Jonathan I. Matondo Berhanu F. Alemaw Wennegouda Jean Pierre Sandwidi *Editors*

Climate Variability and Change in Africa

Perspectives, Experiences and Sustainability

Sustainable Development Goals Series

Series Editors

R. B. Singh, University of Delhi, Delhi, IndiaSuraj Mal, University of Delhi, Delhi, IndiaMichael E. Meadows, University of Cape Town, Rondebosch, South Africa

World leaders adopted Sustainable Development Goals (SDGs) as part of the 2030 Agenda for Sustainable Development. Providing in-depth knowledge, this series fosters comprehensive research on these global targets to end poverty, fight inequality and injustice, and tackle climate change.

The sustainability of our planet is currently a major concern for the global community and has been a central theme for a number of major global initiatives in recent years. Perceiving a dire need for concrete benchmarks toward sustainable development, the United Nations and world leaders formulated the targets that make up the seventeen goals. The SDGs call for action by all countries to promote prosperity while protecting Earth and its life support systems. This series on the Sustainable Development Goals aims to provide a comprehensive platform for scientific, teaching and research communities working on various global issues in the field of geography, earth sciences, environmental science, social sciences, engineering, policy, planning, and human geosciences in order to contribute knowledge towards achieving the current 17 Sustainable Development Goals.

This Series is organized into eighteen subseries: one based around each of the seventeen Sustainable Development Goals, and an eighteenth subseries, "Connecting the Goals," which serves as a home for volumes addressing multiple goals or studying the SDGs as a whole. Each subseries is guided by an expert Subseries Advisor.

Contributions are welcome from scientists, policy makers and researchers working in fields related to any of the SDGs. If you are interested in contributing to the series, please contact the Publisher: Zachary Romano [Zachary.Romano@springer.com].

More information about this series at http://www.springer.com/series/15486

Jonathan I. Matondo Berhanu F. Alemaw Wennegouda Jean Pierre Sandwidi Editors

Climate Variability and Change in Africa

Perspectives, Experiences and Sustainability

Editors Jonathan I. Matondo Department of Earth Sciences University of Swaziland Kwaluseni, Swaziland

Wennegouda Jean Pierre Sandwidi Department of Earth Sciences University of Ouagadougou Ouagadougou, Burkina Faso Berhanu F. Alemaw Department of Geology, Water Systems Analysis Group University of Botswana Gaborone, Botswana

ISSN 2523-3084 ISSN 2523-3092 (electronic) Sustainable Development Goals Series ISBN 978-3-030-31542-9 ISBN 978-3-030-31543-6 (eBook) https://doi.org/10.1007/978-3-030-31543-6

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cover illustration: Springer Nature.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

I am pleased to write the foreword to this book, which covers the full breadth and width of the issue of addressing climate change and variability in Africa.

The authors have endeavoured to address the state-of-art in the modelling and understanding of climate change dynamics, which requires modelling and developing several tools to aid in the what-if-analysis of climate change, its impact, and the vulnerability and evaluation of adaptation measures/ options. It is crucial that science is applied when addressing the challenges of creating a communication platform to advise policy makers in the area of climate change adaptation and institutional building.

I feel strongly that the book recognises the experience of project conceptualisation, planning and implementation. It includes a discussion of climate sensitivities and climate change mitigation measures alongside adaptation options using scientific and engineering knowledge infused with indigenous knowledge systems, which is both crucial and challenging.

This book was therefore conceived following consideration of the various challenges facing Africa in terms of the effects of climate change and variability, covering the following specific areas:

- · Modelling and predicting climate change impacts
- Climate variability and predictability
- Understanding and predicting climate
- Regional downscaling and forecasting: uncertainty and verification
- Africa in a changing climate
- Adaptation strategies in the agricultural sector
- Adaptation strategies in the water sector

These issues were pooled to form the four major themes of the book:

- I. Climate variability and change
- II. Hydrology and water resources issues
- III. Agricultural issues
- IV. Policy and social issues

The focus areas of the book's 15 chapters in terms of the aforementioned topic areas are summarised in the table below.

In Part I of the book covering issues regarding climate variability and change, cases of climate change and its impact are presented in the following chapters:

- 1. Overview of Climate Variability and Change in Africa: Perspectives and Experiences
- 2. Change, Variability and Trend Analysis of Hydro-Climatic Time Series.
- 3. An Overview of Dynamical Downscaling of Global Reanalyses for Improved Climate Reconstruction Over Data-Sparse Regions
- Evaluation of CMIP5 Climate Models for Precipitation Projections Over the Upper Blue Nile Basin

In Part II, covering hydrology and water resources issues, includes the following chapters:

- 5. Assessing Runoff Changes in Major Catchments in Swaziland Due to Climate Change
- 6. Impacts of Possible Climate Change and Variability on the Water Resources of Southern African: A Regional Modelling Approach
- 7. Framework of Best Practice for Climate Change Adaptation in Africa: The Water–Development Nexus
- Groundwater Occurrence, Recharge and Productivity in Tertiary Volcanic Rocks of Ethiopia and Climate Change Implications
- Relationships Among Surface Water Resources in the WR90, WR2005 and WR2012 Datasets of South Africa Using Mean Annual Runoff of Quaternary Catchments

Part III, focusing on agricultural issues, consists of the following chapters:

- 10. Integrated Assessment of Climate Change Impacts and Adaptation in Agriculture: The Case Study of the Wami River Sub-basin, Tanzania
- 11. Strengthening Horticultural Innovation Systems for Adaptation to Effects of Urbanisation and Climate Variability in Peri-Urban Areas
- 12. Evaluation of Different Tillage Systems for Improved Agricultural Production in Drought-Prone Areas of Malawi

Part IV, referring to social and political issues, involves the following chapters:

Chantan	Dout of Climoto Chon 20	and Manahility.					
Chapter	Farts of Chimate Change	and variability					
	Modelling and Predicting Climate Change Impacts	Climate Variability and Predictability	Understading and Predicting Climate	Regional Downscaling and Forecasting: Uncertainty and Verification	Africa in a Changing Climate	Adaptation Strategies in the Agricultural Sector	Adaptation Strategies in the water sector
PART I							
Chapter 1	Η	Μ	Μ	Μ	Н	Н	Η
Chapter 4	M	Н	Н	Η	М	Γ	L
Chapter 10	Μ	L	L	Μ	Н	Η	L
Chapter 11	Μ	L	L	Μ	Η	Η	L
PART II							
Chapter 3	M	L	L	Μ	Μ	Γ	Η
Chapter 6	M	Н	Н	Η	М	L	Η
Chapter 7	Н	Н	Н	Η	М	L	L
Chapter 12	Μ	L	L	Μ	М	Η	L
Chapter 13	M	Н	Н	Η	M	L	L
PART III							
Chapter 2	Μ	L	L	Μ	Н	Η	L
Chapter 9	Μ	L	L	Μ	Н	Η	L
Chapter 8	Μ	Н	Н	Η	М	L	Н
PART IV							
Chapter 13	Μ	L	L	Μ	М	Γ	L
Chapter 14	Μ	L	L	L	М	M	Н
Chapter 15	Μ	L	Н	L	М	Η	Н
Note: $H = H$	igh, M = Medium, L = Le	мс					

Foreword

- Africa in a Changing Climate: Redefining Africa's Agrarian Development Policies
- 14. Climate Change Adaptation Research and Policy for Agriculture in Southern Africa (CCARPASA)—Evidence from Rainfed Systems
- 15. Integrating Climate Change Adaptation and Mitigation into Sustainable Development Planning: The Policy Dimension

I have also noted that the book chapters and nexuses of climate change and variability are well correlated to illustrate the theory and practices of climate change and adaptation relevant to African conditions based on experiences of the authors who are domiciles in different parts of Africa.

This brings me to a concluding remark. In future, no single country will be able to address climate change alone and manage to develop adaptation and resilience in isolation. Climate change and adaptation systems do not follow political boundaries and a vast international pool of knowledge, technology and innovations will be required to achieve sustainable development and to realise the Sustainable Development Goals set forth by most countries in Africa—and the developing world in general.

I therefore welcome the book as a contribution to the ICSU Regional Office for Africa and its global environmental change program for ICSU being the initiator of this book, as well as an essential mobiliser of scientific research in the areas of climate change and variability, including adaptation issues in Africa.

Let me say finally: enjoy reading this book and contribute to the understanding of the impact of climate change on Africa's future.

> Dr. Daniel Nyanganyura Regional Director, ICSU Regional Office for Africa Pretoria, South Africa e-mail: d.nyanganyura@icsu-africa.org

Acknowledgements

This book contains a selection of chapters submitted by various authors from their respective institutions based on their wide experience in the area of climate change and variability in Africa. The editors of this book were able to use regional water dialogues, conferences and workshops in presenting various manuscripts, presentations and journal manuscript reviews. We appreciate the contributions that culminated in this book, intended for wide dissemination and outreach to young practitioners and policy makers that need to include wisdom in the integration of climate change and variability in the development planning of economies and infrastructure in order to cope with the challenges facing Africa.

The following indiviuals are gratefully acknowledged for their input, which enabled this book to be completed:

We would like to acknowledge the University of Swaziland, University of Botswana and the constructive discussions with our colleagues within the respective research groups on a wide range of issues regarding climate change and variability in Africa, as well as its impact and adaptaion issues.

Our gratitude goes to Dr. K. Laletsang, Head of Department of Geology, University of Botswana, and the Directors of the Department of Water Affairs in Botswana and Swaziland, for their continuous encouragement and support during the compilation and editing of this book.

Our gratitude goes to Dr. Daniel Nyanganyura of the ICSU Regional Office for Africa (ROA), Pretoria Office, for his continuous encouragement and support during the compilation and editing of this book.

Publishing of this book was made possible through coordinated support from the ICSU Regional Office for Africa (ROA), Pretoria Office. Dr. Daniel Nyanganyura and Dr. Richard Glover, both from the ICSU ROA, are especially thanked for their advice and assistance. While many organisations have increasingly focused on global change issues, we gratefully acknowledge the ICSU ROA, for maintaining its interest in and support for the efforts of climate change research issues in Africa.

The three authors are members of Global Change Program of ICSU. They are indebted for the encouragement rendered by ICSU Regional Office for Africa and its secretariat in initiating the writing this book.

The second author was a fellow of the Africa Climate Leadership Program (AfriCLP) for period 2018–2020, which he greatly acknowledges AfriCLP that inspired the publication of this manuscript and other co-authored chapters in this book. AfriCLP is coordinated and sponsored by the

University of Nairobi, Institute of Resource Assessment of the University of Dar es Salaam and IDRC.

All the authors and their affiliated organisations are gratefully acknowledged for their technical input and kind support.

> Prof. Jonathan I. Matondo Prof. Berhanu F. Alemaw Dr. Wennegouda Jean Pierre Sandwidi

Disclaimer

This publication contains the views expressed by the authors and experts involved acting in their individual capacity and may not necessarily reflect the views or policies of ICSU ROA. The designations of geographical entities in this book and the presentation of the material do not imply the expressions of any opinion whatsoever on the part of ICSU ROA concerning legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Mention of a commercial company or product for this book does not imply endorsement by ICSU ROA. The use of information from this publication concerning proprietary products for publicity or advertising purposes is not permitted. Trademark names and symbols are used in an editorial fashion with no intention of infringement on trademark or copyright laws. We regret any errors or omissions that may unwittingly have been made.

Contents

Part I Climate Variability and Change

1	Overview of Climate Variability and Change in Africa: Perspectives and Experiences Berhanu F. Alemaw and Jonathan I. Matondo	3
2	Change, Variability and Trend Analysis of Hydro-Climatic Time Series Coli Ndzabandzaba	9
3	An Overview of Dynamical Downscaling of GlobalReanalyses for Improved Climate Reconstruction OverData-Sparse RegionsD. B. Moalafhi, P. K. Kenabatho and B. P. Parida	19
4	Evaluation of the CMIP5 Climate Model for PrecipitationProjections Over the Upper Blue Nile BasinMeron Teferi Taye, Semu A. Moges and Paul Block	25
Par	t II Hydrology and Water Resources Issues	
5	Assessing Runoff Changes in Major Catchments in Swaziland Due to Climate Change Jonathan I. Matondo	39
6	Impacts of Possible Climate Change and Variability on the Water Resources of Southern African:A Regional Modelling Approach.Berhanu F. Alemaw and Jonathan I. Matondo	57
7	Framework of Best Practice for Climate Change Adaptation in Africa: The Water–Development Nexus Berhanu F. Alemaw	71
8	Groundwater Occurrence, Recharge and Productivity in Tertiary Volcanic Rocks of Ethiopia and Climate Change	

9	Relationships Among Surface Water Resources in the WR90, WR2005 and WR2012 Datasets of South Africa Using Mean Annual Runoff of Quaternary Catchments Masengo Ilunga	107
Par	t III Agricultral Issues	
10	Integrated Assessment of Climate Change Impacts and Adaptation in Agriculture: The Case Study of the Wami River Sub-basin, Tanzania Siza D. Tumbo, Khamaldin D. Mutabazi, Sixbert K. Mourice, Barnabas M. Msongaleli, Frank J. Wambura, Omari B. Mzirai, Ibrahim L. Kadigi, Frederick C. Kahimba, Peter Mlonganile, Hashim K. Ngongolo, Chuki Sangalugembe, Karuturi P. C. Rao and Roberto O. Valdivia	115
11	Strengthening Horticultural Innovation Systemsfor Adaptation to Effects of Urbanisation and ClimateVariability in Peri-Urban AreasMiriam Dalitso Kalanda Joshua, Cosmo Ngongondo,Felistus Chipungu, Charles Malidadi, Emma Liwenga,Amos Majule, Tanya Stathers, Job Rotich Kosgeiand Richard Lamboll	137
12	Evaluation of Different Tillage Systems for Improved Agricultural Production in Drought-Prone Areas of Malawi	157
Par	t IV Policy and Social Issues	
13	Africa in a Changing Climate: Redefining Africa's Agrarian Development Policies Ernest L. Molua	171
14	Climate Change Adaptation Research and Policy for Agriculture in Southern Africa (CCARPASA)—Evidence from Rainfed Systems	183
15	Integrating Climate Change Adaptation and Mitigation into Sustainable Development Planning: The Policy	

List of Figures

Fig. 1.1	Schematic diagram of the integrated approach.	
	Source Alemaw (2012, Fig. 2.3)	5
Fig. 1.2	Integrated modelling and assessment system (IMAS)	
-	framework. VAS variability assessment subsystem; HMS	
	hydrological modelling subsystem; IAS impact	
	assessment subsystem; ENSO El Niño-Southern	
	oscillation; GIS geographical information system; GCM	
	general circulation model: <i>GHG</i> greenhouse gas:	
	MAGICC model for assessment of greenhouse gas	
	induced climate change. <i>Source</i> Alemaw	
	(2012, Fig. 1.1)	6
Fig. 1.3	A typical modelling framework to understand climate	
0	change, agriculture and adaptation in a farming	
	ecosystem. <i>Source</i> Adopted from Alemaw and	
	Simalenga (2015, Fig. 8)	7
Fig. 2.1	Streamflow gauging station and quaternary	
0	sub-catchments in the Mbuluzi River basin	12
Fig. 2.2	Long-term annual rainfall of the study basin	13
Fig. 2.3	Long-term annual streamflow for Mbuluzi	
0	(W60K—GS32)	13
Fig. 2.4	Sen's linear estimates of precipitation	
0	(W60K—GS32)	16
Fig. 2.5	Sen's linear estimates of streamflow	
0	(W60K—GS32)	16
Fig. 4.1	Location of study area and historical mean annual	
0	total precipitation	27
Fig. 4.2	Annual and June to September seasonal total	
U	precipitation comparison of climate models and NMA	
	precipitation product (1983–2000). JJAS: June, July,	
	August and September	30
Fig. 4.3	Mean monthly precipitation averaged over the area	
0	covering the basin obtained from climate models and	
	from observation during the historical period.	30
Fig. 4.4	Annual (left) and June to September seasonal (right)	
0	precipitation relative change values obtained for 1:10	
	vears and 1:1 year precipitation for the four grid boxes.	
	JJAS: June, July, August and September	31
	the september of the september of the september of the sector secto	

Fig. 4.5	Mean monthly precipitation relative change factors of the four grid boxes for the months between March and September comprising the short and long rainy season over the basin
Fig. 4.6	June to September seasonal total precipitation obtained from NMA historical product for 1:10 (left) and 1:1 (right) precipitation. JJAS: June, July, August and
Fig. 4.7	The 75th percentile June to September seasonal precipitation change projected for the 2050s horizon for 1:10 (left) and 1:1 (right) precipitation. JJAS: June, July, August and September
Fig. 4.8	The 25th percentile June to September seasonal precipitation change projected for the 2050s horizon for 1:10 (left) and 1:1 (right) precipitation. JJAS: June, July, August and September
Fig. 5.1	Drainage basins in Swaziland and the location of gauging stations.
Fig. 5.2	Observed and simulated streamflow in the Komati Catchment during verification
Fig. 5.3	Observed and simulated streamflow in the Mbuluzi catchment during verification
Fig. 5.4	Observed and simulated streamflow in the Ngwavuma Catchment during verification
Fig. 5.5	Observed and simulated streamflow in the Usuthu Catchment during verification
Fig. 5.6	Projected runoff change in the Usuthu catchment. The box plots show the 95% confidence interval extending from the circles, which show the 2.5% and 97.5% quantiles
Fig. 5.7	A comparison between present and future flows at the 2.5%, median, and 97.5% quantiles runoff change in the Usuthu catchment
Fig. 5.8	Projected runoff change in the Komati catchment. The box plots show the 95% confidence interval extending from the circles, which show the 2.5% and 97.5% quantiles.
Fig. 5.9	A comparison between present and future flows at the 2.5%, median, and the 97.5% quantiles runoff change in the Komati catchment
Fig. 5.10	Projected runoff change in the Mbuluzi catchment. The box plots show the 95% confidence interval extending from the circles, which show the 2.5% and 97.5% quantiles
Fig. 5.11	A comparison between present and future flows at the

Fig. 5.11	A comparison between present and future flows at the	
	2.5%, median, and the 97.5% quantiles runoff change in	
	the Mbuluzi catchment.	50

Fig. 5.12	Projected runoff change in the Ngwavuma catchment. The box plots show the 95% confidence interval	
	extending from the circles, which show the 2.5% and	
	97.5% quantiles	51
Fig. 5.13	A comparison between present and future flows at the	
	2.5%, the median, and the 97.5% quantiles runoff	
	change in the Ngwavuma catchment	51
Fig. 6.1	DGHM-simulated 1961–1990 mean annual runoff and	
C	percentage change in runoff in the 2050s for three	
	alternative GCMs according to the IS92a emissions	
	scenario	61
Fig. 6.2	Water balance components of catchment Mlowo in	
0	Tanzania under three GCM scenarios of rainfall	
	(HADCM2, OSU and UKTR), and the UKTR scenario	
	of PET in the 2050s simulated by hydrological model	
	DGHM: a discharge: b soil moisture: and c actual	
	evapotranspiration	63
Fig. 6.3	Annual runoff change in Southern African region	
	according to the IS92a and IS92d policy emissions	
	scenario	67
Fig. 7.1	Suggested framework for climate change adaptation—	0.
	interaction between climate change, adaptation	
	interventions and water resources availability in relation	
	to risk and resilience of water resources systems. <i>Source</i>	
	Adopted from Alemaw and Sebusang 2017	74
Fig. 7.2	A model for climate change adaptation dynamics: a	
	framework for best practice to develop and repackage	
	decision support tools in water and natural resources	
	management. <i>Source</i> Alemaw and Sebusang (2017) and	
	Modified from Alemaw (2012): Alemaw and Chaoka	
	(2003, 2006b)	79
Fig 73	Projected temperature and precipitation changes for the	.,
1.8	vear 2050 based on experimentation on 20 GCMs—	
	simulated using MAGICC/SCENGEN 5.3 for a	
	$2.5 \times 2.5^{\circ}$ grid centered on -28.75° S/21.25°E in the	
	Limpopo Basin in the border between Botswana and	
	South Africa	82
Fig 74	Projected quarterly discharge of Lotsane River for the	
118. /	haseline period of 1971–2000 and the 2050 using three	
	GCM scenarios—simulated using a coupled GCM and a	
	monthly water balance model. O1 to $O4 = quarter 1$ to	
	quarter 4. Ouarter 1 (O1), OND = October to December:	
	Ouarter 2 (O2), JFM = January to March: Ouarter 3	
	(O3), $AMJ = April to June: Ouarter 4 (O4), JAS = July$	
	to September Source Alemaw and Sebusang (2017)	83
	to september source memory and secusing (2017)	55

Fig. 7.5	Reliability and resilience for the baseline period and the 2050 for the UKHADCM3 GCM scenario simulated using a coupled GCM-hydrological reservoir operation	
	model. <i>Source</i> Alemaw and Sebusang (2017)	84
Fig. 8.1	Location map of northwestern Ethiopian Plateau and	
	Main Ethiopian Rift. Source After Kiefer et al.	
	(2004) cited in Gidafie (2012)	93
Fig. 8.2	Flood basalts, in the Gerado catchment, south Wello	94
Fig. 8.3	a Contact between different flows of Ashange basalt;	
	and, b contact between Ashangi basalts and Aiba	
	basalts, and the red color line with small thickness of	
-	about 0.3 m is paliosoil	96
Fig. 8.4	a Slightly fractured aphanitic basalt exposed at	
	Genetober area (south Wello); and; b weathered basalt	~ -
F' 0.5	overlain by black cotton clay soil	97
F1g. 8.5	A fresh aphanitic basalt in Ayene kure river $(0220(17), E/127000(17))$	
	(032061/mE/13/8806mN) (left); and aphanitic basalt	
	along a road cut from Kola Diba to Chwanit $(0212242mE/12(0548mN))$ (right)	07
Eig 96	(U313342mE/1309548mN) (right)	97
Fig. 8.0	a Slightly weathered and fractured aphamuc	
	(314736mE/1276230mN); and b slightly weathered	
	appanitic baselt (331046mE/1281244mNI)	08
Fig 87	Lithological log of Ashiraf No. 2 horabola drilled at	90
1 lg. 0.7	appanitic baselt formation in the upper part of Abay	
	basin Source Avalew (2016)	00
Fig 88	a Fractured ignimbrite in the north western part of the	,,,
1 15. 0.0	Gerado river basin: and b Fractured and weathered tuff	
	underlined by fractured ignimbrite	100
Fig. 8.9	Tarmaber basalt overlying the Alaji basalts	100
	(558595mE/1230300mN) in south Wello	101
Fig. 8.10	Composite (average of 19 GCMs) change in temperature	
0	(°C) relative to 1961–1990 baseline for the A1B	
	emission scenario <i>Source</i> Tadege (2007)	102
Fig. 8.11	Climate change in Ethiopia—(a) Spring (Belg) season,	
-	March-June: rainfall with 500 mm rainfall isohyets for	
	1960–1989 (light brown), 1990–2009 (dark brown), and	
	2010–2039 (predicted, orange); and b Rainy (Kiremet)	
	season, June-September: average rainfall and shows the	
	average location of the June-September 500 mm rainfall	
	isohyets. Source Funk and Rowland (2012)	103
Fig. 10.1	The AgMIP's transdisciplinary approach to climate	
	change and adaptation impact assessments (Antle et al.	
	2015)	118
Fig. 10.2	Map of Wami river sub-basin, topography and weather	
	stations	119
Fig. 10.3	The two livelihood zones in the Wami River sub-basin	
	used in this study	120

Fig. 10.4	Climate trends of baseline data at four meteorological stations within the Wami River sub-basin	125
Fig. 10.5	Projections of maximum and minimum temperature, and	125
	annual and seasonal rainfall for RCP 8.5 mid-century in	
	the Wami River sub-basin. (*Seasonal rainfall for	
	Dodoma and Kongwa is for January to March (JFM),	
	and Milali and wami Prison is for March to May	100
E 10 6	(MAM)).	126
Fig. 10.6	Significance tests of changes in fair versus maximum	
	(better rew) for five CCM [*] encemble from BCD % 5	
	(bottom row) for five GCM [*] ensemble from RCP 8.5	
	the Warni Diver sub basin *E = CCM4 (Community	
	the wanner River sub-basin. * $E = CCM4$ (Community Climate Model version 4): $L = (CEDL ESM2M)$	
	(Geophysical Fluid Dynamics Laboratory Forth System	
	(Geophysical Fluid Dynamics Laboratory-Earth System Model): K = HADGEM2 ES (Hodley Global	
	Finitestructure Model 2 Forth System): B –	
	MDI ESM MD (Max Planck Institute for Meteorology	
	Farth System Model MD: O- MIDOC5 (Model for	
	Interdisciplinary Research on Climate 5)	127
Fig. 10.7	Rox plots showing the median inter quartile range and	127
Fig. 10.7	whiskers extending to 10 and 90% of maize yield	
	distributions from CMIP 5 GCMS simulations	
	for L HZ 1 (a ADSIM b DSSAT) and L HZ2	
	(a APSIM, d DSSAT) and $EHE2$,	128
Fig. 10.8	Sensitivity of current maize production system to	120
11g. 10.0	climate change. Absolute and relative mean	
	vield changes	129
Fig 10.9	Response of maize yield to the adaptation package	12)
115. 10.9	(fertiliser application of 60 keV/ha and four plants/ m^2	
	spacing) under the 2050 future climate scenario	
	Absolute and relative mean yield changes	130
Fig. 11.1	Trends of anomalies of countrywide mean annual	100
119.1111	rainfall and mean annual temperature in Malawi during	
	1970–2001 Dashed line depicts the direction of the	
	linear trend. <i>Source</i> Ngongondo et al. 2015	141
Fig. 11.2	Map of Malawi showing Mulanie District and location	
	of Sitolo Village. <i>Source</i> Ngongondo et al. (2015)	143
Fig. 11.3	Ruo River discharge: red line is linear regression trend	
0	line (November–February)	144
Fig. 11.4	Ruo River discharge; red line is linear regression trend	
U	line (July–October)	145
Fig. 11.5	Ruo River discharge; red line is linear regression trend	
U	line (March–June)	146
Fig. 11.6	Ruo River discharge; red line is linear regression trend	
-	line (July–October)	146
Fig. 11.7	Ruo River discharge; red line is linear regression trend	
-	line (annual, wet, dry and monthly)	147

Fig. 11.8	Mustard and rape planted in bag gardens at homesteads,	
	Sitolo Village, Mulanje, May 2012	150
Fig. 12.1	Map showing Chikwawa District and the study site	160
Fig. 12.2	Cumulative germination percentage for maize and	
	sorghum grown under Magoye ripper and hand hoe at	
	Mpasu village, Chikwawa in winter 2013	163
Fig. 12.3	Picture of Magoye ripper and land preparation using the	
	Magoye ripper	163
Fig. 12.4	Maize cobs from two tillage systems	165
Fig. 13.1	System interconnectedness and influence of climate	
	(Weyant et al. 1996; IPCC 2014)	175
Fig. 13.2	Integrated rural agrarian development strategy under	
	climate change	179
Fig. 14.1	Comparison of GCM projections at a 2.5° square GCM	
	grid centered at Pandamatenga/mid-Zambezi basin	
	(between 17.5–20°S and 25–27.5°E) (Adopted from	
	CCARDESA 2014, Fig. 3.1)	186
Fig. 15.1	Map of Representative Concentration Pathways (RCPs)	
	of greenhouse gases in the atmosphere against projected	
	global temperature change (\mathbf{a}) and demonstration of how	
	these average temperature changes would affect key	
	earth systems (b). <i>Source</i> : IPCC (2013, 2014)	195
Fig. 15.2	Schematic diagram illustrating a large benefits, b small	
	overlap between adaptation, mitigation and development	
	(adapted from Tompkins et al. 2013)	204
Fig. 15.3	Schematic aggregated sectoral summary of development	
	contribution of policy approaches in terms of adaptation	
	and mitigation (Dark bars = Adaptation; Light gray	
	bars = Mitigation)	205

List of Tables

Table 2.1	Groups of quaternary catchments according to	
	observed physical characteristics	12
Table 2.2	Coefficient of variation (CV) in catchment average	
	rainfall of CRU and streamflow WR90 datasets	15
Table 2.3	Mann-Kendall and Sen's test results for precipitation	
	and steamflow	15
Table 3.1	Summary of the global reanalysis details available	21
Table 4.1	List of CMIP5 climate models considered	
	in this study	28
Table 5.1	Optimal model parameters during calibration	
	for Komati, Usutu, Mbuluzi and Ngwavuma	
	catchments	44
Table 5.2	A comparison between observed and modeled runoff	
	(mm/day) in the Komati, Usutu, Mbuluzi and	
	Ngwavuma catchments	45
Table 5.3	Estimates of changes in runoff (in %) in Swaziland	
	and African rivers (IPCC 2001, 2007;	
	Matondo et al. 2004)	52
Table 6.1	Mean 1961–1990 annual generated runoff by DGHM	
	at ten selected grid cells in the SADC region, and the	
	coefficient of variation of 30 years of simulated runoff	
	according to three climate change scenarios	62
Table 6.2	Mean annual changes (%) in water balance	
	components of Mlowo catchment [for 3 rainfall	
	scenarios and UKTR/core scenario of PET, at a 0.5°	
	region $(8.5-9S/33.5-34E)$] for the 2050s	62
Table 6.3	Comparison between mean annual runoff changes at	
	ten regional windows of 0.5° grids under the IS92a	
	and IS92d emissions using the UKTR GCM	
	experiment.	67
Table 9.1	Selected hydrological characteristics (in net values)	
	of water management areas of South Africa	109
Table 9.2	Regression model fitting among WR90, WR2005	
T 11 10 1	and WR2012, through quaternary catchments	111
Table 10.1	Growing season characteristics for selected stations	100
	in the Wami sub-basin	120

Table 10.2	Sensitivity of current agricultural production systems to climate change: vulnerable households, gains, losses	
Table 10.3	and net economic impact (%) across GCMs Sensitivity of current agricultural production systems to climate change: Changes in poverty rates and per	130
	capita income. LHZ1 and LHZ2 indicate livelihood	121
Table 10.4	Impact of climate change on future agricultural	151
	production systems: Changes in poverty rates and per	
	capita income. LHZ1 and LHZ2 indicate livelihood	
T 11 10 5	zones 1 and 2, respectively	131
Table 10.5	Benefits of climate change adaptations: adoption rates $\binom{97}{2}$ and mean not form ratures with and without	
	(%), and mean net farm returns with and without adaptation (USD)	132
Table 10.6	Benefits of climate change adaptations: Mean poverty	132
1000 1000	rate (%) and per capita income (USD). Z1 and Z2 are	
	mean value of livelihood zones 1 and 2, respectively	132
Table 11.1	Percentage of urban population in Southern Africa	
	(1950–2050)	139
Table 11.2	Average annual population growth rates (%) of rural	
T 11 11 2	and urban areas in Malawi	139
Table 11.3	Mann–Kendall trends for the Ruo River,	145
Table 11 /	Crop treatment plots in Sitolo Village	143
14010 11.4	(with and without)	148
Table 11.5	Production of best technologies for one harvest	151
Table 11.6	Matrix scoring of practices or technologies by farmers in 2012	152
Table 12.1	Effects of tillage systems on mean leaf length and	152
10010 1201	number of leaves per plant, at Mpasu village,	
	Chikwawa, winter 2013.	164
Table 12.2	Influence of tillage systems on sorghum and maize	
	plant heights, at Mpasu, Chikwawa, winter 2013	164
Table 12.3	Effects of tillage systems on sorghum and maize grain	
T-1-1-14-1	yields (kg/ha)	165
1 able 14.1	during the baseline period in the study area	186
Table 14.2	Projected percentage vield reductions for the various	100
10010 11.2	scenarios	186
Table 14.3	Direct runoff that can be harvested for the baseline	
	climatology	187
Table 14.4	Direct runoff that can be harvested under the three	
	climate change scenarios in the 2050s for three rainfed	
	cropping systems simulated using a coupled	107
Table 15.1	Climate Compatible Development (CCD) strategies	18/
10010 13.1	for change adaptation and mitigation in sustainable	
	development planning	194
	1 I Ø	

Classification scheme of approaches that align with the	
three main components of Climate Compatible	
Development (CCD)	204
Sectoral relevance of development planning and	
climate change in the implementation of CCD in	
selected countries	206
	Classification scheme of approaches that align with the three main components of Climate Compatible Development (CCD)