
Agile Artificial
Intelligence in
Pharo

Implementing Neural Networks,
Genetic Algorithms, and Neuroevolution
—
Alexandre Bergel

Agile Artificial Intelligence
in Pharo

Implementing Neural Networks,
Genetic Algorithms,
and Neuroevolution

Alexandre Bergel

Agile Artificial Intelligence in Pharo: Implementing Neural Networks, Genetic
Algorithms, and Neuroevolution

ISBN-13 (pbk): 978-1-4842-5383-0			 ISBN-13 (electronic): 978-1-4842-5384-7
https://doi.org/10.1007/978-1-4842-5384-7

Copyright © 2020 by Alexandre Bergel​

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484253830. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Alexandre Bergel
Santiago, Chile

https://doi.org/10.1007/978-1-4842-5384-7

iii

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

Table of Contents

Part I: �Neural Networks�� 1

Chapter 1: �The Perceptron Model�� 3

1.1 ��Perceptron as a Kind of Neuron��� 3

1.2 ��Implementing the Perceptron�� 5

1.3 ��Testing the Code��� 10

1.4 ��Formulating Logical Expressions��� 13

1.5 ��Handling Errors�� 15

1.6 ��Combining Perceptrons�� 16

1.7 ��Training a Perceptron��� 19

1.8 ��Drawing Graphs��� 24

1.9 ��Predicting and 2D Points�� 25

1.10 ��Measuring the Precision�� 31

1.11 ��Historical Perspective�� 33

1.12 ��Exercises�� 34

1.13 ��What Have We Seen in This Chapter?�� 34

1.14 ��Further Reading About Pharo��� 35

iv

Chapter 2: �The Artificial Neuron�� 37

2.1 ��Limit of the Perceptron�� 37

2.2 ��Activation Function�� 38

2.3 ��The Sigmoid Neuron��� 40

2.4 ��Implementing the Activation Functions�� 41

2.5 ��Extending the Neuron with the Activation Functions��� 43

2.6 ��Adapting the Existing Tests�� 46

2.7 ��Testing the Sigmoid Neuron��� 46

2.8 ��Slower to Learn�� 48

2.9 ��What Have We Seen in This Chapter?�� 51

Chapter 3: �Neural Networks�� 53

3.1 ��General Architecture�� 53

3.2 ��Neural Layer��� 54

3.3 ��Modeling a Neural Network��� 59

3.4 ��Backpropagation�� 62

3.4.1 ��Step 1: Forward Feeding��� 63

3.4.2 ��Step 2: Error Backward Propagation��� 64

3.4.3 ��Step 3: Updating Neuron Parameters�� 66

3.5 ��What Have We Seen in This Chapter?�� 68

Chapter 4: �Theory on Learning�� 69

4.1 ��Loss Function��� 69

4.2 ��Gradient Descent��� 73

4.3 ��Parameter Update�� 76

4.4 ��Gradient Descent in Our Implementation��� 78

4.5 ��Stochastic Gradient Descent�� 79

4.6 ��The Derivative of the Sigmoid Function��� 87

4.7 ��What Have We Seen in This Chapter?�� 88

4.8 ��Further Reading��� 88

Table of Contents

v

Chapter 5: �Data Classification��� 89

5.1 ��Training a Network��� 89

5.2 ��Neural Network as a Hashmap�� 92

5.3 ��Visualizing the Error and the Topology��� 93

5.4 ��Contradictory Data��� 98

5.5 ��Classifying Data and One-Hot Encoding�� 99

5.6 ��The Iris Dataset�� 100

5.7 ��Training a Network with the Iris Dataset�� 102

5.8 ��The Effect of the Learning Curve��� 103

5.9 ��Testing and Validation�� 106

5.10 ��Normalization��� 109

5.11 ��Integrating Normalization into the NNetwork Class��� 114

5.12 ��What Have We Seen in This Chapter?�� 116

Chapter 6: �A Matrix Library��� 117

6.1 ��Matrix Operations in C��� 117

6.2 ��The Matrix Class��� 119

6.3 ��Creating the Unit Test��� 122

6.4 ��Accessing and Modifying the Content of a Matrix�� 123

6.5 ��Summing Matrices��� 125

6.6 ��Printing a Matrix�� 127

6.7 ��Expressing Vectors��� 128

6.8 ��Factors��� 129

6.9 ��Dividing a Matrix by a Factor��� 131

6.10 ��Matrix Product��� 132

6.11 ��Matrix Subtraction��� 133

6.12 ��Filling the Matrix with Random Numbers�� 135

6.13 ��Summing the Matrix Values��� 135

6.14 ��Transposing a Matrix�� 136

6.15 ��Example��� 137

6.16 ��What Have We Seen in This Chapter?�� 139

Table of Contents

vi

Chapter 7: �Matrix-Based Neural Networks�� 141

7.1 ��Defining a Matrix-Based Layer�� 141

7.2 ��Defining a Matrix-Based Neural Network�� 145

7.3 ��Visualizing the Results��� 149

7.4 ��Iris Flower Dataset��� 150

7.5 ��What Have We Seen in This Chapter?�� 151

Part II: �Genetic Algorithms��� 153

Chapter 8: �Genetic Algorithms��� 155

8.1 ��Algorithms Inspired from Natural Evolution��� 155

8.2 ��Example of a Genetic Algorithm��� 156

8.3 ��Relevant Vocabulary��� 157

8.4 ��Modeling Individuals�� 158

8.5 ��Crossover Genetic Operations�� 165

8.6 ��Mutation Genetic Operations��� 169

8.7 ��Parent Selection��� 173

8.8 ��Evolution Monitoring�� 179

8.9 ��The Genetic Algorithm Engine�� 181

8.10 ��Terminating the Algorithm�� 188

8.11 ��Testing the Algorithm��� 190

8.12 ��Visualizing Population Evolution�� 191

8.13 ��What Have We Seen in This Chapter?�� 194

Chapter 9: �Genetic Algorithms in Action��� 195

9.1 ��Fundamental Theorem of Arithmetic�� 195

9.2 ��The Knapsack Problem�� 197

9.2.1 ��The Unbounded Knapsack Problem Variant��� 198

9.2.2 ��The 0-1 Knapsack Problem Variant��� 200

9.2.3 ��Coding and Encoding��� 202

9.3 ��Meeting Room Scheduling Problem��� 202

Table of Contents

vii

9.4 ��Mini Sodoku��� 204

9.5 ��What Have We Seen in This Chapter?�� 207

Chapter 10: �The Traveling Salesman Problem��� 209

10.1 ��Illustration of the Problem�� 209

10.2 ��Relevance of the Traveling Salesman Problem�� 210

10.3 ��Naive Approach�� 211

10.4 ��Adequate Genetic Operations��� 218

10.5 ��The Swap Mutation Operation�� 218

10.6 ��The Ordered Crossover Operation�� 219

10.7 ��Revisiting Our Large Example�� 222

10.8 ��What Have We Seen in This Chapter?�� 224

Chapter 11: �Exiting a Maze�� 225

11.1 ��Encoding the Robot’s Behavior�� 225

11.2 ��Robot Definition��� 225

11.3 ��Map Definition�� 227

11.4 ��Example��� 231

11.5 ��What Have We Seen in This Chapter?�� 235

Chapter 12: �Building Zoomorphic Creatures��� 237

12.1 ��Modeling Join Points�� 238

12.2 ��Modeling Platforms�� 242

12.3 ��Defining Muscles��� 244

12.4 ��Generating Muscles��� 249

12.5 ��Defining the Creature��� 253

12.6 ��Creating Creatures��� 255

12.6.1 ��Serialization and Materialization of a Creature��� 257

12.6.2 ��Accessors and Utility Methods�� 258

12.7 ��Defining the World�� 259

12.8 ��Cold Run��� 262

12.9 ��What Have We Seen in This Chapter?�� 264

Table of Contents

viii

Chapter 13: �Evolving Zoomorphic Creatures��� 265

13.1 ��Interrupting a Process�� 265

13.2 ��Monitoring the Execution Time�� 266

13.3 ��The Competing Conventions Problem�� 267

13.4 ��The Constrained Crossover Operation�� 268

13.5 ��Moving Forward��� 269

13.6 ��Serializing the Muscle Attributes��� 273

13.7 ��Passing Obstacles�� 274

13.8 ��Climbing Stairs��� 277

13.9 ��What Have We Seen in This Chapter?�� 280

Part III: �Neuroevolution��� 281

Chapter 14: �Neuroevolution��� 283

14.1 ��Supervised, Unsupervised Learning, and Reinforcement Learning����������������������������������� 283

14.2 ��Neuroevolution��� 284

14.3 ��Two Neuroevolution Techniques��� 285

14.4 ��The NeuroGenetic Approach��� 285

14.5 ��Extending the Neural Network��� 286

14.6 ��NeuroGenetic by Example�� 287

14.7 ��The Iris Dataset�� 292

14.8 ��Further Reading About NeuroGenetic��� 294

14.9 ��What Have We Seen in This Chapter?�� 294

Chapter 15: �Neuroevolution with NEAT�� 295

15.1 ��Vocabulary��� 295

15.2 ��The Node Class�� 297

15.3 ��Different Kinds of Nodes�� 298

15.4 ��Connections��� 304

15.5 ��The Individual Class��� 306

15.6 ��Species�� 313

15.7 ��Speciation�� 315

Table of Contents

ix

15.8 ��The Crossover Operation�� 318

15.9 ��Abstract Definition of Mutation�� 320

15.10 ��Structural Mutation Operations�� 321

15.10.1 ��Adding a Connection�� 322

15.10.2 ��Adding a Node��� 325

15.11 ��Non-Structural Mutation Operation�� 326

15.12 ��Logging�� 326

15.13 ��NEAT��� 330

15.14 ��Visualization��� 340

15.15 ��The XOR Example��� 346

15.16 ��The Iris Example��� 351

15.17 ��What Have We Seen in This Chapter?�� 353

Chapter 16: �The MiniMario Video Game�� 355

16.1 ��Character Definition��� 356

16.2 ��Modeling Mario�� 360

16.3 ��Modeling an Artificial Mario Player�� 360

16.4 ��Modeling Monsters�� 361

16.5 ��Modeling the MiniMario World��� 363

16.6 ��Building the Game’s Visuals��� 368

16.7 ��Running MiniMario��� 372

16.8 ��NEAT and MiniMario��� 373

16.9 ��What Have We Seen in This Chapter?�� 375

�Afterword: Last Words��� 377

�Index�� 379

Table of Contents

xi

About the Author

Alexandre Bergel, Ph.D., is a professor (associate) at the

Department of Computer Science (DCC), at the University of

Chile and is a member of the Intelligent Software Construction

laboratory (ISCLab). His research interests include software

engineering, software performance, software visualization,

programming environment, and machine learning. He is

interested in improving the way we build and maintain

software. His current hypotheses are validated using rigorous

empirical methodologies. To make his research artifacts useful

not only to stack papers, he co-founded Object Profile.

xiii

About the Technical Reviewer

Jason Whitehorn is an experienced entrepreneur and

software developer and has helped many companies

automate and enhance their business solutions through data

synchronization, SaaS architecture, and machine learning.

Jason obtained his Bachelor of Science in Computer Science

from Arkansas State University, but he traces his passion

for development back many years before then, having first

taught himself to program BASIC on his family’s computer

while in middle school.

When he’s not mentoring and helping his team at work,

writing, or pursuing one of his many side-projects, Jason enjoys spending time with his

wife and four children and living in the Tulsa, Oklahoma region. More information about

Jason can be found on his website: https://jason.whitehorn.us.

https://jason.whitehorn.us

xv

Acknowledgments

Agile Artificial Intelligence in Pharo is the result of a long and collective effort made by

the ESUG community and beyond. The writing and the necessary research of the book

was sponsored by Lam Research and ESUG. Thank you! You made the book happen!

Many people helped get the book in shape. In no particular order, we are deeply

grateful to CH Huang, Chris Thorgrimsson, Milton Mamani, Jhonny Cerezo, Oleks

Zaytsev, Stéphane Ducasse, Torsten Bergmann, Serge Stinckwich, Alexandre Rousseau,

Sean P. DeNigris, Julián Grigera, Cesar Rabak, Yvan Guemkam, John Borden, Sudhakar

Krishnamachari, Leandro Caniglia, mldavis99, darth-cheney, Andy S., Jon Paynter,

Esteban Lorenzano, Juan-Pablo Silva, Francisco Ary Martins, Norbert Fortelny, forty,

Sebastián Zapata, and Renato Cerro.

Publishing a book involves some legal aspects that need to be carefully considered.

We thank Fernanda Carvajal Gezan and Rosa Leal, from the University of Chile.

We also thank the Apress team for trusting in the project and thank Jason Whitehorn,

who tech-reviewed the book.

xvii

Introduction

Artificial Intelligence (AI) is radically changing the way we use computers to solve

problems. For example, by exploiting previous experience, which may be expressed in

terms of examples, a machine can identify patterns in a given situation and try to identify

the same patterns in a slightly different situation. This is essentially the way AI is used

nowadays. The field of AI is moving quickly, and unfortunately, it is often difficult to

understand.

The objective of the Agile Artificial Intelligence in Pharo book is to provide a practical

foundation for a set of expressive artificial intelligence algorithms using the Pharo

programming language. The book makes two large contributions over existing related

books. The first contribution is to bring agility in the way some techniques related to

artificial intelligence are designed, implemented, and evaluated. The book provides

material in an incremental fashion, beginning with a little perception and ending with a

full implementation of two algorithms for neuroevolution.

The second contribution is about making these techniques accessible to

programmers by detailing their implementation without overwhelming the reader

with mathematical material. There is often a significant gap between reading

mathematical formulas and producing executable source code from those formulas,

unfortunately. The book is meant to be accessible to a large audience by focusing on

executable source code.

Overall, this book details and illustrates some easy-to-use recipes to solve actual

problems. Furthermore, it highlights some technical details of these recipes using the

Pharo programming language. Agile Artificial Intelligence in Pharo is not a book about

how to use an existing API provided by external libraries. Instead, this book guides you to

build your own API for artificial intelligence.

�Book Overview
Agile Artificial Intelligence in Pharo is divided into three parts, each targeting a specific

topic within the field of artificial intelligence—neural networks, genetic algorithms, and

neuroevolution.

xviii

The first part of the book is about neural networks. A neural network is a

computational metaphor simulating the interaction occurring between biological

neurons. The chapter begins with the implementation of a single neuron and shows its

limitations in terms of what it can achieve. Neural networks are then presented to solve

more complex problems. Various examples involving relatively simple data classification

tasks are presented.

The second part of the book covers genetic algorithms (GAs). The GA is a

computational metaphor simulating the evolution occurring in biological species. GAs

provide a way to solve problems without knowing the structure and shape of the solution

in advance. GAs simulate the way biological species evolve over time. For two candidate

solutions, as soon as the machine is able to say which one is closer to the solution, then

GAs may be considered to solve the problem. Numerous examples are provided in this

second part of the book, including an implementation of zoomorphic creatures, which

is a simulation of artificial life. We define a zoomorphic creature as an artificial organism

able to evolve in order to move itself through obstacles.

The third part of the book covers the field of neuroevolution, which is a combination

of genetic algorithms and neural networks. The evolution of neural networks is called

neuroevolution. Instead of training a neural network, as in classical deep learning (Part

1 of the book), neuroevolution begins with extremely simple networks and incrementally

adds complexity to them. Evolution makes those networks able to solve particular tasks.

This third part uses a Mario Bros-like game, which is used to build an artificial player

using neuroevolution.

�Installing Pharo
Pharo works on the three common platforms, Mac OSX, Windows, and Linux. The web

page at https://pharo.org/download gives a very detailed instruction set and some

links to download Pharo. Pharo is easy to install. Just a matter of a few clicks.

The content of the book is known to work up until Pharo 9. The code provided in

the book does not heavily rely on the Pharo runtime. So the code provided in this book

should be easy to adapt to future versions of Pharo or to another dialect of Smalltalk.

Introduction

https://pharo.org/download

xix

�Accompanying Source Code
Agile Artificial Intelligence in Pharo is a book about programming. It provides and

details a sizable amount of source code. Most of the code in the book is self-contained.

This means that no external libraries are used besides the Pharo core and the Roassal

visualization engine. Roassal is used to visually explore data and build a user interface.

Readers may prefer to transcribe the code into Pharo or use our dedicated Git repository

at https://github.com/Apress/agile-ai-in-pharo.

A script that begins with ellipses (i.e., ...) means that you need to append the script

to the last one seen before.

The code provided in this book is known to run on Pharo 8 and 9. To load the code,

you simply need to open a playground and execute the following code:

Metacello new

 baseline: 'AgileArtificialIntelligence';

 repository: 'github://Apress/agile-ai-in-pharo/src';

 load.

The GitHub repository contains the scripts folder, which contains all the scripts

and code snippets provided in the book.

The book focuses on Pharo; however, at the cost of a few small adaptations, all the

provided code will run on an alternative Smalltalk implementation (e.g., VisualWorks).

�Who Should Read This Book?
This book is designed to be read by a wide audience of programmers. As such, there is no

need to have prior knowledge of neural networks, genetic algorithms, or neuroevolution.

There is even no need to have a strong mathematical background. We made sure that

there is no such prerequisite for most of the chapters. Some chapters require mild

mathematical knowledge. However, these chapters are self-contained and skipping them

will not negatively affect your overall understanding.

The book exposes some sophisticated AI techniques through the lenses of Pharo.

Readers will acquire the theoretical and practical tools to be used in Pharo. Note

that people willing to learn Pharo through AI are encouraged to complement it with

additional sources of information.

Introduction

https://github.com/Apress/agile-ai-in-pharo

xx

The book is not made for people who want to learn about AI techniques without

heavily investing in a programming activity. Instead, Agile Artificial Intelligence in Pharo

is made for programmers who are either familiar with Pharo or are willing to be.

�The Pharo Experience
The code provided in this book uses the Pharo programming environment.

Programming in Pharo is a fantastic and emotional experience. Literally. Pharo gives

meaning to Agile programming that cannot be experienced in another programming

language, or at least, not to the same degree. We will try to convey this wonderful

experience to the readers.

Pharo has a very simple syntax, which means that code should be understandable as

soon as you have some programming knowledge. Chapter 2 briefly introduces the Pharo

programming language and its environment in case you want to be familiar with it.

Why did we pick Pharo for this book? Pharo is a beautiful programming language

with a sophisticated environment. It also provides a new way of communication

between a human and a machine. By offering a live programming environment

and a language with minimal syntax, programmers may express their thoughts

in an incremental and open fashion. Although a number of similar programming

environments exist (e.g., Scratch and Squeak), Pharo is designed to be used in an

industrial software development setting.

Pharo syntax is concise, simple, unambiguous, and requires very little explanation

to be fully understood. If you do not know Pharo, we encourage you to become familiar

with the basics of its syntax and programming environment. Chapter 2 should help

in that respect. The debugger, inspector, and playground are unrivaled compared to

other programming languages and environments. Using these tools really brings an

unmatchable feeling when programming.

Introduction

xxi

�Additional Reading
Agile Artificial Intelligence in Pharo provides a gentle introduction to Pharo in Chapter 2.

However, the presentation of Pharo is shallow and not complete. Readers who do

not know Pharo and but have experience in programming may find the chapter to be

enough. Readers who want to deepen their knowledge may want to look for additional

sources of learning. Here are some good readings on Pharo:

•	 http://pharo.org is the official website about Pharo.

•	 https://mooc.pharo.org is probably the most popular way to learn

Pharo. It provides many short videos covering various aspects of

Pharo.

•	 http://books.pharo.org offers many valuable books and booklets

on Pharo.

•	 http://agilevisualization.com describes the Roassal visualization

engine, which also contains a gentle introduction to Pharo.

Visualization is omnipresent in Agile Artificial Intelligence in Pharo. Roassal is used

in many chapters and the reader is welcome to read Agile Visualization to become

familiar with this wonderful visualization toolkit.

Introduction

http://pharo.org/
https://mooc.pharo.org
http://books.pharo.org/
http://agilevisualization.com/

PART I

Neural Networks

3
© Alexandre Bergel​ 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_1

CHAPTER 1

The Perceptron Model
All major animal groups have brains made of neurons. A neuron is a specialized cell that

transmits electrochemical stimulation using an axon to other neurons. A neuron receives

this nerve impulse via a dendrite. Since the early age of computers, scientists have tried

to produce a computational model of a neuron. The perceptron was one of the first

models to mimic the behavior of a neuron.

This chapter plays two essential roles in the book. First, it presents the perceptron,

a fundamental model on which neural networks are based. Second, it also provides a

gentle introduction to the Pharo programming language. The chapter builds a simple

perceptron model in Pharo.

1.1  �Perceptron as a Kind of Neuron
A perceptron is a kind of artificial neuron that models the behavior of a biological

neuron. A perceptron is a machine that produces an output for a provided set of input

values. Figure 1-1 gives a visual representation of a perceptron.

A perceptron accepts one, two, or more numerical values as inputs. It produces

a numerical value as output (the result of a simple equation that we will see shortly).

A perceptron operates on numbers, which means that the inputs and the output are

numerical values (e.g., integers or floating point values).

Figure 1-1.  Representing the perceptron

https://doi.org/10.1007/978-1-4842-5384-7_1#ESM

4

Figure 1-1 depicts a perceptron. A perceptron is usually represented as a circle with

some inputs and one output. Inputs are represented as incoming arrows located on

the left of the central circle and the output as an outgoing arrow on the right of it. The

perceptron in Figure 1-1 has three inputs, noted x1, x2, and x3.

Not all inputs have the same importance for the perceptron. For example, an input

may be more important than other inputs. Relevance of an input is expressed using

a weight (also a numerical value) associated with that input. In Figure 1-1, the input

x1 is associated with the weight w1, x2 with the weight w2, and x3 with w3. Different

relevancies of some inputs allow the network to model a specialized behavior. For

example, for an image-recognition task, pixels located at the border of the picture

usually have less relevance than the pixels located in the middle. Weights associated

with the inputs corresponding to the border pixels will therefore be rather close to zero.

In addition to the weighted input value, a perceptron requires a bias, a numerical value

acting as a threshold. We denote the bias as b.

A perceptron receives a stimulus as input and responds to that stimulus by

producing an output value. The output obeys a very simple rule: if the sum of the

weighted inputs is above a particular given value, then the perceptron fires 1; otherwise,

it fires 0. Programmatically, we first compute the sum of the weighted inputs and

the bias. If this sum is strictly above 0, then the perceptron produces 1; otherwise, it

produces 0.

Formally, based on the perceptron given in Figure 1-1, we write z = x1 * w1 + x2 *

w2 + x3 * w3 + b. In the general case, we write z = ∑i xi * wi + b. The variable i

ranges over all the inputs of the perceptron. If z > 0, then the perceptron produces 1 or

if z ≤ 0, it produces 0.

In the next section, we will implement a perceptron model that is both extensible

and maintainable. You may wonder what the big deal is. After all, the perceptron model

may be implemented in a few lines of code. However, implementing the perceptron

functionality is just a fraction of the job. Creating a perceptron model that is testable,

well tested, and extensible is the real value of this chapter. Soon will see how to train a

network of artificial neurons, and it is important to build this network framework on a

solid base.

Chapter 1 The Perceptron Model

5

1.2  �Implementing the Perceptron
In this section, we will put our hands to work and implement the perceptron model in

the Pharo programming language. We will produce an object-oriented implementation

of the model. We will implement a class called Neuron in a package called

NeuralNetwork. The class will have a method called feed, which will be used to compute

two values—z and the perceptron output.

This code will be contained in a package. To create a new package, you first need

to open a system browser by selecting the corresponding entry in the Pharo menu. The

system browser is an essential tool in Pharo. It allows us to read and write code. Most of

the programming activity in Pharo typically happens in a system browser.

Figure 1-2 shows a system browser, which is composed of five different parts. The top

part is composed of four lists. The left-most list gives the available and ready-to-be-used

packages. In Figure 1-2, the names Announcement, AST-Core and Alien are examples of

packages. The Announcement package is selected in the figure.

The second list gives the classes that belong to the selected package. Many classes

are part of the Announcement package, including the classes called Announcement,

AnnouncementSet, and Announcer.

The third list shows the method categories of the selected class. Method categories

sort methods into logical groups to clarify their purpose and make them easier to find.

Think of them as a kind of package for methods. Since no class is selected in the figure,

no method category is listed.

The right-most list shows the methods of the selected class, filtered by the selected

method category if any. Since no class is selected, no methods are listed. The bottom

part of a system browser displays source code, which is one of the following:

Selection Code Displayed

Method Selected method source code

Class Selected class definition

None New class template

Chapter 1 The Perceptron Model

6

Right-click the left-most top list to create a new package, named NeuralNetwork. This

package will contain most of the code we will write in this first part of the book.

Select the package NeuralNetwork you just created and modify the template in the

bottom pane as follows:

Object subclass: #Neuron

 instanceVariableNames: 'weights bias'

 classVariableNames: ''

 package: 'NeuralNetwork'

You then need to compile the code by “accepting” the source code. Right-click

the text pane and select the Accept option. The Neuron class defines two instance

variables—weights and bias. Note that we do not need to have variables for the

inputs and output values. These values will be provided as message arguments and

Figure 1-2.  The Pharo system browser

Chapter 1 The Perceptron Model

7

returned values. We need to add some methods to define the logic of this perceptron. In

particular, we need to compute the intermediate z and the output values. Let’s first focus

on the weights variable. We will define two methods to write a value in that variable and

another one to read from it.

You may wonder why we define a class called Neuron and not Perceptron. In the

next chapter, we will extend the Neuron class by turning it into an open abstraction for

an artificial neuron. This Neuron class is therefore a placeholder for improvements we

will make in the subsequent chapters. In this chapter we consider a perceptron, but in

the coming chapter we will move toward an abstract neuron implementation. The name

Neuron is therefore better suited.

Here is the code of the weights: method defined in the Neuron class:

Neuron>>weights: someWeightsAsNumbers

 "Set the weights of the neuron.

 Takes a collection of numbers as argument."

 weights := someWeightsAsNumbers

To define this method, you need to select the Neuron class in the class panel (second

top list panel). Then, write the code given without Neuron>>, which is often prepended in

documentation to indicate the class that should host the method. It is not needed in the

browser because the class is selected in the top pane. Figure 1-3 illustrates this. Next, you

should accept the code (again by right-clicking the Accept menu item). In Pharo jargon,

accepting a method has the effect of actually compiling it (i.e., using the Pharo compiler

to translate the Pharo source code into some bytecodes understandable by the Pharo

virtual machine). Once it’s compiled, a method may be executed. The code defines the

method named called weights: which accepts one argument, provided as a variable

named someWeightsAsNumbers.

The weights := someWeightsAsNumbers expression assigns the value

someWeightsAsNumbers to the variable weights.

Chapter 1 The Perceptron Model

8

Your system browser should now look like Figure 1-3. The weights: method writes a

value to the variable weights. Its sibling method that returns the weight is

Neuron>>weights

 "Return the weights of the neuron."

 ^ weights

The ^ character returns the value of an expression, in this case the value of the

variable weights.

Figure 1-3.  The weights: method of the Neuron class

Chapter 1 The Perceptron Model

9

Similarly, you need to define methods to assign a value to the bias variable and to

read its content. The method bias: is defined as follows:

Neuron>>bias: aNumber

 "Set the bias of the neuron"

 bias := aNumber

Reading the variable bias is provided by the following:

Neuron>>bias

 "Return the bias of the neuron"

 ^ bias

So far, we have defined the Neuron class, which contains two variables (weights and

bias), and four methods (weights:, weights, bias:, and bias). We now need to define

the logic of this perceptron by applying a set of input values and obtaining the output

value. Let’s add a feed: method that does exactly this small computation:

Neuron>>feed: inputs

 | z |

 z := (inputs with: weights collect: [:x :w | x * w]) sum + bias.

 ^ z > 0 ifTrue: [1] ifFalse: [0].

The feed: method simply translates the mathematical perceptron activation

formula previously discussed into the Pharo programming language. The expression

inputs with: weights collect: [:x :w | x * w] transforms the inputs and

weights collections using the supplied function. Consider the following example:

#(1 2 3) with: #(10 20 30) collect: [:a :b | a + b]

The expression #(1 2 3) is an array made of three numbers—1, 2, and 3. The

expression evaluates to #(11 22 33). Syntactically, the expression means that the

literal value #(1 2 3) receives a message called with:collect: with two arguments,

the literal array #(10 20 30) and the block [:a :b | a + b]. You can verify the

value of that expression by opening a playground (accessible from the Tools top

menu). A playground is a kind of command terminal for Pharo (e.g., xterm in the UNIX

world). Figure 1-4 illustrates the evaluation of the expression (evaluated either by

choosing Print It from the right-click menu or using the adequate shortcut—Cmd+p on

OSX or Alt+p on other operating systems).

Chapter 1 The Perceptron Model

10

We can now play a little bit with the perceptron and evaluate the following code in

the playground we just opened:

p := Neuron new.

p weights: #(1 2).

p bias: -2.

p feed: #(5 2)

This piece of code evaluates to 1 (since (5*1 + 2*2)-2 equals to 7, which is greater

than 0), as shown in Figure 1-5.

1.3  �Testing the Code
Now it is time to talk about testing. Testing is an essential activity whenever we write

code using Agile methodologies. Testing is about raising the confidence that the code we

write does what it is supposed to do.

Although this book is not about writing large software artifacts, we do write source

code. And making sure that this code can be tested in an automatic fashion significantly

improves the quality of our work. More importantly, most code is read far more

Figure 1-4.  The playground

Figure 1-5.  Evaluating the perceptron

Chapter 1 The Perceptron Model

11

often than it is written. Testing helps us produce maintainable and adaptable code.

Throughout this book, we will improve our code base. It is very important to make sure

that our improvements do not break existing functionalities.

For example, we previously defined a perceptron and informally tested it in a

playground. This informal test costs us a few keystrokes and a little bit of time. What if we

could repeat this test each time we modified our definition of perceptron? This is exactly

what unit testing is all about.

We will now leave the playground for a while and return to the system browser to

define a class called PerceptronTest:

TestCase subclass: #PerceptronTest

 instanceVariableNames: ''

 classVariableNames: ''

 package: 'NeuralNetwork'

The TestCase class belongs to the built-in Pharo code base. Subclassing it is the first

step to creating a unit test. Many perceptrons will be created by the tests we define. We

can define the method as follows:

PerceptronTest>>newNeuron

 "Return a new neuron"

 ^ Neuron new

Tests can now be added to PerceptronTest. Define the following method:

PerceptronTest>>testSmallExample

 | p result |

 p := self newNeuron.

 p weights: #(1 2).

 p bias: -2.

 result := p feed: #(5 2).

 self assert: result equals: 1.

The testSmallExample method tests that the code snippet we previously gave

returns the value 1. You can run the test by clicking the gray circle located next to the

method name. The gray circle turns green to indicate that the test passes (see Figure 1-6).

Chapter 1 The Perceptron Model

12

A green test means that no assertion failed and no error was raised during the test

execution. The testSmallExample method sends the assert:equals: message, which

tests whether the first argument equals the second argument.

EXERCISE: So far, you have only shallowly tested this perceptron. You can improve

these tests in two ways:

•	 Expand testSmallExample by feeding the perceptron p with different

values (e.g., -2 and 2 gives 0 as a result).

•	 Test the perceptron with different weights and biases.

In general, it is a very good practice to write a thorough suite of tests, even for a small

component such as this Neuron class.

Figure 1-6.  Testing the perceptron

Chapter 1 The Perceptron Model

13

1.4  �Formulating Logical Expressions
A canonical example of using a perceptron is to express boolean logical gates. The idea is

to have a perceptron with two inputs (each being a boolean value), and the result of the

modeled logical gate as output.

A little bit of arithmetic indicates that a perceptron with the weights #(1 1) and

the bias -1.5 formulates the AND logical gate. Recall that #(1 1) is an array of size 2

that contains the number 1 twice. The AND gate is a basic digital logic gate, and it is an

idealized device for implementing the AND boolean function. The AND gate may be

represented as the following table:

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

We could therefore verify this with a new test method:

PerceptronTest>>testAND

 | p |

 p := self newNeuron.

 p weights: #(1 1).

 p bias: -1.5.

 self assert: (p feed: #(0 0)) equals: 0.

 self assert: (p feed: #(0 1)) equals: 0.

 self assert: (p feed: #(1 0)) equals: 0.

 self assert: (p feed: #(1 1)) equals: 1.

Chapter 1 The Perceptron Model

