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Preface

As with every area of mathematics, graph theory has a number of mathematicians
who have contributed to its development in a number of ways, namely (1) by
proving theorems that are instrumental in its growth, (2) by giving lectures and
writing survey papers and books that popularize graph theory, and (3) by creating
new concepts and topics that have drawn mathematicians into various areas of graph
theory. One mathematician responsible for all of this is Stephen T. Hedetniemi.
Steve earned his Ph.D. in mathematics with a specialization in graph theory at the
University of Michigan in 1966 under the direction of the well-known graph theorist
Frank Harary.

Two major areas of research by Steve Hedetniemi are domination and coloring.
In this book, we begin by discussing several topics, results, and problems in
domination in which Steve has made a major contribution. From domination, we
move on to a number of coloring topics. Along the way from domination to col-
oring, we also discuss other research topics in Stephen Hedetniemi’s graph theory,
including distance in graphs and two types of traversing walks. In the eight chapters
that follow, while the material presented represents only a small sample of Steve’s
research in graph theory, we believe that beyond what is included lies other avenues
for research.

Through studying chessboard problems, Stephen Hedetniemi introduced total
domination, which has become one of the major topics of study in domination.
Hedetniemi and others showed that there is a chain of inequalities involving the
domination number of a graph, the independent domination number, and other
domination-related parameters. These are the primary topics of Chap. 1. The
independent domination number and total domination number are discussed in
more detail in Chap. 2. If every vertex in a dominating set S of a graph G is
assigned the value 1 and the vertices not in S are assigned 0, then the sum of the
values of each vertex of G and its neighbors is at least 1. This observation by
Hedetniemi led to the introduction of a dominating function of a graph. This
concept, together with some variations, is the subject of Chap. 3. Two recent
domination-related parameters introduced by Hedetniemi, namely Roman domi-
nation and alliances in graphs, are the subject of Chap. 4. In the first four chapters
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then, we discuss some of the primary and most recent results dealing with
prominent domination parameters, as well as new and interesting concepts and
problems derived from these concepts.

Many areas of graph theory different from domination have also been influenced
by the research of Stephen Hedetniemi. One of these is distance in graphs in which
Steve has investigated two interpretations of the “middle” of a graph, namely the
center and median, which have numerous applications. These and other
distance-related subgraphs of graphs are the topics of Chap. 5. In Chap. 6, we
discuss two graph traversing concepts studied by Hedetniemi and his coauthors, one
in which all edges of a graph are traversed, resulting in Eulerian walks, and a
second in which all vertices are traversed, resulting in Hamiltonian walks.

Graph colorings has been a popular area of research for well over a century. This
has also been a topic of interest for Hedetniemi for many years. In fact, he wrote his
doctoral dissertation on graph homomorphisms, a concept closely tied to proper
colorings of graphs. The concept of graph homomorphisms occurs in both Chaps. 7
and 8. Every proper coloring of a graph using the minimum number of colors has
the property that for every two distinct colors, there are adjacent vertices with these
colors. Any coloring with this property is a complete coloring, which is the primary
topic of Chap. 7. The two major methods of evaluating how highly connected a
graph involves vertex-cuts and edge-cuts. In Chap. 8, we see relationships of these
concepts with graph colorings, resulting in color connection and disconnection in
graphs. Recent results involving these connectivity-coloring concepts are presented
along with suggestions for new avenues of research.

Kalamazoo, MI, USA Gary Chartrand
Johnson City, TN, USA Teresa W. Haynes
Johannesburg, South Africa Michael A. Henning
Kalamazoo, MI, USA Ping Zhang
August 2019
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Chapter 1
Pioneer of Domination in Graphs

Stephen Hedetniemi is perhaps best known for his pioneering work in domination
in graphs. In this chapter, we explore some of his contributions to the direction and
advancement of this field of study. We focus on two topics, namely domination of
chessboard graphs and the domination chain.

1.1 Introduction

Honest pioneer work in the field of science has always been, and will continue to be, life’s
pilot.Wilhelm Reich

Pioneering is the work of individuals. Susanne Katherina Langer

StephenHedetniemi is at the top of the list of individualswhohavemost influenced
the growth of the popular area of domination in graphs. In this chapter, we first discuss
the origin of domination as a chessboard covering problem and consider Steve’s
contribution to this area of study. Then we turn our attention to the “so-called”
domination chain, which was introduced by Hedetniemi along with Cockayne and
Miller.

In the subsequent two sections, we will use the following terminology and intro-
duce additional notation as needed. A set S of vertices of a graph G is independent
if no two vertices in S are adjacent, and the maximum cardinality of an independent
set of G is the independence number of G, denoted α(G). A dominating set S of
G is a set of vertices of G such that every vertex in V \ S is adjacent to a vertex
in S, and the domination number γ(G) is the minimum cardinality of a dominating
set of G. The independent domination number of G, denoted i(G), is the minimum
cardinality of an independent dominating set of G.
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