e' is the orthogonal 
projection of e on D. By exhibiting explicit formulas for these projections as in 
2.3, one shows that cp is a homeomorphism. This bundle E is called the canonica! 
line bundle over P(V). 

2.5. There are other ways to deal with Example 2.4, For the real case it is well 
known that P(V)- S"/7L2 , where the dimension of V =n+ 1 (explicitly P(V) is the 
quotient of S" by the equivalence relation x- ±x). Let F be the quotient of 
S" x IR by the equivalence relation (x, t)-(x', t') ~ (x', t')=(ex, ~:t) where e=± 1. 
Then F is a quasi-vector bundle over P( V), and thus we can define a morphism 
f: F- E by the formula f(x, t)=(n(x), tx) where n: S"- P(V) is the natural 
projection, and tx E n(x). One can also definea morphism g: E __. Fby the formula 
g(D,v)=(x, t) where xEDnS" and t is the scalar such that tx=v. (Ofcourse in 
these formulas (x, t) represents the class of the pair (x, t) in S" x IR/"' .) Then 
fand g are isomorphisms, withf = g- 1 . 

In the complex case, P( V):::::: S 2" + 1/ U where the dimension of V= n + 1, and 
where U is the group of complex numbers of norm 1 ( explicitly P( V) is the quotient 
of S 2"+ 1 by the equivalence relation x- .h if IÂ.I = 1). The vector bundle Emay be 
identified in a similar fashion with the quotient of S 2"+ 1 X (C by the equtvalence 
relation (x, t)"' (x', t') ~ (x', t') = (ex, U) for eE U. 

2.6. Now for some terminology. When k = IR (resp. k = CC) a vector bundle will be 
called real (resp. complex). By abuse of our definitions, a trivial vector bundle will 
mean a vector bundle which is isomorphic to a bundle E =X x V as defined in 1.1 O. 
Vector bundles are in fact the objects of a full subcategory of the category of quasi­
vector bundles considered in 1. 7. We will denote this category by c!(X), or by 
c!k(X) when we want to make the basic field k explicit. Ifj: X'__. X is a continuous 
map, the functor f* defined in 1.19 induces a functor from c!(X) to c!(X'). To see 
this it suffices to show thatf*( ~) is locally trivial whenever ~ is locally trivial over X. 
Let x' E X' and Jet U bea neighbourhood ofj(x') such that '7 = ~lu is trivial. Then 
tiu· =g*('l) where U'=f- 1(U) and g: U' __. Vis the map induced by f Hence we 
have IJ:=:::Ux V and g*(IJ):=:::U'xu(Ux V):::::U'x V which is trivial over U'. In 
particular, if X' is a subspace of X, then ~IX' is a vector bundle. 

2.7. Proposition. Let E and F be two vector bundles over X and let g: E __. F bea 
morphism of vector bundles such that g x: Ex __. Fx is bijective for each point x in X. 
Then g is an isomorphism in the category c!(X). 

Proof. Let h: F __. E be the map defined by h(v)=g; 1(v) for vE Fx. It suffices to 
prove that h is continuous. Consider a neighbourhood U of x and isomorphisms 
{J:Eu- UxM and y:Fu- UxN. If we let g 1 =y·gu·fJ- 1 we have hu= 
p- 1 ·h 1 ·y where h1 is defined by h1(x)= (g 1 (x))- 1 (cf. Ll2). Since the map from 
Iso(M, N) to Iso(N, M) defined by rx r+ rx- 1 is continuous, h1 is continuous. Thus 
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h is continuous on a neighbourhood of each point of F; hence h is continuous on 
all of F. O 

2.8. Let e=(E, n, X) bea vector bundle. We define two maps (where Ex X E is 
the fiber product) 

by the formulas s(e, e')=e+e' and p(A., e)=A.e, where e and e' are vectors of the 
same fiber. These maps are continuous. To see this, it is enough to consider the case 
where E =X x V, since continuity is a local condition as before. In this case, 
ExxE~Xx Vx V and under this isomorphism s becomes the map from 
X x V x V to X x V defined by (x, v, v') ~ (x, v + v') which is clearly continuous. 
The continuity of p is proved in the same way. 

2.9. We define the rank of a vector bundle e = (E, n, X) to be the locally constant 
function r: X--+ N given by r(x)=Dim(Ex). The rank of e is equal to an integer n 
if r(x) = n for each point x of X. When the base is connected the rank is constant. 

Exercise (1.9.5). 

3. Clutching Theorems 

In the preceding section we defined vector bundles as locally trivial quasi-vector 
bundles. Now we would like to construct vector bundles using their restrictions to 
suitable subsets. 

3.1. Theorem ("clutching of morphisms"). Let ~ =(E, n, X) and ~' =(E', n', X) 

be two vector bund/es on the same base X. Let us consider a/so 
a) A cover of X consisting of open subsets U; (resp. a /ocal/y finite cover of X of 

closed subsets UJ. 
b) A collection of morphisms IX;: elu,--+ e'lu, such that 1X;Iu,nuj = IXj lu,nuj. 

Then there exists a unique morphism IX: e --+ e' such that 1Xu, =IX;. 

Proof The proof naturally breaks into two parts: 
(i) Uniqueness. Let e bea point of E. Since (U;) is a cover of X, the point e 

belongs to some Eu,. Hence IX(e) = r;(IX;(e)) where r;: E&,--+ E' is the inclusion map. 
(ii) Existence. To simplify the notation, let us identify Eu, and E&, with 

subsets of E and E' respectively. For eE E, let 1X(e) = 1X;(e) for eE Eu . It follows 
from b) that this definition is independent of the choice of i. The subsets 
Eu,= n- 1(U;) form an open cover (resp. a locally finite cover of closed subsets) of 
the space E; hence IX is continuous. Since cxx: Ex--+ E~ is linear, the map cx defines 
a morphism of vector bundles. O 
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3.2. Theorem ("clutching of bundles"). Let (U;) be an open cover of a space X 
(resp. a locally finite closed cover of a paracompact space X). Let e; = (E;, n;, U;) be 
a vector bundle over each U;o and let gi;:~;lu,,.,u1 ----+ eiiu,,.,u1be isomorphisms which 
satisfy the compatibility condition gki iu,,.,u1,.,u. =g~i·gj;, where g~i=gk)u,,.,ui,.,u• awl 
gj;=g)u,nUjf"lUI,· Then there exists a vector bundle e over X and isomorphisms 
g;: ~;----+ ;iu, such that the diagram 

ţi ~ţi ..,; u,,.,u1 "'i u,,.,uj 

g,lu,,.,u\ juilu,,.,u, (Diagram 1) 

eiu,,.,uj 

is commutative. 

Proof. For simplicity we use the same letter to denote a morphism and its restriction 
to a subspace. In the topologically disjoint union U E;, consider the equivalence 
relation e;"'ei <::> uie; )=ei, and let E= U Ej"' be given the quotient topology. 
The continuous map U E;----+ X induced by the n; defines a continuous map 
n: E---+ X. For xe U;. the structure of the vector space Ex=n- 1({x}), which is 
induced by the isomorphism Ex ~ E; i {xJ, does not depend on the choice of i since 
gii is linear on each fiber. Let g;: E;---+ n- 1(U;) be the map defi.ned by U;(e)=e, 
where e is the class of e in E. Then U; is continuous, bijective, open, and induces a 
linear isomorphism on each fiber. Therefore U; defines an isomorphism between 
the quasi-vector bundles (E;, n;, U;) and (Eu., niE , U;), where Eu.= n- 1(U;). 

1 ui 1 

Suppose that (U1) is an open cover of X.-Let x bea point of U;, and Iet Vbe a 
neighbourhood of X contained in U; such that ei iv is trivial. lf e is the quasi-vector 
bundle (E, n, X) as defined above, we have eu,~ei. Hence eiv~e;iv is trivial, 
which proves that e is locally trivial. 

Let us assume now that X is paracompact and that ( U;) is a el o sed cover which 
is locally finite. Let x0 bea point of X. Since the cover (U;) is locally finite, there 
exists a closed neighbourhood V of x0 which meets only a finite number of subsets 
U; 1 , •• • , U;P' and such that the bundles eiivj are trivial, where Vi=U;/"'V for 
j= 1, ... ,p. Without loss of generality we may assume that x0 E V1 and that 
e)vj ~ vj X kn. Starting with an arbitrary isomorphism lXI: eivl ~ vl X p we are 
going to detine by induction on r, a morphism IX, between eiv!U"'UV, and the 
trivial bundle (V1 u · · · u V,) x kn. Since ~iv,. is trivial, this is equivalent to defining 
a continuousmap p,: v,- ff(kn, P)which extends Yr with y,=IXr-Iiv,.f"l(V!U"'UV,.-1)" 

This extension is possible due to the Tietze extension theorem (Kelley [1], Bourbaki 
[1]). LetiX: ;iv----+ V x knbethemorphism thusobtained. Sincelso(P, kn)isopenin 
ff(P, k~, Theorem 1.12 shows that the set of points x of v., such that rxx is an 
isomorphism, is an open subset of v •. Since the sets v. are finite in number, the 
set of points x of V such that IXx is an isomorphism is a neighbourhood W of x0 . 

The map rxw: Eiw---+ Wxkn induces a homeomorphism Eiv.,.,w- (V.nW)xkn 
for each s. Hence rxw is a homeomorphism itself. Since this holds for every point 
Xo in X, we see that e is locally trivial in this case also. o 



3. Clutching Theorems 9 

3.3. Remark. Moreover one may say that the bundle ~ which we just constructed 
is "unique" in the following sense. Let ~' be another vector bundle, and Jet 
9;: ~;- ~'lu, be isomorphisms which make the diagram 

commutative. Then there exists a unique isomorphism ()(: ~- ~~ which makes 
the following diagram commutative. 

In fact, one may construct ()(in the following way. The morphism ()(;=9; ·9;- 1 is 
an isomorphism from ~u, to ~~., and over U;n Ui, we ha ve the identity 9i; = 9j 1 · 9; = 

9r 1 
• 9; according to diagrams (1) and (2). Therefore, over U;n Ui we ha ve 

()(; = 9; · 9;- 1 = 9} · 9j 1 = (J(i. The existence of()( is then guaranteed by Theorem 3.1. 
Its uniqueness is obvious. 

3.4. Example. Let S" be the sphere of 1R" + 1 , i.e. the set of points x = (x t> ••• , xn + 1) 
n+ 1 

such that llx11 2 = L (xY= 1. Let S~ (resp. S~) be the subset of S" whose points 
i; 1 

X satisfy xn+1~0 (resp. xn+1~0). Then S" is compact, s~ and s~ are closed 
subsets, and S~ nS'!.. = sn- 1 . 

L Fig. 2 

Letf: S"- 1 - GLp(k) bea continuous map. According to Theorem 3.2, there is 
a bundle Ef over S" which is naturally associated withf It is obtained from the 
clutching of the trivial bundles El= s~ X kP and Ez = s~ X kP by the "transition 
function" 9z1 =l sn- 1 X kP- sn- 1 X kP (911 and 9zz are the identity map). We 
see !ater (7 .6) that ali bundles over S" are isomorphic to bundles of this type. 

3.5. Theorem 3.2 is related to the problem of classification of "G-principal 

bund/es", where G is the topologica! group GL"(k). To be more precise, Jet us 
consider an arbitrary topologica! group G and a topologica! space X. A G-cocycle 


