Agile Artificial
Intelligence in
Pharo

Implementing Neural Networks,
Genetic Algorithms, and Neuroevolution

Alexandre Bergel

ApPress:

Agile Artificial Intelligence
in Pharo

Implementing Neural Networks,
Genetic Algorithms,
and Neuroevolution

Alexandre Bergel

Apress®

Agile Artificial Intelligence in Pharo: Implementing Neural Networks, Genetic
Algorithms, and Neuroevolution

Alexandre Bergel
Santiago, Chile

ISBN-13 (pbk): 978-1-4842-5383-0 ISBN-13 (electronic): 978-1-4842-5384-7
https://doi.org/10.1007/978-1-4842-5384-7

Copyright © 2020 by Alexandre Bergel

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484253830. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5384-7

Table of Contents

About the Author ..o ———————— Xi
About the Technical ReVIEWETcussssssssssssmsssssssssssssssssssssssssssssssssssssssnssssssssnsnsas Xiii
Acknowledgments.......cccccuuisssnmmmmmmmmmmssssssssssnnnsmesssssssssssnnnseesssssssssnnnnnseesssssssnnnnnnnnnnss XV
INtroductionccucemisemismism s ———————_————— Xvii

Part I: Neural NetWoOrKScccueeeumemssmsmssmsnssssnnssssnnsssnssssnssssnssssnnsssnnnssnnnss 1

Chapter 1: The Perceptron Modelccccvciinisnssmmmmmmmmmmmsssssssssssnsseessssssssssssssssessssnns 3
1.1 Perceptron as a Kind 0f NEUION ... sss s 3
1.2 Implementing the PErCEPION ... s 5
1.3 TeStING the COUE.......ccoverrrireree e e 10
1.4 Formulating Logical EXPreSSIONSccvceverrererserseressssessessesssssssessessessssessessesssssssessessessssessesses 13
LI 5 =TT T (0] S 15
1.6 CombINING PEICEPLIONS.......ccciuierircrirercrte st s p e se s 16
1.7 Training @ PErCEPIION.......cov i e s s 19
1.8 Drawing Graphsccoveeerenerencrreserese s 24
1.9 Predicting and 2D POINES.......cocccviivncscrnse s s sens 25
1.10 Measuring the PrECISIONccccevevrrrierererensere s sessese e sse e s e s sasse s e ssessessesessesseseessssensesaes 31
1.11 HiStOriCal PEISPECHIVE ..coveerereere e rerere st s e s s s se s s sae e s sae s se e saesa e e e e naennes 33
L =] (- L 34
1.13 What Have We Seen in This Chapter? ... sssssssessesnes 34
1.14 Further Reading ADOUL PRAr0........ccoeoerecerrcr e 35

iii

TABLE OF CONTENTS

Chapter 2: The Artificial NEUroNccccuseenimsssssnssmssssssssssssssssssssssssssesssssssesssssnnnsenss 37
2.1 Limit of the PErCEPIIoNccvciicecrcr e e 37
2.2 ACHIVALION FUNCHION.......coiieeeeeeerer e 38
2.3 The SigMOit NEUION..........ccoiiereerreseserese e s se e se s e nnenens 40
2.4 Implementing the Activation FUNCLIONS..........cocuevncnnnesensse s s sessenens 41
2.5 Extending the Neuron with the Activation FUNCLIONScccoccvirevnincni e 43
2.6 Adapting the EXiStiNg TESISccvierrrrrererererrerere s s s e sessessessesassessessessssessessesaessssessessees 46
2.7 Testing the SigmOoid NEUFONccvecervererererrereresessersesessesessessessessssessessessssassessessesssssssesseses 46
P T (11T g (o T g SRR 48
2.9 What Have We Seen in This Chapter? ... sessesse s 51

Chapter 3: Neural NEtWOIKSccuuseemmmmsssnnnmmssssnsnmmssssssnsssssssnnsssssssnnssssssnnnsssssnnnnsnss 53
3.1 GENEral ArChItECIUNEccovecireere e e 53
BT\ LT L T S 54
3.3 Modeling @ Neural NETWOIKccccceveririnnieneninessre s se s e s sessse s se s e sssssnesaesns 59
BT 2 72T (0 (0] 0 T - 110 62

3.4.1 Step 1: FOrward FEEINGccvvererrererreriereressersersesessessessessesssssssessessessssessessessssssessesaes 63
3.4.2 Step 2: Error Backward Propagationc.cvveeenesenenensnssssesessssssssesessssssssssesesessens 64
3.4.3 Step 3: Updating Neuron Parametersoovcvrerereerenserseressssessesessessssessessesssssssessesees 66
3.5 What Have We Seen in This Chapter?cciviinnninnnnsscse s sesse s e sesne s 68

Chapter 4: Theory on Learninguccseeeessseesssssssssssssssssssssssssssssnnssssssssssssssssnssssssssssns 69
4.1 LOSS FUNCHON.....cceeeceeeriscsiseses s sse s e s s nes s nsnnens 69
4.2 Gradient DESCENL.........ccoveerierirese s r s r e nnre e 73
4.3 Parameter UPUate.......c.ccucvveiiiie et s 76
4.4 Gradient Descent in Our Implementation..........c.ccovvvvnienennsnrene e 78
4.5 Stochastic Gradient DESCENT...........covvieirern s 79
4.6 The Derivative of the Sigmoid FUNCLION ... 87
4.7 What Have We Seen in This Chapter? ... sessesse s 88
4.8 FUItNEr REAAINGceveerreerireirese s n s e e s 88

iv

TABLE OF CONTENTS

Chapter 5: Data Classificationccccvussemnrmssssnnsnmnssssnnmmsssssssmmsssssssessssssesssssssnsens 89
5.1 Training @ NETWOIKcoovciiieienn s s s s 89
5.2 Neural Network as @ Hashmapcccrvinininninns s ses e 92
5.3 Visualizing the Error and the TOPOI0gYccorreeerernerereneresesssesese e ses s sesesessenens 93
5.4 ContradiCtory DAta..........cccovererenernsesssesess s s n s ses e 98
5.5 Classifying Data and One-Hot ENCOMINGccccvevvvnieniennnnsne s sessesse s 99
5.6 The IriS DALASELccoviriciererirr s 100
5.7 Training a Network with the Iris Dataset.........ccccccvvrirvrieni e 102
5.8 The Effect of the Learning CUIVE........cccvvvrrninn s se s sss s snes 103
5.9 Testing and Validationccoverrnerrenrnscsre s 106
5.10 NOrmMaliZatioN.......ccoveeeeerereree s nr s 109
5.11 Integrating Normalization into the NNetwork Class..........cccvvvrnvennenennsenensesesssessssenenns 114
5.12 What Have We Seen in This Chapter? ... sessese s sesse s ssesessessesses 116

Chapter 6: A Matrix LIDraryccccuseemnmmsssnnnmmssssssssssssssssssssssssssssssssnsssssssssssssssnnnnss 117
6.1 Matrix Operations in €ccccvrcirenrrserre e e se e 117
6.2 THE MALFiX ClaSS......coveoereruerereeereeeserese e se e se s ae e e se e se s s nes e s 119
6.3 Creating the UNit TEST........cccooeerreerreser e 122
6.4 Accessing and Modifying the Content of @ MatriX..........ccovrereressnsesnresensse s 123
6.5 SUMMING MALTICES ..ceuervirreririerere st a e e s b e e s b e nns 125
6.6 Printing @ MALIIXceceeerrereriereresesserseseseesesessessess s e ssesseseesessessesaesessessesaessssessesassasssssensesaes 127
6.7 EXPreSSiNg VECTOIS......cocvierererier e st s e s e e se s sae s s s e s s s s e s e e sae s s e e saesaesaennean 128
O IR 1 o211 (0] 3 129
6.9 Dividing @ MatriX by @ FACIOrccvoevrcccrrcrreser e 131
6.10 MALFIX PrOUUCT ..ot 132
6.11 Matrix SUDIFACTIONcoveeeceeecee e 133
6.12 Filling the Matrix with Random NUMDEXScccoovvvirivririr e 135
6.13 SUMMING the MatriX VAIUESeevveerererirrereresesesseressesessessessessesesessessessssessessessssessessesses 135
6.14 TranspPoSing @ MaLriX.......ccoccvierenrninieniesn s r s s 136
6.15 EXAMPIE ... e e e e e 137
6.16 What Have We Seen in This Chapter? ... sessennes 139

\%

TABLE OF CONTENTS

Chapter 7: Matrix-Based Neural Networks.........ccccusseensmnssssnnsssssssnnnsssssssnsssssssnnnss 141
7.1 Defining @ Matrix-Based LAYer.........cccoevvirineninnnsine s ses s ssssessesnesnes 141
7.2 Defining a Matrix-Based Neural NEtWOrK ... sessennns 145
7.3Visu@lizing the RESUILSccoerreerererereer e 149
7.4 1riS FIOWEr DAASEL......cccveeerrierrnsesiness s s 150
7.5 What Have We Seen in This Chapter? ... sessessessessssessessessssessessesses 151

Part II: Genetic Algorithmsccccinineemmnnnsesnmmnsssssesssmsssssnss 193

Chapter 8: Genetic Algorithms........ccccvnnneennnmnsssnnmmmsssnmsssssn s —————— 155
8.1 Algorithms Inspired from Natural EVOIULIONcoeccrrenreeeenceree e 155
8.2 Example of a Genetic AlGQOrithm ..o e 156
8.3 Relevant VOCADUIArY...........cocvereresrcre e 157
8.4 Modeling INAIVIAUAISccvverereririerrere et s e s sae s saennes 158
8.5 Crossover GENEtiC OPErationS.......ccccvverererrerserseresessersessesssssssessessessssessessessssessessessssessessesses 165
8.6 Mutation Genetic OPerations.........ccccvrerieveererrerieriesessereresss s ssesessessessessssessessessesessessesaes 169
8.7 Parent SEIBCHION..........ccoeeereer e 173
8.8 Evolution MONITONINGcoceeeereereerereser s 179
8.9 The Genetic Algorithm ENQINE.........cocccerenernsenrnessre s s ses s sessssessssssessssenns 181
8.10 Terminating the AlgOFtNM..........ccoviiirirrr e 188
8.11 Testing the Algorithm ... e enes 190
8.12 Visualizing Population EVOIULIONccccovirinininnrrer s see e saeas 191
8.13 What Have We Seen in This Chapter?ccovvcrniennesers s ses e 194

Chapter 9: Genetic Algorithms in Actionccccemmmmmnrrnnnsssssssssssn e 195
9.1 Fundamental Theorem of AFthMETIC.........coveerrerreserr s 195
9.2 The Knapsack ProbIEM ... e sne s s snean 197

9.2.1 The Unbounded Knapsack Problem Variant...........cccccvrininnnnnininnnnsnsenesensensennens 198
9.2.2 The 0-1 Knapsack Problem Variantccccccvininnnninnnnnsnesess s sessessens 200
9.2.3 Coding and ENCOUING........cccvrrierininninieners s sese s s s sas e s s ssssessessesasssssessessens 202
9.3 Meeting Room Scheduling ProbIeM..........cccvvrierinninnninenssinsese s se s ssesessesaesnes 202

TABLE OF CONTENTS

9.4 MiNi SOUOKUvvvererererereseseseseesssssssssssssss s s s s s s e e e e e ss s s s s ssssssssssssenenenes 204
9.5 What Have We Seen in This Chapter? ... sese e sessesenns 207
Chapter 10: The Traveling Salesman Problem...........ccccivnnsnmmnmnsssssnnsssssssssesssssnnns 209
10.1 Hlustration of the ProDIEM...........ccc oo 209
10.2 Relevance of the Traveling Salesman Problem..........ccccovenninnisnnsssssesesseses e 210
10.3 NAIVE APPIOACHceveerieir et s e st s a e s be st e nne 211
10.4 Adequate Genetic OPerations..........ccvcrerrrerrriern s s ss e eaees 218
10.5 The Swap Mutation OPeration..........ccccvrevererrerierienensensesesessessesessesesse s ssesessessessessssessessens 218
10.6 The Ordered CrosSSover OPEration...........ccuvccrnierneninienesn s s sesse s 219
10.7 Revisiting Our Large EXample ..o sesese s sesse s sssssssessessesssssssessens 222
10.8 What Have We Seen in This Chapter? ... sessessessessssessessens 224
Chapter 11: Exiting @ Maze........cccummmmmmmmmnmmmmmmmmssssssssssmmssssssssssssssssssssssssssssssssssnsess 225
11.1 Encoding the Robot’s BENAVIONccoveieiiicrnierncsirese s 225
11.2 RODOt DEfiNitionccccovreiriciiririnscsisi s 225
11.3 Map Definition.......cccviiierririr e 227
B e 110 OSSO PTS SN 231
11.5 What Have We Seen in This Chapter? ..o ssssese s ssssessesaens 235
Chapter 12: Building Zoomorphic Creaturescccccrmrremsssssssssssssssmssssssssssssssssnns 237
12.1 Modeling JOin POINTS........ccovenmrenernsesenesesese s sesse e sesssssssssessesesessssenns 238
12.2 Modeling PlatfOrmS..........ccovermrise s s s ss s sessesenns 242
12.3 DEfiNING MUSCIEScverrerrrieriereresir s see s sse e e s e s ssese s e s s ss e e s e saesaese s e saesaesesensesnens 244
12.4 GENErating IMUSCIEScoveverererrestrseressessesessessessesessessessesessessessessssessessesssssssessessesssssssesaens 249
12.5 Defining the Creature........covvcrniennesn st 253
12.6 Creating CreatUres ...t s e se s st 255
12.6.1 Serialization and Materialization of @ Creaturec.ccccvrerreesresrnscrnesesesereenes 257
12.6.2 Accessors and Utility Methods ... 258

12.7 Defining the WOrIC.........cooi st 259
12.8 COI RUN....c.ceeecccee st e bbbt 262
12.9 What Have We Seen in This Chapter?ccvvvnernesessse s sessssese e ssssesenns 264

vii

TABLE OF CONTENTS

Chapter 13: Evolving Zoomorphic Creaturesccuuemmrmssssnnsmmsssssssssssssssssssssssnns 265
13.1 Interrupling @ ProCESS.......cccviiiiisirc e 265
13.2 Monitoring the EXECULiON TIME ... 266
13.3 The Competing Conventions ProDIEMccovevnererenernsesnese s 267
13.4 The Constrained Crossover OPeration..........ccvvnrneneninsinseness s sessessessessssessesaens 268
13.5 MOVING FOPWANGcccerreriiiiriere s sese e se s sse s sse e se s s ss e ssesaese s e saesaesas e nnesnens 269
13.6 Serializing the Muscle ALIHDULEScccevererrererr s se e e enens 273
13.7 PasSing ODSTACIES......ccevreverreriererirrerere e s s e s s e se s e s e s ss e e ssesaesaese s e saesaesasnensesanes 274
13.8 ClIMDING STAIrS......ccvceiiesrcr e s 277
13.9 What Have We Seen in This Chapter? ... ssssessessessssessessens 280

Part 11I: Neuroevolution........cceeeeumesessmmssssssssnssssssnssssssnsssssnsnnnssnnnnnnsnes 28 1

Chapter 14: Neuroevolution........ccusseesssmmmmmmmmssssssssnsmmsssssssssssssssssssssssssssssnenns 203

14.1 Supervised, Unsupervised Learning, and Reinforcement Learningcceevvereverserseraens 283
14.2 NEUFOBVOIULION ...t 284
14.3 Two Neuroevolution TECANIQUES.......cccverrrrirrenere s s e se s s s se s snens 285
14.4 The NeuroGenetic APProach..........ciciiinsnsn s 285
14.5 Extending the Neural NEtWOrKccoveerinmrnsennissnsse s sessesenns 286
14.6 NeuroGenetic by EXAMPIEccoeveirierienninnsere s sessese s s sss e s ssesessessessessssessesaens 287
14.7 The IriS DAtASEL.......cccoveriecrere s 292
14.8 Further Reading About NEUrOGENETIC.........ccvverereererreriereressereressssessesessesessessessessssessessens 294
14.9 What Have We Seen in This Chapter? ... sessessessssessesnens 294
Chapter 15: Neuroevolution with NEAT...........cccccmmmmmmmmmmmmsssssssssssssmsssssssssssssssnnns 295
LT (0T 11 - S 295
15.2 THE NOUE ClASSvcerveeerrrrerrrreserre s ss s sr s s sn s sesss e s 297
15.3 Different Kinds 0f NOUES ... s 298
LT 0] T 0] SR 304
15.5 The INIVIAUAI CIASScceeveeirisrsrnrnrninsssssss e ssssssssssssssssesenes 306
15,6 SPBCIES ...eviiricrerirsir et E e Rt e e ae 313
15.7 SPECIALION ... —————————— 315

viil

TABLE OF CONTENTS

15.8 The CroSSOVEr OPEratioNc.ccvivverrerrerersnsersererssssssessessessssessessesssssssessesssssssessessesssssnsesaens 318
15.9 Abstract Definition of MUtation ..o 320
15.10 Structural Mutation Operations.........cccovvrvinnnnn s 321
15.10.1 Adding @ CONNECTION.......ccceciiirererr e 322
15.10.2 Adding @ NOUEccoecercireririr e e e e 325
15.11 Non-Structural Mutation Operation...........c.cccvinnnininnsnns s 326
LT 1 0o o 3o ST 326
LTRSS 330
15.14 VIiSUNZATION ... s 340
15.15 The XOR EXAMPIEcrverrererrererrererserersessssesessesssssssessessessssessessesssssssessesssssssessessesssssnsensens 346
15.16 The IriS EXAMPIE.......coeiicrcerc e e s s 351
15.17 What Have We Seen in This Chapter? ... 353
Chapter 16: The MiniMario Video GAMEccusceemrrssssnnnnmssssssnnmssssssnsssssssnssssssssnnnss 355
16.1 Character Definitionccoveerecernernesr e 356
16.2 MOAEIING IMANIOcceeerrerreiererere s s s sre e s sae e e s s sr e e s ae e ae e s e saesae s e e e naennees 360
16.3 Modeling an Artificial Mario PIAYErcccvvrieneninsnnen e sesses s s s e s s saessessenns 360
16.4 Modeling MONSIEIScoiiiceiirerinsirere e s r e s 361
16.5 Modeling the MiniMario WOrldccoo s se s sesesnens 363
16.6 Building the GAme’s VISUAIS..........cocvererererenernseresesese e e s 368
16.7 RUNNING MINIMATTO......ccoieriiesesese e sn s s e senns 372
16.8 NEAT @nd MiniMari0........cccuecrermrmmnnmnsnnssssse s s s sesssssssaes 373
16.9 What Have We Seen in This Chapter?ccccveverrrnierenessensesessssessessessssessessessessssessesaens 375
Afterword: Last WOrds.......cuoussesmssamssssssasssssssssnsssassssnsssansssassssnsssassssansssnsssassssanssns 377
1T = 379

ix

About the Author

Alexandre Bergel, Ph.D., is a professor (associate) at the
Department of Computer Science (DCC), at the University of
Chile and is a member of the Intelligent Software Construction
laboratory (ISCLab). His research interests include software
engineering, software performance, software visualization,
programming environment, and machine learning. He is
interested in improving the way we build and maintain
software. His current hypotheses are validated using rigorous

empirical methodologies. To make his research artifacts useful
not only to stack papers, he co-founded Object Profile.

xi

About the Technical Reviewer

Jason Whitehorn is an experienced entrepreneur and
software developer and has helped many companies
automate and enhance their business solutions through data
synchronization, Saa$ architecture, and machine learning.
Jason obtained his Bachelor of Science in Computer Science
from Arkansas State University, but he traces his passion

for development back many years before then, having first
taught himself to program BASIC on his family’s computer
while in middle school.

When he’s not mentoring and helping his team at work,
writing, or pursuing one of his many side-projects, Jason enjoys spending time with his
wife and four children and living in the Tulsa, Oklahoma region. More information about
Jason can be found on his website: https://jason.whitehorn.us.

xiii

https://jason.whitehorn.us

Acknowledgments

Agile Artificial Intelligence in Pharo is the result of a long and collective effort made by
the ESUG community and beyond. The writing and the necessary research of the book
was sponsored by Lam Research and ESUG. Thank you! You made the book happen!

Many people helped get the book in shape. In no particular order, we are deeply
grateful to CH Huang, Chris Thorgrimsson, Milton Mamani, Jhonny Cerezo, Oleks
Zaytsev, Stéphane Ducasse, Torsten Bergmann, Serge Stinckwich, Alexandre Rousseau,
Sean P. DeNigris, Julidn Grigera, Cesar Rabak, Yvan Guemkam, John Borden, Sudhakar
Krishnamachari, Leandro Caniglia, mldavis99, darth-cheney, Andy S., Jon Paynter,
Esteban Lorenzano, Juan-Pablo Silva, Francisco Ary Martins, Norbert Fortelny, forty,
Sebastian Zapata, and Renato Cerro.

Publishing a book involves some legal aspects that need to be carefully considered.
We thank Fernanda Carvajal Gezan and Rosa Leal, from the University of Chile.

We also thank the Apress team for trusting in the project and thank Jason Whitehorn,
who tech-reviewed the book.

Introduction

Artificial Intelligence (AI) is radically changing the way we use computers to solve
problems. For example, by exploiting previous experience, which may be expressed in
terms of examples, a machine can identify patterns in a given situation and try to identify
the same patterns in a slightly different situation. This is essentially the way Al is used
nowadays. The field of Al is moving quickly, and unfortunately, it is often difficult to
understand.

The objective of the Agile Artificial Intelligence in Pharo book is to provide a practical
foundation for a set of expressive artificial intelligence algorithms using the Pharo
programming language. The book makes two large contributions over existing related
books. The first contribution is to bring agility in the way some techniques related to
artificial intelligence are designed, implemented, and evaluated. The book provides
material in an incremental fashion, beginning with a little perception and ending with a
full implementation of two algorithms for neuroevolution.

The second contribution is about making these techniques accessible to
programmers by detailing their implementation without overwhelming the reader
with mathematical material. There is often a significant gap between reading
mathematical formulas and producing executable source code from those formulas,
unfortunately. The book is meant to be accessible to a large audience by focusing on
executable source code.

Overall, this book details and illustrates some easy-to-use recipes to solve actual
problems. Furthermore, it highlights some technical details of these recipes using the
Pharo programming language. Agile Artificial Intelligence in Pharo is not a book about
how to use an existing API provided by external libraries. Instead, this book guides you to
build your own API for artificial intelligence.

Book Overview

Agile Artificial Intelligence in Pharo is divided into three parts, each targeting a specific
topic within the field of artificial intelligence—neural networks, genetic algorithms, and

neuroevolution.

xvii

INTRODUCTION

The first part of the book is about neural networks. A neural network is a
computational metaphor simulating the interaction occurring between biological
neurons. The chapter begins with the implementation of a single neuron and shows its
limitations in terms of what it can achieve. Neural networks are then presented to solve
more complex problems. Various examples involving relatively simple data classification
tasks are presented.

The second part of the book covers genetic algorithms (GAs). The GA is a
computational metaphor simulating the evolution occurring in biological species. GAs
provide a way to solve problems without knowing the structure and shape of the solution
in advance. GAs simulate the way biological species evolve over time. For two candidate
solutions, as soon as the machine is able to say which one is closer to the solution, then
GAs may be considered to solve the problem. Numerous examples are provided in this
second part of the book, including an implementation of zoomorphic creatures, which
is a simulation of artificial life. We define a zoomorphic creature as an artificial organism
able to evolve in order to move itself through obstacles.

The third part of the book covers the field of neuroevolution, which is a combination
of genetic algorithms and neural networks. The evolution of neural networks is called
neuroevolution. Instead of training a neural network, as in classical deep learning (Part
1 of the book), neuroevolution begins with extremely simple networks and incrementally
adds complexity to them. Evolution makes those networks able to solve particular tasks.
This third part uses a Mario Bros-like game, which is used to build an artificial player
using neuroevolution.

Installing Pharo

Pharo works on the three common platforms, Mac OSX, Windows, and Linux. The web
page at https://pharo.org/download gives a very detailed instruction set and some
links to download Pharo. Pharo is easy to install. Just a matter of a few clicks.

The content of the book is known to work up until Pharo 9. The code provided in
the book does not heavily rely on the Pharo runtime. So the code provided in this book
should be easy to adapt to future versions of Pharo or to another dialect of Smalltalk.

xviii

https://pharo.org/download

INTRODUCTION

Accompanying Source Code

Agile Artificial Intelligence in Pharo is a book about programming. It provides and
details a sizable amount of source code. Most of the code in the book is self-contained.
This means that no external libraries are used besides the Pharo core and the Roassal
visualization engine. Roassal is used to visually explore data and build a user interface.
Readers may prefer to transcribe the code into Pharo or use our dedicated Git repository
athttps://github.com/Apress/agile-ai-in-pharo.

A script that begins with ellipses (i.e., . . .) means that you need to append the script
to the last one seen before.

The code provided in this book is known to run on Pharo 8 and 9. To load the code,
you simply need to open a playground and execute the following code:

Metacello new
baseline: 'AgileArtificialIntelligence';
repository: 'github://Apress/agile-ai-in-pharo/src’;
load.

The GitHub repository contains the scripts folder, which contains all the scripts
and code snippets provided in the book.

The book focuses on Pharo; however, at the cost of a few small adaptations, all the
provided code will run on an alternative Smalltalk implementation (e.g., VisualWorks).

Who Should Read This Book?

This book is designed to be read by a wide audience of programmers. As such, there is no
need to have prior knowledge of neural networks, genetic algorithms, or neuroevolution.
There is even no need to have a strong mathematical background. We made sure that
there is no such prerequisite for most of the chapters. Some chapters require mild
mathematical knowledge. However, these chapters are self-contained and skipping them
will not negatively affect your overall understanding.

The book exposes some sophisticated Al techniques through the lenses of Pharo.
Readers will acquire the theoretical and practical tools to be used in Pharo. Note
that people willing to learn Pharo through Al are encouraged to complement it with
additional sources of information.

Xix

https://github.com/Apress/agile-ai-in-pharo

INTRODUCTION

The book is not made for people who want to learn about Al techniques without
heavily investing in a programming activity. Instead, Agile Artificial Intelligence in Pharo
is made for programmers who are either familiar with Pharo or are willing to be.

The Pharo Experience

The code provided in this book uses the Pharo programming environment.
Programming in Pharo is a fantastic and emotional experience. Literally. Pharo gives
meaning to Agile programming that cannot be experienced in another programming
language, or at least, not to the same degree. We will try to convey this wonderful
experience to the readers.

Pharo has a very simple syntax, which means that code should be understandable as
soon as you have some programming knowledge. Chapter 2 briefly introduces the Pharo
programming language and its environment in case you want to be familiar with it.

Why did we pick Pharo for this book? Pharo is a beautiful programming language
with a sophisticated environment. It also provides a new way of communication
between a human and a machine. By offering a live programming environment
and a language with minimal syntax, programmers may express their thoughts
in an incremental and open fashion. Although a number of similar programming
environments exist (e.g., Scratch and Squeak), Pharo is designed to be used in an
industrial software development setting.

Pharo syntax is concise, simple, unambiguous, and requires very little explanation
to be fully understood. If you do not know Pharo, we encourage you to become familiar
with the basics of its syntax and programming environment. Chapter 2 should help
in that respect. The debugger, inspector, and playground are unrivaled compared to
other programming languages and environments. Using these tools really brings an
unmatchable feeling when programming.

INTRODUCTION

Additional Reading

Agile Artificial Intelligence in Pharo provides a gentle introduction to Pharo in Chapter 2.
However, the presentation of Pharo is shallow and not complete. Readers who do

not know Pharo and but have experience in programming may find the chapter to be
enough. Readers who want to deepen their knowledge may want to look for additional
sources of learning. Here are some good readings on Pharo:

o http://pharo.orgis the official website about Pharo.

e https://mooc.pharo.org is probably the most popular way to learn
Pharo. It provides many short videos covering various aspects of
Pharo.

o http://books.pharo.org offers many valuable books and booklets
on Pharo.

o http://agilevisualization.comdescribes the Roassal visualization
engine, which also contains a gentle introduction to Pharo.

Visualization is omnipresent in Agile Artificial Intelligence in Pharo. Roassal is used
in many chapters and the reader is welcome to read Agile Visualization to become
familiar with this wonderful visualization toolkit.

xxi

http://pharo.org/
https://mooc.pharo.org
http://books.pharo.org/
http://agilevisualization.com/

PART |

Neural Networks

CHAPTER 1

The Perceptron Model

All major animal groups have brains made of neurons. A neuron is a specialized cell that
transmits electrochemical stimulation using an axon to other neurons. A neuron receives
this nerve impulse via a dendrite. Since the early age of computers, scientists have tried
to produce a computational model of a neuron. The perceptron was one of the first
models to mimic the behavior of a neuron.

This chapter plays two essential roles in the book. First, it presents the perceptron,
a fundamental model on which neural networks are based. Second, it also provides a
gentle introduction to the Pharo programming language. The chapter builds a simple
perceptron model in Pharo.

1.1 Perceptron as a Kind of Neuron

A perceptron is a kind of artificial neuron that models the behavior of a biological
neuron. A perceptron is a machine that produces an output for a provided set of input
values. Figure 1-1 gives a visual representation of a perceptron.

A perceptron accepts one, two, or more numerical values as inputs. It produces
a numerical value as output (the result of a simple equation that we will see shortly).
A perceptron operates on numbers, which means that the inputs and the output are
numerical values (e.g., integers or floating point values).

X‘IK
/—\ output

2
x2—W bias
w3

x3

Figure 1-1. Representing the perceptron

© Alexandre Bergel 2020
A. Bergel, Agile Artificial Intelligence in Pharo, https://doi.org/10.1007/978-1-4842-5384-7_1

https://doi.org/10.1007/978-1-4842-5384-7_1#ESM

CHAPTER 1 THE PERCEPTRON MODEL

Figure 1-1 depicts a perceptron. A perceptron is usually represented as a circle with
some inputs and one output. Inputs are represented as incoming arrows located on
the left of the central circle and the output as an outgoing arrow on the right of it. The
perceptron in Figure 1-1 has three inputs, noted x1, x2, and x3.

Not all inputs have the same importance for the perceptron. For example, an input
may be more important than other inputs. Relevance of an input is expressed using
a weight (also a numerical value) associated with that input. In Figure 1-1, the input
x1 is associated with the weight w1, x2 with the weight w2, and x3 with w3. Different
relevancies of some inputs allow the network to model a specialized behavior. For
example, for an image-recognition task, pixels located at the border of the picture
usually have less relevance than the pixels located in the middle. Weights associated
with the inputs corresponding to the border pixels will therefore be rather close to zero.
In addition to the weighted input value, a perceptron requires a bias, a numerical value
acting as a threshold. We denote the bias as b.

A perceptron receives a stimulus as input and responds to that stimulus by
producing an output value. The output obeys a very simple rule: if the sum of the
weighted inputs is above a particular given value, then the perceptron fires 1; otherwise,
it fires 0. Programmatically, we first compute the sum of the weighted inputs and
the bias. If this sum is strictly above 0, then the perceptron produces 1; otherwise, it
produces 0.

Formally, based on the perceptron given in Figure 1-1, we write z = X1 xwl + X2 *
w2 + X3 xw3 + b.Inthe general case, we writez = X; x; * w; + b. The variable i
ranges over all the inputs of the perceptron. If z > 0, then the perceptron produces 1 or
if z <0, it produces 0.

In the next section, we will implement a perceptron model that is both extensible
and maintainable. You may wonder what the big deal is. After all, the perceptron model
may be implemented in a few lines of code. However, implementing the perceptron
functionality is just a fraction of the job. Creating a perceptron model that is testable,
well tested, and extensible is the real value of this chapter. Soon will see how to train a
network of artificial neurons, and it is important to build this network framework on a
solid base.

CHAPTER 1 THE PERCEPTRON MODEL

1.2 Implementing the Perceptron

In this section, we will put our hands to work and implement the perceptron model in
the Pharo programming language. We will produce an object-oriented implementation
of the model. We will implement a class called Neuron in a package called
NeuralNetwork. The class will have a method called feed, which will be used to compute
two values—z and the perceptron output.

This code will be contained in a package. To create a new package, you first need
to open a system browser by selecting the corresponding entry in the Pharo menu. The
system browser is an essential tool in Pharo. It allows us to read and write code. Most of
the programming activity in Pharo typically happens in a system browser.

Figure 1-2 shows a system browser, which is composed of five different parts. The top
part is composed of four lists. The left-most list gives the available and ready-to-be-used
packages. In Figure 1-2, the names Announcement, AST-Core and Alien are examples of
packages. The Announcement package is selected in the figure.

The second list gives the classes that belong to the selected package. Many classes
are part of the Announcement package, including the classes called Announcement,
AnnouncementSet, and Announcer.

The third list shows the method categories of the selected class. Method categories
sort methods into logical groups to clarify their purpose and make them easier to find.
Think of them as a kind of package for methods. Since no class is selected in the figure,
no method category is listed.

The right-most list shows the methods of the selected class, filtered by the selected
method category if any. Since no class is selected, no methods are listed. The bottom
part of a system browser displays source code, which is one of the following:

Selection Code Displayed

Method Selected method source code
Class Selected class definition
None New class template

CHAPTER 1 THE PERCEPTRON MODEL

x =0 Announcements-Core
» EJAST-Core #) Announcement
» EJAST-Core-Tests € AnnouncementDeliveryCondition

B AST-Core-Traits { Y AnnouncementSet
» [E1Alien-Core {1} AnnouncementSetWithExclusion
» [& Announcements-Ce= = S bemosassmsantSubscription
> B PR E» 158

[EJ Announcements-H L ke . ouncementsCore

Browse dependencies =
» [1Athens-Balloon @ Find class IRegistry
» [&Athens-Cairo —amﬁ ncementSubscription
» [1Athens-Cairo-Tests GToolkit Examples 1 iptionBuilder
» [Athens-Core
» [Athens-Examples | 4 Newtag
» [E1 Athens-Morphic Set up scope
markdo [z Commit
® AllPackages O Scop MRemove = liassside
Exh-a »
7 Comment v e ——
Object subclass: #NameOfSubclass
instanceVariableNames: ''
classVariableNames: "'

package: 'Announcements-Core’

Figure 1-2. The Pharo system browser

P v

Right-click the left-most top list to create a new package, named NeuralNetwork. This

package will contain most of the code we will write in this first part of the book.

Select the package NeuralNetwork you just created and modify the template in the

bottom pane as follows:

Object subclass: #Neuron

instanceVariableNames: 'weights bias'

classVariableNames:
package: 'NeuralNetwork'

You then need to compile the code by “accepting” the source code. Right-click
the text pane and select the Accept option. The Neuron class defines two instance

variables—weights and bias. Note that we do not need to have variables for the

inputs and output values. These values will be provided as message arguments and

CHAPTER 1 THE PERCEPTRON MODEL

returned values. We need to add some methods to define the logic of this perceptron. In
particular, we need to compute the intermediate z and the output values. Let’s first focus
on the weights variable. We will define two methods to write a value in that variable and
another one to read from it.

You may wonder why we define a class called Neuron and not Perceptron. In the
next chapter, we will extend the Neuron class by turning it into an open abstraction for
an artificial neuron. This Neuron class is therefore a placeholder for improvements we
will make in the subsequent chapters. In this chapter we consider a perceptron, but in
the coming chapter we will move toward an abstract neuron implementation. The name
Neuron is therefore better suited.

Here is the code of the weights: method defined in the Neuron class:

Neuron>>weights: someWeightsAsNumbers
"Set the weights of the neuron.
Takes a collection of numbers as argument.”
weights := someWeightsAsNumbers

To define this method, you need to select the Neuron class in the class panel (second
top list panel). Then, write the code given without Neuron>>, which is often prepended in
documentation to indicate the class that should host the method. It is not needed in the
browser because the class is selected in the top pane. Figure 1-3 illustrates this. Next, you
should accept the code (again by right-clicking the Accept menu item). In Pharo jargon,
accepting a method has the effect of actually compiling it (i.e., using the Pharo compiler
to translate the Pharo source code into some bytecodes understandable by the Pharo
virtual machine). Once it’s compiled, a method may be executed. The code defines the
method named called weights: which accepts one argument, provided as a variable
named somelWeightsAsNumbers.

The weights := somelWeightsAsNumbers expression assigns the value
somelWeightsAsNumbers to the variable weights.

CHAPTER 1 THE PERCEPTRON MODEL

*x =0 Neuron>>weights: -
» [£1 Network-Mail A ¢ Neuron ! > instance side
[Network-Mail-Tests
» [£1 Network-Protocols
» [E] Network-Tests
» [Network-UUID
[z NeuralNetwork
» [NewValueHolder-Core
[E1 NewValueHolder-Tests
» [EJNumberParser
» [] 0Swindow-Core
» [10SWindow-SDL2
» [£10SWindow-SDL2-Examples
» [EJ0Swindow-Tests
markdo ™ L

@ AllPackages O ScopedView | @ Flat O Hier. | @ Inst.side O Classside | @ Methods O Vars | Class refs.
! Comment X € Neuron *® = "Inst. side methoc x - v

weights: someWeightsAsNumbers
"Set the weights of the neuron. P Doit @®n
Takes a collection of numbers as ar|p»Printit F
weights := someWeightsAsNumbers & Inspect it
& Basic Inspect it
& Debugit {+3D
#E Profile it
€, Find...
@, Find again #G
Code search... >
#» Redo
< Undo
[copy
4/4[33] 3 Cut

x # asyetunclassified (] extension [1F +L W

[l Paste sey
[} Paste...
! :

¢ Cancel e

Figure 1-3. Theweights: method of the Neuron class

Your system browser should now look like Figure 1-3. The weights: method writes a
value to the variable weights. Its sibling method that returns the weight is

Neuron>>weights
"Return the weights of the neuron.”
N weights

The * character returns the value of an expression, in this case the value of the
variable weights.

CHAPTER 1 THE PERCEPTRON MODEL

Similarly, you need to define methods to assign a value to the bias variable and to
read its content. The method bias: is defined as follows:

Neurony>bias: aNumber
"Set the bias of the neuron"
bias := aNumber

Reading the variable bias is provided by the following:

Neuron>>bias
"Return the bias of the neuron”
A bias

So far, we have defined the Neuron class, which contains two variables (weights and
bias), and four methods (weights:, weights, bias:, and bias). We now need to define
the logic of this perceptron by applying a set of input values and obtaining the output
value. Let’'s add a feed: method that does exactly this small computation:

Neuron>>feed: inputs
|z |
z := (inputs with: weights collect: [:x :w | x * w]) sum + bias.
Az >0 ifTrue: [1] ifFalse: [0].

The feed: method simply translates the mathematical perceptron activation
formula previously discussed into the Pharo programming language. The expression
inputs with: weights collect: [:x :w | x * w] transforms the inputs and
weights collections using the supplied function. Consider the following example:

#(1 2 3) with: #(120 20 30) collect: [:a :b | a + b]

The expression #(1 2 3) is an array made of three numbers—1, 2, and 3. The
expression evaluates to #(11 22 33). Syntactically, the expression means that the
literal value #(1 2 3) receives a message called with:collect: with two arguments,
the literal array #(10 20 30) and the block [:a :b | a + b].You can verify the
value of that expression by opening a playground (accessible from the Tools top
menu). A playground is a kind of command terminal for Pharo (e.g., xtermin the UNIX
world). Figure 1-4 illustrates the evaluation of the expression (evaluated either by
choosing Print It from the right-click menu or using the adequate shortcut—Cmd+p on
OSX or Alt+p on other operating systems).

CHAPTER 1 THE PERCEPTRON MODEL

x -0 Playground [-
Page P B

#(1 2 3) with: #(10 20 30) collect:m ta:b | a+b] #112233

Figure 1-4. The playground

We can now play a little bit with the perceptron and evaluate the following code in
the playground we just opened:

p := Neuron new.

p weights: #(1 2).
p bias: -2.

p feed: #(5 2)

This piece of code evaluates to 1 (since (51 + 2#2)-2 equals to 7, which is greater
than 0), as shown in Figure 1-5.

X =Ll Playground [0 s .|
Page P B Al-=C

p := Neuron new.

p weights: #(1 2).

p bias: -2.

p feed: 4(5 2) 1 &

Figure 1-5. Evaluating the perceptron

1.3 Testing the Code

Now it is time to talk about testing. Testing is an essential activity whenever we write
code using Agile methodologies. Testing is about raising the confidence that the code we
write does what it is supposed to do.

Although this book is not about writing large software artifacts, we do write source
code. And making sure that this code can be tested in an automatic fashion significantly
improves the quality of our work. More importantly, most code is read far more

10

CHAPTER 1 THE PERCEPTRON MODEL

often than it is written. Testing helps us produce maintainable and adaptable code.
Throughout this book, we will improve our code base. It is very important to make sure
that our improvements do not break existing functionalities.

For example, we previously defined a perceptron and informally tested it in a
playground. This informal test costs us a few keystrokes and a little bit of time. What if we
could repeat this test each time we modified our definition of perceptron? This is exactly
what unit testing is all about.

We will now leave the playground for a while and return to the system browser to
define a class called PerceptronTest:

TestCase subclass: #PerceptronTest
instanceVariableNames: "'

classVariableNames:
package: 'NeuralNetwork'

The TestCase class belongs to the built-in Pharo code base. Subclassing it is the first
step to creating a unit test. Many perceptrons will be created by the tests we define. We

can define the method as follows:

PerceptronTest>>newNeuron
"Return a new neuron"
A Neuron new

Tests can now be added to PerceptronTest. Define the following method:

PerceptronTest>>testSmallExample
| p result |
p := self newNeuron.
p weights: #(1 2).
p bias: -2.
result := p feed: #(5 2).
self assert: result equals: 1.

The testSmallExample method tests that the code snippet we previously gave
returns the value 1. You can run the test by clicking the gray circle located next to the
method name. The gray circle turns green to indicate that the test passes (see Figure 1-6).

11

CHAPTER 1 THE PERCEPTRON MODEL

x =0 PerceptronTest>>testSmallExample
» [E1 Network-Mail ~ (& Neuron ! » instanceside A,[]
[Network-Mail-Tests ~ PerceptronTest tests

¥

1 Network-Protocols
1 Network-Tests
» [£1 Network-UUID
[NeuralNetwork
» [£] NewValueHolder-Core
[E1 NewValueHolder-Tests
» [NumberParser
» 1 0SWindow-Core
» [0SWindow-SDL2
>
>

v

[£7 0SWindow-SDL2-Examples
] oswindow-Tests
markdo = L

| testsmallExample

@ AllPackages O ScopedView | @ Flat O Hier. | @ Inst.side O Classside | @ Methods O Vars | Classrefs. ©) Implementors) Senders
7 Comment X C PerceptronTest x lsetUp x YitestSmallExamplex + Inst.sidemethod x [O [& » ~

testSmallExample
| p result |
p := Neuron new.
p weights: #(1 2).
p bias: -2.
result := p feed: #(5 2).
self assert: result equals: 1

(]

Figure 1-6. Testing the perceptron

% # tests [| extension [| F +L W

A green test means that no assertion failed and no error was raised during the test

execution. The testSmallExample method sends the assert:equals: message, which

tests whether the first argument equals the second argument.

EXERCISE: So far, you have only shallowly tested this perceptron. You can improve

these tests in two ways:

o Expand testSmallExample by feeding the perceptron p with different

values (e.g., -2 and 2 gives 0 as a result).

o Test the perceptron with different weights and biases.

In general, it is a very good practice to write a thorough suite of tests, even for a small

component such as this Neuron class.

12

CHAPTER 1 THE PERCEPTRON MODEL

1.4 Formulating Logical Expressions

A canonical example of using a perceptron is to express boolean logical gates. The idea is

to have a perceptron with two inputs (each being a boolean value), and the result of the

modeled logical gate as output.

A little bit of arithmetic indicates that a perceptron with the weights #(1 1) and

the bias -1.5 formulates the AND logical gate. Recall that #(1 1) is an array of size 2

that contains the number 1 twice. The AND gate is a basic digital logic gate, and it is an

idealized device for implementing the AND boolean function. The AND gate may be

represented as the following table:

A B AAND B
0 0 0
0 1 0
1 0 0
1 1 1

We could therefore verify this with a new test method:

PerceptronTest>>testAND

| p |

p := self newNeuron.
p weights: #(1 1).
p bias: -1.5.

self assert

self assert:

self assert
self assert

: (p feed:
(p feed:
: (p feed:
: (p feed:

#(0 0))
#(0 1))
#(1 0))
#(1 1))

equals:
equals:
equals:
equals:

= O O O

13

