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Introduction

Artificial Intelligence (AI) is radically changing the way we use computers to solve
problems. For example, by exploiting previous experience, which may be expressed in
terms of examples, a machine can identify patterns in a given situation and try to identify
the same patterns in a slightly different situation. This is essentially the way Al is used
nowadays. The field of Al is moving quickly, and unfortunately, it is often difficult to
understand.

The objective of the Agile Artificial Intelligence in Pharo book is to provide a practical
foundation for a set of expressive artificial intelligence algorithms using the Pharo
programming language. The book makes two large contributions over existing related
books. The first contribution is to bring agility in the way some techniques related to
artificial intelligence are designed, implemented, and evaluated. The book provides
material in an incremental fashion, beginning with a little perception and ending with a
full implementation of two algorithms for neuroevolution.

The second contribution is about making these techniques accessible to
programmers by detailing their implementation without overwhelming the reader
with mathematical material. There is often a significant gap between reading
mathematical formulas and producing executable source code from those formulas,
unfortunately. The book is meant to be accessible to a large audience by focusing on
executable source code.

Overall, this book details and illustrates some easy-to-use recipes to solve actual
problems. Furthermore, it highlights some technical details of these recipes using the
Pharo programming language. Agile Artificial Intelligence in Pharo is not a book about
how to use an existing API provided by external libraries. Instead, this book guides you to
build your own API for artificial intelligence.

Book Overview

Agile Artificial Intelligence in Pharo is divided into three parts, each targeting a specific
topic within the field of artificial intelligence—neural networks, genetic algorithms, and

neuroevolution.
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INTRODUCTION

The first part of the book is about neural networks. A neural network is a
computational metaphor simulating the interaction occurring between biological
neurons. The chapter begins with the implementation of a single neuron and shows its
limitations in terms of what it can achieve. Neural networks are then presented to solve
more complex problems. Various examples involving relatively simple data classification
tasks are presented.

The second part of the book covers genetic algorithms (GAs). The GA is a
computational metaphor simulating the evolution occurring in biological species. GAs
provide a way to solve problems without knowing the structure and shape of the solution
in advance. GAs simulate the way biological species evolve over time. For two candidate
solutions, as soon as the machine is able to say which one is closer to the solution, then
GAs may be considered to solve the problem. Numerous examples are provided in this
second part of the book, including an implementation of zoomorphic creatures, which
is a simulation of artificial life. We define a zoomorphic creature as an artificial organism
able to evolve in order to move itself through obstacles.

The third part of the book covers the field of neuroevolution, which is a combination
of genetic algorithms and neural networks. The evolution of neural networks is called
neuroevolution. Instead of training a neural network, as in classical deep learning (Part
1 of the book), neuroevolution begins with extremely simple networks and incrementally
adds complexity to them. Evolution makes those networks able to solve particular tasks.
This third part uses a Mario Bros-like game, which is used to build an artificial player
using neuroevolution.

Installing Pharo

Pharo works on the three common platforms, Mac OSX, Windows, and Linux. The web
page at https://pharo.org/download gives a very detailed instruction set and some
links to download Pharo. Pharo is easy to install. Just a matter of a few clicks.

The content of the book is known to work up until Pharo 9. The code provided in
the book does not heavily rely on the Pharo runtime. So the code provided in this book
should be easy to adapt to future versions of Pharo or to another dialect of Smalltalk.
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INTRODUCTION

Accompanying Source Code

Agile Artificial Intelligence in Pharo is a book about programming. It provides and
details a sizable amount of source code. Most of the code in the book is self-contained.
This means that no external libraries are used besides the Pharo core and the Roassal
visualization engine. Roassal is used to visually explore data and build a user interface.
Readers may prefer to transcribe the code into Pharo or use our dedicated Git repository
athttps://github.com/Apress/agile-ai-in-pharo.

A script that begins with ellipses (i.e., . . .) means that you need to append the script
to the last one seen before.

The code provided in this book is known to run on Pharo 8 and 9. To load the code,
you simply need to open a playground and execute the following code:

Metacello new
baseline: 'AgileArtificialIntelligence';
repository: 'github://Apress/agile-ai-in-pharo/src’;
load.

The GitHub repository contains the scripts folder, which contains all the scripts
and code snippets provided in the book.

The book focuses on Pharo; however, at the cost of a few small adaptations, all the
provided code will run on an alternative Smalltalk implementation (e.g., VisualWorks).

Who Should Read This Book?

This book is designed to be read by a wide audience of programmers. As such, there is no
need to have prior knowledge of neural networks, genetic algorithms, or neuroevolution.
There is even no need to have a strong mathematical background. We made sure that
there is no such prerequisite for most of the chapters. Some chapters require mild
mathematical knowledge. However, these chapters are self-contained and skipping them
will not negatively affect your overall understanding.

The book exposes some sophisticated Al techniques through the lenses of Pharo.
Readers will acquire the theoretical and practical tools to be used in Pharo. Note
that people willing to learn Pharo through Al are encouraged to complement it with
additional sources of information.
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The book is not made for people who want to learn about Al techniques without
heavily investing in a programming activity. Instead, Agile Artificial Intelligence in Pharo
is made for programmers who are either familiar with Pharo or are willing to be.

The Pharo Experience

The code provided in this book uses the Pharo programming environment.
Programming in Pharo is a fantastic and emotional experience. Literally. Pharo gives
meaning to Agile programming that cannot be experienced in another programming
language, or at least, not to the same degree. We will try to convey this wonderful
experience to the readers.

Pharo has a very simple syntax, which means that code should be understandable as
soon as you have some programming knowledge. Chapter 2 briefly introduces the Pharo
programming language and its environment in case you want to be familiar with it.

Why did we pick Pharo for this book? Pharo is a beautiful programming language
with a sophisticated environment. It also provides a new way of communication
between a human and a machine. By offering a live programming environment
and a language with minimal syntax, programmers may express their thoughts
in an incremental and open fashion. Although a number of similar programming
environments exist (e.g., Scratch and Squeak), Pharo is designed to be used in an
industrial software development setting.

Pharo syntax is concise, simple, unambiguous, and requires very little explanation
to be fully understood. If you do not know Pharo, we encourage you to become familiar
with the basics of its syntax and programming environment. Chapter 2 should help
in that respect. The debugger, inspector, and playground are unrivaled compared to
other programming languages and environments. Using these tools really brings an
unmatchable feeling when programming.
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Additional Reading

Agile Artificial Intelligence in Pharo provides a gentle introduction to Pharo in Chapter 2.
However, the presentation of Pharo is shallow and not complete. Readers who do

not know Pharo and but have experience in programming may find the chapter to be
enough. Readers who want to deepen their knowledge may want to look for additional
sources of learning. Here are some good readings on Pharo:

o http://pharo.orgis the official website about Pharo.

e https://mooc.pharo.org is probably the most popular way to learn
Pharo. It provides many short videos covering various aspects of
Pharo.

o http://books.pharo.org offers many valuable books and booklets
on Pharo.

o http://agilevisualization.comdescribes the Roassal visualization
engine, which also contains a gentle introduction to Pharo.

Visualization is omnipresent in Agile Artificial Intelligence in Pharo. Roassal is used
in many chapters and the reader is welcome to read Agile Visualization to become
familiar with this wonderful visualization toolkit.
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CHAPTER 1

The Perceptron Model

All major animal groups have brains made of neurons. A neuron is a specialized cell that
transmits electrochemical stimulation using an axon to other neurons. A neuron receives
this nerve impulse via a dendrite. Since the early age of computers, scientists have tried
to produce a computational model of a neuron. The perceptron was one of the first
models to mimic the behavior of a neuron.

This chapter plays two essential roles in the book. First, it presents the perceptron,
a fundamental model on which neural networks are based. Second, it also provides a
gentle introduction to the Pharo programming language. The chapter builds a simple
perceptron model in Pharo.

1.1 Perceptron as a Kind of Neuron

A perceptron is a kind of artificial neuron that models the behavior of a biological
neuron. A perceptron is a machine that produces an output for a provided set of input
values. Figure 1-1 gives a visual representation of a perceptron.

A perceptron accepts one, two, or more numerical values as inputs. It produces
a numerical value as output (the result of a simple equation that we will see shortly).
A perceptron operates on numbers, which means that the inputs and the output are
numerical values (e.g., integers or floating point values).

X‘IK
/—\ output

2
x2—W bias
w3

x3

Figure 1-1. Representing the perceptron
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Figure 1-1 depicts a perceptron. A perceptron is usually represented as a circle with
some inputs and one output. Inputs are represented as incoming arrows located on
the left of the central circle and the output as an outgoing arrow on the right of it. The
perceptron in Figure 1-1 has three inputs, noted x1, x2, and x3.

Not all inputs have the same importance for the perceptron. For example, an input
may be more important than other inputs. Relevance of an input is expressed using
a weight (also a numerical value) associated with that input. In Figure 1-1, the input
x1 is associated with the weight w1, x2 with the weight w2, and x3 with w3. Different
relevancies of some inputs allow the network to model a specialized behavior. For
example, for an image-recognition task, pixels located at the border of the picture
usually have less relevance than the pixels located in the middle. Weights associated
with the inputs corresponding to the border pixels will therefore be rather close to zero.
In addition to the weighted input value, a perceptron requires a bias, a numerical value
acting as a threshold. We denote the bias as b.

A perceptron receives a stimulus as input and responds to that stimulus by
producing an output value. The output obeys a very simple rule: if the sum of the
weighted inputs is above a particular given value, then the perceptron fires 1; otherwise,
it fires 0. Programmatically, we first compute the sum of the weighted inputs and
the bias. If this sum is strictly above 0, then the perceptron produces 1; otherwise, it
produces 0.

Formally, based on the perceptron given in Figure 1-1, we write z = X1 xwl + X2 *
w2 + X3 xw3 + b.Inthe general case, we writez = X; x; * w; + b. The variable i
ranges over all the inputs of the perceptron. If z > 0, then the perceptron produces 1 or
if z <0, it produces 0.

In the next section, we will implement a perceptron model that is both extensible
and maintainable. You may wonder what the big deal is. After all, the perceptron model
may be implemented in a few lines of code. However, implementing the perceptron
functionality is just a fraction of the job. Creating a perceptron model that is testable,
well tested, and extensible is the real value of this chapter. Soon will see how to train a
network of artificial neurons, and it is important to build this network framework on a
solid base.
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1.2 Implementing the Perceptron

In this section, we will put our hands to work and implement the perceptron model in
the Pharo programming language. We will produce an object-oriented implementation
of the model. We will implement a class called Neuron in a package called
NeuralNetwork. The class will have a method called feed, which will be used to compute
two values—z and the perceptron output.

This code will be contained in a package. To create a new package, you first need
to open a system browser by selecting the corresponding entry in the Pharo menu. The
system browser is an essential tool in Pharo. It allows us to read and write code. Most of
the programming activity in Pharo typically happens in a system browser.

Figure 1-2 shows a system browser, which is composed of five different parts. The top
part is composed of four lists. The left-most list gives the available and ready-to-be-used
packages. In Figure 1-2, the names Announcement, AST-Core and Alien are examples of
packages. The Announcement package is selected in the figure.

The second list gives the classes that belong to the selected package. Many classes
are part of the Announcement package, including the classes called Announcement,
AnnouncementSet, and Announcer.

The third list shows the method categories of the selected class. Method categories
sort methods into logical groups to clarify their purpose and make them easier to find.
Think of them as a kind of package for methods. Since no class is selected in the figure,
no method category is listed.

The right-most list shows the methods of the selected class, filtered by the selected
method category if any. Since no class is selected, no methods are listed. The bottom
part of a system browser displays source code, which is one of the following:

Selection Code Displayed

Method Selected method source code
Class Selected class definition
None New class template
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x =0 Announcements-Core
» EJAST-Core # ) Announcement
» EJAST-Core-Tests € AnnouncementDeliveryCondition

B AST-Core-Traits { Y AnnouncementSet
» [E1Alien-Core {1} AnnouncementSetWithExclusion
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instanceVariableNames: ''
classVariableNames: "'

package: 'Announcements-Core’

Figure 1-2. The Pharo system browser

P v

Right-click the left-most top list to create a new package, named NeuralNetwork. This

package will contain most of the code we will write in this first part of the book.

Select the package NeuralNetwork you just created and modify the template in the

bottom pane as follows:

Object subclass: #Neuron

instanceVariableNames: 'weights bias'

classVariableNames:
package: 'NeuralNetwork'

You then need to compile the code by “accepting” the source code. Right-click
the text pane and select the Accept option. The Neuron class defines two instance

variables—weights and bias. Note that we do not need to have variables for the

inputs and output values. These values will be provided as message arguments and



CHAPTER 1  THE PERCEPTRON MODEL

returned values. We need to add some methods to define the logic of this perceptron. In
particular, we need to compute the intermediate z and the output values. Let’s first focus
on the weights variable. We will define two methods to write a value in that variable and
another one to read from it.

You may wonder why we define a class called Neuron and not Perceptron. In the
next chapter, we will extend the Neuron class by turning it into an open abstraction for
an artificial neuron. This Neuron class is therefore a placeholder for improvements we
will make in the subsequent chapters. In this chapter we consider a perceptron, but in
the coming chapter we will move toward an abstract neuron implementation. The name
Neuron is therefore better suited.

Here is the code of the weights: method defined in the Neuron class:

Neuron>>weights: someWeightsAsNumbers
"Set the weights of the neuron.
Takes a collection of numbers as argument.”
weights := someWeightsAsNumbers

To define this method, you need to select the Neuron class in the class panel (second
top list panel). Then, write the code given without Neuron>>, which is often prepended in
documentation to indicate the class that should host the method. It is not needed in the
browser because the class is selected in the top pane. Figure 1-3 illustrates this. Next, you
should accept the code (again by right-clicking the Accept menu item). In Pharo jargon,
accepting a method has the effect of actually compiling it (i.e., using the Pharo compiler
to translate the Pharo source code into some bytecodes understandable by the Pharo
virtual machine). Once it’s compiled, a method may be executed. The code defines the
method named called weights: which accepts one argument, provided as a variable
named somelWeightsAsNumbers.

The weights := somelWeightsAsNumbers expression assigns the value
somelWeightsAsNumbers to the variable weights.
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Figure 1-3. Theweights: method of the Neuron class

Your system browser should now look like Figure 1-3. The weights: method writes a
value to the variable weights. Its sibling method that returns the weight is

Neuron>>weights
"Return the weights of the neuron.”
N weights

The * character returns the value of an expression, in this case the value of the
variable weights.
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Similarly, you need to define methods to assign a value to the bias variable and to
read its content. The method bias: is defined as follows:

Neurony>bias: aNumber
"Set the bias of the neuron"
bias := aNumber

Reading the variable bias is provided by the following:

Neuron>>bias
"Return the bias of the neuron”
A bias

So far, we have defined the Neuron class, which contains two variables (weights and
bias), and four methods (weights:, weights, bias:, and bias). We now need to define
the logic of this perceptron by applying a set of input values and obtaining the output
value. Let’'s add a feed: method that does exactly this small computation:

Neuron>>feed: inputs
|z |
z := (inputs with: weights collect: [ :x :w | x * w ]) sum + bias.
Az >0 ifTrue: [ 1 ] ifFalse: [ 0 ].

The feed: method simply translates the mathematical perceptron activation
formula previously discussed into the Pharo programming language. The expression
inputs with: weights collect: [ :x :w | x * w ] transforms the inputs and
weights collections using the supplied function. Consider the following example:

#(1 2 3) with: #(120 20 30) collect: [ :a :b | a + b ]

The expression #(1 2 3) is an array made of three numbers—1, 2, and 3. The
expression evaluates to #(11 22 33). Syntactically, the expression means that the
literal value #(1 2 3) receives a message called with:collect: with two arguments,
the literal array #(10 20 30) and the block [ :a :b | a + b ].You can verify the
value of that expression by opening a playground (accessible from the Tools top
menu). A playground is a kind of command terminal for Pharo (e.g., xtermin the UNIX
world). Figure 1-4 illustrates the evaluation of the expression (evaluated either by
choosing Print It from the right-click menu or using the adequate shortcut—Cmd+p on
OSX or Alt+p on other operating systems).
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x -0 Playground [ -
Page P B

#(1 2 3) with: #(10 20 30) collect:m ta:b | a+b] #112233

Figure 1-4. The playground

We can now play a little bit with the perceptron and evaluate the following code in
the playground we just opened:

p := Neuron new.

p weights: #(1 2).
p bias: -2.

p feed: #(5 2)

This piece of code evaluates to 1 (since (51 + 2#2)-2 equals to 7, which is greater
than 0), as shown in Figure 1-5.

X =Ll Playground [0 s .|
Page P B Al-=C

p := Neuron new.

p weights: #(1 2).

p bias: -2.

p feed: 4(5 2) 1 &

Figure 1-5. Evaluating the perceptron

1.3 Testing the Code

Now it is time to talk about testing. Testing is an essential activity whenever we write
code using Agile methodologies. Testing is about raising the confidence that the code we
write does what it is supposed to do.

Although this book is not about writing large software artifacts, we do write source
code. And making sure that this code can be tested in an automatic fashion significantly
improves the quality of our work. More importantly, most code is read far more

10
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often than it is written. Testing helps us produce maintainable and adaptable code.
Throughout this book, we will improve our code base. It is very important to make sure
that our improvements do not break existing functionalities.

For example, we previously defined a perceptron and informally tested it in a
playground. This informal test costs us a few keystrokes and a little bit of time. What if we
could repeat this test each time we modified our definition of perceptron? This is exactly
what unit testing is all about.

We will now leave the playground for a while and return to the system browser to
define a class called PerceptronTest:

TestCase subclass: #PerceptronTest
instanceVariableNames: "'

classVariableNames:
package: 'NeuralNetwork'

The TestCase class belongs to the built-in Pharo code base. Subclassing it is the first
step to creating a unit test. Many perceptrons will be created by the tests we define. We

can define the method as follows:

PerceptronTest>>newNeuron
"Return a new neuron"
A Neuron new

Tests can now be added to PerceptronTest. Define the following method:

PerceptronTest>>testSmallExample
| p result |
p := self newNeuron.
p weights: #(1 2).
p bias: -2.
result := p feed: #(5 2).
self assert: result equals: 1.

The testSmallExample method tests that the code snippet we previously gave
returns the value 1. You can run the test by clicking the gray circle located next to the
method name. The gray circle turns green to indicate that the test passes (see Figure 1-6).

11
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Figure 1-6. Testing the perceptron

% # tests [ | extension [ | F +L W

A green test means that no assertion failed and no error was raised during the test

execution. The testSmallExample method sends the assert:equals: message, which

tests whether the first argument equals the second argument.

EXERCISE: So far, you have only shallowly tested this perceptron. You can improve

these tests in two ways:

o Expand testSmallExample by feeding the perceptron p with different

values (e.g., -2 and 2 gives 0 as a result).

o Test the perceptron with different weights and biases.

In general, it is a very good practice to write a thorough suite of tests, even for a small

component such as this Neuron class.
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1.4 Formulating Logical Expressions

A canonical example of using a perceptron is to express boolean logical gates. The idea is

to have a perceptron with two inputs (each being a boolean value), and the result of the

modeled logical gate as output.

A little bit of arithmetic indicates that a perceptron with the weights #(1 1) and

the bias -1.5 formulates the AND logical gate. Recall that #(1 1) is an array of size 2

that contains the number 1 twice. The AND gate is a basic digital logic gate, and it is an

idealized device for implementing the AND boolean function. The AND gate may be

represented as the following table:

A B AAND B
0 0 0
0 1 0
1 0 0
1 1 1

We could therefore verify this with a new test method:

PerceptronTest>>testAND

| p |

p := self newNeuron.
p weights: #(1 1).
p bias: -1.5.

self assert

self assert:

self assert
self assert

: (p feed:
(p feed:
: (p feed:
: (p feed:

#(0 0))
#(0 1))
#(1 0))
#(1 1))

equals:
equals:
equals:
equals:

= O O O
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