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Introduction

This book has been drafted with a unique approach. The second edition
focuses on the practicality of the topics within deep learning that help the
reader to embrace modern tools with the right mathematical foundations.
The first edition focused on introducing a meaningful foundation for
the subject, while limiting the depth of the practical implementations.
While we explored a breadth of technical frameworks for deep learning
(Theano, TensorFlow, Keras, and PyTorch), we limited the depth of
the implementation details. The idea was to distill the mathematical
foundations while focusing briefly on the practical tools used for
implementation.

Alot has changed over the past three years. The deep learning
fraternity is now stronger than ever, and the frameworks have evolved
in size and adoption. Theano is now deprecated (ceased development);
TensorFlow saw huge adoption in the industry and academia; and Keras
became more popular among beginners and deep learning enthusiasts.
However, PyTorch has emerged recently as a widely popular choice
for academia as well as industry. The growing number of research
publications that recently have used PyTorch over TensorFlow is a
testament to its growth within deep learning.

On the same note, we felt the need to revise the book with a focus
on engaging readers with hands-on exercises to aid a more meaningful
understanding of the subject. In this book, we have struck the perfect
balance, with mathematical foundations as well as hands-on exercises, to
embrace practical implementation exclusively on PyTorch. Each exercise is
supplemented with the required explanations of PyTorch’s functionalities
and required abstractions for programming complexities.
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Part I serves as a brief introduction to machine learning, deep learning,
and PyTorch. We explore the evolution of the field, from early rule-based
systems to the present-day sophisticated algorithms, in an accelerated
fashion.

Part IT explores the essential deep learning building blocks. Chapter 3
introduces a simple feed-forward neural network. Incrementally and
logically, we uncover the various building blocks that constitute a neural
network and which can be reused in building any other network. Though
foundational, Chapter 3 focuses on building a baby neural network with
the required framework that helps to construct and train networks of
all kinds and complexities. In Chapter 4, we explore the core idea that
enabled the possibility of training large networks through backpropagation
using automatic differentiation and chain rule. We explore PyTorch'’s
Autograd module with a small example to understand how the solution
works programmatically. In Chapter 5, we look at orchestrating all the
building blocks discussed through so far, along with the performance
metrics of deep learning models and the artifacts required to enable an
improved means for training—i.e., regularization, hyperparameter tuning,
overfitting, underfitting, and model capacity. Finally, we leverage all this
content to develop a deep neural network for a real-life dataset using
PyTorch. In this exercise, we also explore additional PyTorch constructs
that help in the orchestration of various deep learning building blocks.

Part I1I covers three important topics within deep learning. Chapter 6
explores convolutional neural networks and introduces the field of
computer vision. We explore the core topics within convolutional neural
networks, including how they learn and how they are distinguished from
other networks. We also leverage a few hands-on exercises—using a small
MNIST dataset as well as the popular Cats and Dogs dataset—to study the
practical implementation of a convolutional neural network. In Chapter 7,
we study recurrent neural networks and enter the field of natural language
processing. Similar to Chapter 6, we incrementally build an intuition
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around the fundamentals and later explore practical exercises with real-life
datasets. Chapter 8 concludes the book by looking at some of the recent
trends within deep learning. This chapter is only a cursory introduction
and does not include any implementation details. The objective is to
highlight some advances in the research and the possible next steps for
advanced topics.

Overall, we have put in great efforts to write a structured, concise,
exercise-rich book that balances the coverage between the mathematical
foundations and the practical implementation.

xvii



CHAPTER 1

Introduction to
Machine Learning
and Deep Learning

The subject of deep learning has gained immense popularity recently,
and, in the process, has given rise to several terminologies that make
distinguishing them fairly complex. One might find the task of neatly
separating each field overwhelming, with the sheer volume of overlap
between the topics.

This chapter introduces the subject of deep learning by discussing
its historical context and how the field evolved into its present-day form.
Later, we will introduce machine learning by covering the foundational
topics in brief. To start with deep learning, we will leverage the constructs
gained from machine learning using basic Python. Chapter 2 begins the

practical implementation using PyTorch.

Defining Deep Learning

Deep learning is a subfield within machine learning that deals with the
algorithms that closely resemble an over-simplified version of the human
brain that solves a vast category of modern-day machine intelligence.
Many common examples can be found within the smartphone’s app

© Nikhil Ketkar, Jojo Moolayil 2021
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CHAPTER 1 INTRODUCTION TO MACHINE LEARNING AND DEEP LEARNING

ecosystem (i0OS and Android): face detection on the camera, auto-correct
and predictive text on keyboards, Al-enhanced beautification apps,
smart assistants like Siri/Alexa/Google Assistant, Face-ID (face unlock on
iPhones), video suggestions on YouTube, friend suggestions on Facebook,
cat filters on Snapchat are all products that were made the state-of-the-
art only for deep learning. Essentially, deep learning is ubiquitous in the
today’s digital life.

Truth be told, it can be complicated to define deep learning without
navigating some historical context.

A Brief History

The journey of artificial intelligence (AI) to its present day can be broadly
divided into four parts: viz. rule-based systems, knowledge-based systems,
machine, and deep learning. Although the granular transitions in the
journey can be mapped into several important milestones, we will cover

a more simplistic overview. The entire evolution is encompassed into the
larger idea of “artificial intelligence.” Let’s take a step-by-step approach to
tackle this broad term.

Artificial Intelligence Landscape

Machine
Learning

Deep
Learning

Figure 1-1. The Al landscape
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The journey of Deep Learning starts with the field of artificial
intelligence, the rightful parent of the field, and has a rich history going
back to the 1950s. The field of artificial intelligence can be defined in
simple terms as the ability of machines to think and learn. In more
layman words, we would define it as the process of aiding machines with
intelligence in some form so that they can execute a task better than
before. The above Figure 1-1 showcases a simplified landscape of Al with
the various aforementioned fields showcased a subset. We will explore
each of these subsets in more detail in the section below.

Rule-Based Systems

The intelligence we induce into a machine may not necessarily be a
sophisticated process or ability; something as simple as a set of rules can
be defined as intelligence. The first-generation Al products were simply
rule-based systems, wherein a comprehensive set of rules were guided to
the machine to map the exhaustive possibilities. A machine that executes
a task based on defined rules would result in a more appealing outcome
than a rigid machine (one without intelligence).

A more layman example for the modern-day equivalent would be an
ATM that dispenses cash. Once authenticated, users enter the amount
they want and the machine, based on the existing combination of notes
in-store, dispenses the correct amount with the least number of bills. The
logic (intelligence) for the machine to solve the problem is explicitly coded
(designed). The designer of the machine carefully thought through the
comprehensive list of possibilities and designed a system that can solve
the task programmatically with finite time and resources.

Most of the early day’s success in artificial intelligence was fairly
simple. Such tasks can be easily described formally, like the game
of checkers or chess. This notion of being able to easily describe the
task formally is at the heart of what can or cannot be done easily by
a computer program. For instance, consider the game of chess. The
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formal description of the game of chess would be the representation of
the board, a description of how each of the pieces moves, the starting
configuration, and a description of the configuration wherein the game
terminates. With these notions formalized, it is relatively easy to model a
chess-playing Al program as a search, and, given sufficient computational
resources, it’s possible to produce relatively good chess-playing Al.

The first era of Al focused on such tasks with a fair amount of success.
At the heart of the methodology were a symbolic representation of the
domain and the manipulation of the symbols based on given rules (with
increasingly sophisticated algorithms for searching the solution space to
arrive at a solution).

It must be noted that the formal definitions of such rules were done
manually. However, such early Al systems were fairly general-purpose
task/problem solvers in the sense that any problem that could be
described formally could be solved with the generic approach.

The key limitation of such systems is that the game of chess is a
relatively easy problem for Al simply because the problem set is relatively
simple and can be easily formalized. This is not the case with many of the
problems human beings solve on a day-to-day basis (natural intelligence).
For instance, consider diagnosing a disease or transcribing human speech
to text. These tasks, which human beings can do but which are hard to
describe formally, presented as a challenge in the early days of AL

Knowledge-Based Systems

The challenge of addressing natural intelligence to solve day-to-day
problems evolved the landscape of Al into an approach akin to human-
beings—i.e., by leveraging a large amount of knowledge about the task/
problem domain. Given this observation, subsequent Al systems relied on
large knowledge bases that captured the knowledge about the problem/
task domain. Note that the term used here is knowledge, not information
or data. By knowledge, we simply mean data/information that a program/
algorithm can reason about. An example could be a graph representation

4
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of a map with edges labeled with distances and about of traffic (which
is being constantly updated), allowing a program to reason about the
shortest path between points.

Such knowledge-based systems, wherein the knowledge was compiled
by experts and represented in a way that allowed algorithms/programs
to reason about it, represented the second generation of Al. At the heart
of such approaches were increasingly sophisticated approaches for
representing and reasoning about knowledge to solve tasks/problems that
required such knowledge. Examples of such sophistication include the use
of first-order logic to encode knowledge and probabilistic representations
to capture and reason where uncertainty is inherent to the domain.

One of the key challenges that such systems faced, and addressed
to some extent, was the uncertainty inherent in many domains. Human
beings are relatively good at reasoning in environments with unknowns
and uncertainty. One key observation here is that even the knowledge
we hold about a domain is not black or white but grey. A lot of progress
was made in this era on representing and reasoning about unknowns and
uncertainty. There were some limited successes in tasks like diagnosing a
disease that relied on leveraging and reasoning using a knowledge base in
the presence of unknowns and uncertainty.

The key limitation of such systems was the need to hand-compile the
knowledge about the domain from experts. Collecting, compiling, and
maintaining such knowledge bases rendered such systems impractical.

In certain domains, it was extremely hard to even collect and compile

such knowledge—for example, transcribing speech to text or translating
documents from one language to another. While human beings can easily
learn to do such tasks, it’s extremely challenging to hand-compile and
encode the knowledge related to the tasks—for instance, the knowledge of
the English language and grammar, accents, and subject matter. To address
these challenges, machine learning is the way forward.
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Machine Learning

In formal terms, we define machine learning as the field within Al where
intelligence is added without explicit programming. Human beings
acquire knowledge for any task through learning. Given this observation,
the focus of subsequent work in AT shifted over a decade or two to
algorithms that improved their performance based on data provided to
them. The focus of this subfield was to develop algorithms that acquired
relevant knowledge for a task/problem domain given data. It is important
to note that this knowledge acquisition relied on labeled data and a
suitable representation of labeled data as defined by a human being.
Consider, for example, the problem of diagnosing a disease. For such
a task, a human expert would collect a lot of cases where a patient had
and did not have the disease in question. Then, the human expert would
identify a number of features that would aid in making the prediction—
for example, the age and gender of the patient, and the results from a
number of diagnostic tests, such as blood pressure, blood sugar, etc. The
human expert would compile all this data and represent it in a suitable
form—for example, by scaling/normalizing the data, etc. Once this data
were prepared, a machine learning algorithm could learn how to infer
whether the patient has the disease or not by generalizing from the labeled
data. Note that the labeled data consisted of patients that both have and
do not have the disease. So, in essence, the underlying machine language
algorithm is essentially doing the job of finding a mathematical function
that can produce the right outcome (disease or no disease) given the
inputs (features like age, gender, data from diagnostic tests, and so forth).
Finding the simplest mathematical function that predicts the outputs
with the required level of accuracy is at the heart of the field of machine
learning. For example, questions related to the number of examples
required to learn a task or the time complexity of an algorithm are specific
areas for which the field of ML has provided answers with theoretical
justification. The field has matured to a point where, given enough data,
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compute resources, and human resources to engineer features, a large
class of problems are solvable.
The key limitation of mainstream machine language algorithms is
that applying them to a new problem domain requires a massive amount
of feature engineering. For instance, consider the problem of recognizing
objects in images. Using traditional machine language techniques, such a
problem would require a massive feature-engineering effort wherein experts
identify and generate features that would be used by the machine language
algorithm. In a sense, true intelligence is in the identification of features;
the machine language algorithm is simply learning how to combine these
features to arrive at the correct answer. This identification of features or the
representation of data that domain experts do before machine language
algorithms are applied is both a conceptual and practical bottleneck in AL
It’s a conceptual bottleneck because if features are being identified by
domain experts and the machine language algorithm is simply learning to
combine and draw conclusions from this, is this really AI? Its a practical
bottleneck because the process of building models via traditional machine
language is bottlenecked by the amount of feature engineering required.
There are limits to how much human effort can be thrown at the problem.

Deep Learning

The major bottleneck in machine learning systems was solved with deep
learning. Here, we essentially took the intelligence one step further, where
the machine develops relevant features for the task in an automated way
instead of hand-crafting. Human beings learn concepts starting from

raw data. For instance, a child shown with a few examples of a particular
animal (say, cats) will soon learn to identify the animal. The learning
process does not involve a parent identifying a cat’s features, such as its
whiskers, fur, or tail. Human learning goes from raw data to a conclusion
without the explicit step where features are identified and provided to the
learner. In a sense, human beings learn the appropriate representation
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of data from the data itself. Furthermore, they organize concepts as a
hierarchy where complicated concepts are expressed using primitive
concepts.

The field of deep learning has its primary focus on learning
appropriate representations of data such that these could be used to
conclude. The word “deep” in “deep learning” refers to the idea of learning
the hierarchy of concepts directly from raw data. A more technically
appropriate term for deep learning would be representation learning, and a
more practical term for the same would be automated feature engineering.

Advances in Related Fields

It is important to note the advances in other fields like compute power,
storage cost, etc. that have played a key role in the recent interest and
success of deep learning. Consider the following, for example:

o The ability to collect, store and process large amounts
of data has greatly advanced over the last decade (for
instance, the Apache Hadoop ecosystem).

o The ability to generate supervised training data (data
with labels—for example, pictures annotated with
the objects in the picture) has improved a lot with the
availability of crowd-sourcing services (like Amazon
Mechanical Turk).

e The massive improvements in computational
horsepower brought about by graphical processing units
(GPUs) enabled parallel computing to new heights.

e The advances in both the theory and software
implementation of automatic differentiation (such
as PyTorch or Theano) accelerated the speed of
development and research for deep learning.
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Although these advancements are peripheral to deep learning, they
have played a big role in enabling advances in deep learning.

Prerequisites

The key prerequisites for reading this book include a working knowledge of
Python and some coursework in linear algebra, calculus, and probability.
Readers should refer to the following in case they need to cover these
prerequisites.

e Dive Into Python, by Mark Pilgrim - Apress Publications (2004)

e Introduction to Linear Algebra (Fifth Edition), by
Gilbert Strang - Wellesley-Cambridge Press

o Calculus, by Gilbert Strang - Wellesley-Cambridge
Press

o All of Statistics (Section 1, chapters 1-5), by Larry
Wasserman - Springer (2010)

The Approach Ahead

This book focuses on the key concepts of deep learning and its practical
implementation using PyTorch. In order to use PyTorch, you should
possess a basic understanding of Python programming. Chapter 2
introduces PyTorch, and the subsequent chapters discuss additional
important constructs within PyTorch.

Before delving into deep learning, we need to discuss the basic
constructs of machine learning. In the remainder of this chapter, we will
explore the baby steps of machine learning with a dummy example. To
implement the constructs, we will use Python and again implement the
same using PyTorch.
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Installing the Required Libraries

You need to install a number of libraries in order to run the source code for
the examples in this book. We recommend installing the Anaconda Python
distribution (https://www.anaconda.com/products/individual), which
simplifies the process of installing the required packages (using either
conda or pip). The list of packages you need include NumPy, matplotlib,
scikit-learn, and PyTorch.

PyTorch is not installed as a part of the Anaconda distribution.

You should install PyTorch, torchtext, and torchvision, along with the
Anaconda environment.

Note that Python 3.6 (and above) is recommended for the exercises in
this book. We highly recommend creating a new Python environment after
installing the Anaconda distribution.

Create a new environment with Python 3.6 (use Terminal in Linux/
Mac or the Command Prompt in Windows), and then install the additional
necessary packages, as follows:

conda create -n testenvironment python=3.6

conda activate testenvironment
pip install pytorch torchvision torchtext

For additional help with PyTorch, please refer to the Get Started guide
athttps://pytorch.org/get-started/locally/.

The Concept of Machine Learning

As human beings, we are intuitively aware of the concept of learning. It
simply means to get better at a task over time. The task could be physical,
such as learning to drive a car, or intellectual, such as learning a new
language. The subject of machine learning focuses on the development of
algorithms that can learn as humans learn; that is, they get better at a task
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over a period over time and with experience—thus inducing intelligence
without explicit programming.

The first question to ask is why we would be interested in the
development of algorithms that improve their performance over time, with
experience. After all, many algorithms are developed and implemented to
solve real-world problems that don’t improve over time; they simply are
developed by humans, implemented in software, and get the job done.
From banking to ecommerce and from navigation systems in our cars
to landing a spacecraft on the moon, algorithms are everywhere, and,

a majority of them do not improve over time. These algorithms simply
perform the task they are intended to perform, with some maintenance
required from time to time. Why do we need machine learning?

The answer to this question is that for certain tasks it is easier to develop
an algorithm that learns/improves its performance with experience than
to develop an algorithm manually. Although this might seem unintuitive to
the reader at this point, we will build intuition for this during this chapter.

Machine learning can be broadly classified as supervised learning,
where training data with labels is provided for the model to learn, and
unsupervised learning, where the training data lacks labels. We also
have semi-supervised learning and reinforcement learning, but for now,
we would limit our scope to supervised machine learning. Supervised
learning can again be classified into two areas: classification, for discrete
outcomes, and regression, for continuous outcomes.

Binary Classification

In order to further discuss the matter at hand, we need to be precise about
some of the terms we have been intuitively using, such as task, learning,
experience, and improvement. We will start with the task of binary
classification.

11
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Consider an abstract problem domain where we have data of the form

D={(x0)-(1,) - (x,3,)}

wherexe R"andy= +1.

We do not have access to all such data but only a subset S € D. Using
S, our task is to generate a computational procedure that implements the
function f: x — y such that we can use fto make predictions over unseen
data (x; y;) ¢ S that are correct, f{x;) = y;. Let’s denote U € D as the set of
unseen data—that is, (x; y;) € S and (x;, ;) € U.

We measure performance over this task as the error over unseen data

2l (5)% 3]

vl

E(f,D,U)=

We now have a precise definition of the task, which is to categorize
data into one of two categories (y = + 1) based on some seen data S by
generating f. We measure performance (and improvement in performance)
using the error E( f, D, U) over unseen data U. The size of the seen data
|S|is the conceptual equivalent of experience. In this context, we want to
develop algorithms that generate such functions f(which are commonly
referred to as a model). In general, the field of machine learning studies the
development of such algorithms that produce models that make predictions
over unseen data for such, and, other formal tasks. (We introduce multiple
such tasks later in the chapter.) Note that the x is commonly referred to as
the input/input variable and y is referred to as the output/output variable.

As with any other discipline in computer science, the computational
characteristics of such algorithms are an important facet; however, in
addition to that, we also would like to have a model fthat achieves a lower
error E( f, D, U) with as small a |S| as possible.

Let’s now relate this abstract but precise definition to a real-world
problem so that our abstractions are grounded. Suppose that an
ecommerce website wants to customize its landing page for registered

12
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users to show the products they might be interested in buying. The website
has historical data on users and would like to implement this as a feature
to increase sales. Let’s now see how this real-world problem maps on to
the abstract problem of binary classification we described earlier.

The first thing that one might notice is that given a particular user and
a particular product, one would want to predict whether the user will buy
the product. Since this is the value to be predicted, it mapsontoy= *1,
where we will let the value of y = + 1 denote the prediction that the user
will buy the product and the value of y = — 1 denote the prediction that
the user will not buy the product. Note that there is no particular reason
for picking these values; we could have swapped this (let y= + 1 denote
the does not buy case and y = — 1 denote the buy case), and there would
be no difference. We just use y = * 1 to denote the two classes of interest
to categorize data. Next, let’s assume that we can represent the attributes
of the product and the users buying and browsing history as x € R". This
step is referred to as feature engineering in machine learning and we will
cover it later in the chapter. For now, it suffices to say that we are able to
generate such a mapping. Thus, we have historical data of what the users
browsed and bought, attributes of a product, and whether the user bought
the product or not mapped on to {(x;, 1), (x2, ), ...(x», ¥,)}. Now, based on
this data, we would like to generate a function or a model f: x — y, which we
can use to determine which products a particular user will buy, and use this
to populate the landing page for users. We can measure how well the model
is doing on unseen data by populating the landing page for users, seeing
whether they buy the products or not, and evaluating the error E( f, D, U).

Regression

This section introduces another task: regression. Here, we have data of the
form D = {(x}, 1), (%2, 2), ...(x )}, where x € R”and y € R, and our task
is to generate a computational procedure that implements the function

13
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f:x— y. Note that instead of the prediction being a binary class label
y= %1, like in binary classification, we have real valued prediction. We
measure performance over this task as the root-mean-square error (RMSE)

over unseen data

Note that the RMSE is simply taking the difference between the
predicted and actual value, squaring it so as to account for both
positive and negative differences, taking the mean so as to aggregate
over all the unseen data, and, finally, taking the square root so as to
counterbalance the square operation.

A real-world problem that corresponds to the abstract task of
regression is to predict the credit score for an individual based on their
financial history, which can be used by a credit card company to extend
the line of credit.

Generalization

Let’s now cover what is the single most important intuition in machine
leaning, which is that we want to develop/generate models that have
good performance over unseen data. In order to do that, first will we
introduce a toy data set for a regression task. Later, we will develop three
different models using the same dataset with varying levels of complexity
and study how the results differ to understand intuitively the concept of
generalization.
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