
Progress in IS

Rüdiger Schaldach
Karl-Heinz Simon
Jens Weismüller
Volker Wohlgemuth Editors

Advances and
New Trends in
Environmental
Informatics
ICT for Sustainable Solutions

Progress in IS

“PROGRESS in IS” encompasses the various areas of Information Systems in
theory and practice, presenting cutting-edge advances in the field. It is aimed
especially at researchers, doctoral students, and advanced practitioners. The series
features both research monographs that make substantial contributions to our state
of knowledge and handbooks and other edited volumes, in which a team of experts
is organized by one or more leading authorities to write individual chapters on
various aspects of the topic. “PROGRESS in IS” is edited by a global team of
leading IS experts. The editorial board expressly welcomes new members to this
group. Individual volumes in this series are supported by a minimum of two
members of the editorial board, and a code of conduct mandatory for all members
of the board ensures the quality and cutting-edge nature of the titles published under
this series.

More information about this series at http://www.springer.com/series/10440

http://www.springer.com/series/10440

Rüdiger Schaldach • Karl-Heinz Simon •

Jens Weismüller • Volker Wohlgemuth
Editors

Advances and New Trends
in Environmental Informatics
ICT for Sustainable Solutions

123

Editors
Rüdiger Schaldach
CESR
University of Kassel
Kassel, Germany

Karl-Heinz Simon
CESR
University of Kassel
Kassel, Germany

Jens Weismüller
Leibniz Supercomputing Centre
Bavarian Academy of Sciences
and Humanities
Munich, Germany

Volker Wohlgemuth
Department of Engineering - Technology
and Life
HTW Berlin - University of Applied
Sciences
Berlin, Germany

ISSN 2196-8705 ISSN 2196-8713 (electronic)
Progress in IS
ISBN 978-3-030-30861-2 ISBN 978-3-030-30862-9 (eBook)
https://doi.org/10.1007/978-3-030-30862-9

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-30862-9

Preface

This book presents the main research results of the 33rd edition of the long-standing
and established international and interdisciplinary conference series on environ-
mental information and communication technologies (Envirolnfo 2019).

The conferencewas held from23 to 26 September 2019 at theUniversity ofKassel.
It was organized by the Center for Environmental Systems Research (CESR), under
the patronage of the Technical Committee on Environmental Informatics of the
Gesellschaft für Informatik e.V. (German Informatics Society—GI).

Combining and shaping national and international activities in the field of
applied informatics and environmental informatics, the EnviroInfo conference
series aims at presenting and discussing the latest state-of-the-art development on
information and communication technology (ICT) and environmental-related fields.
A special focus of the conference was on potential contributions of ICT tech-
nologies and tool to achieve the sustainability goals (SDGs) of the United Nations
in context of the Agenda 2030 and to support societal transformation processes.

Accordingly, the articles in this book not only present innovative approaches and
ICT solutions related to a wide range of SDG-relevant topics such as sustainable
mobility, human health and circular economy but also to other questions that are
central for environmental informatics research, including advanced methods of
environmental modelling and machine learning.

The editors would like to thank all the contributors to the conference and these
conference proceedings. Special thanks also go to the members of the programme
and organizing committees. In particular, we like to thank the organizers of the GI
Informatik 2019 conference that took place as a parallel event, for their support in
providing local logistics. Last but not least a warm thank you to our sponsors who
supported the conference.

Kassel, Germany Rüdiger Schaldach
Kassel, Germany Karl-Heinz Simon
Garching, Germany Jens Weismüller
Berlin, Germany
July 2019

Volker Wohlgemuth

v

Contents

Assessing the Sustainability of Software Products—A Method
Comparison . 1
Javier Mancebo, Achim Guldner, Eva Kern, Philipp Kesseler,
Sandro Kreten, Felix Garcia, Coral Calero and Stefan Naumann

Estimate of the Number of People Walking Home After Compliance
with Metropolitan Tokyo Ordinance on Measures Concerning
Stranded Persons . 17
Toshihiro Osaragi, Tokihiko Hamada and Maki Kishimoto

Gamification for Mobile Crowdsourcing Applications:
An Example from Flood Protection . 37
Leon Todtenhausen and Frank Fuchs-Kittowski

MoPo Sane—Mobility Portal for Health Care Centers 55
Benjamin Wagner vom Berg and Aina Andriamananony

Platform Sustainable Last-Mile-Logistics—One for ALL (14ALL) 67
Benjamin Wagner vom Berg, Franziska Hanneken, Nico Reiß,
Kristian Schopka, Nils Oetjen and Rick Hollmann

Scientific Partnership: A Pledge For a New Level of Collaboration
Between Scientists and IT Specialists . 79
Jens Weismüller and Anton Frank

Emission-Based Routing Using the GraphHopper API
and OpenStreetMap . 91
Martin Engelmann, Paul Schulze and Jochen Wittmann

Digitally Enabled Sharing and the Circular Economy:
Towards a Framework for Sustainability Assessment 105
Maria J. Pouri and Lorenz M. Hilty

vii

Exploring the System Dynamics of Industrial Symbiosis (IS)
with Machine Learning (ML) Techniques—A Framework
for a Hybrid-Approach . 117
Anna Lütje, Martina Willenbacher, Martin Engelmann,
Christian Kunisch and Volker Wohlgemuth

Graph-Grammars to Specify Dynamic Changes in Topology
for Spatial-Temporal Processes . 131
Jochen Wittmann

Online Anomaly Detection in Microbiological Data Sets 149
Leonie Hannig, Lukas Weise and Jochen Wittmann

Applying Life Cycle Assessment to Simulation-Based Decision
Support: A Swedish Waste Collection Case Study 165
Yu Liu, Anna Syberfeldt and Mattias Strand

viii Contents

Assessing the Sustainability of Software
Products—A Method Comparison

Javier Mancebo, Achim Guldner, Eva Kern, Philipp Kesseler, Sandro Kreten,
Felix Garcia, Coral Calero and Stefan Naumann

Abstract As part of Green IT, the field of green software engineering has seen a rise
in interest over the past years. Several methods for assessing the energy efficiency
of software were devised, which are partially based upon rather different approaches
and partially come to similar conclusions. In this paper, we take an in-depth look at
two methods for assessing the resource consumption that is induced by software. We
describe the methods along a case study, where we measured five sorting algorithms
and compared them in terms of similarities, differences and synergies. We show

J. Mancebo · F. Garcia · C. Calero
Institute of Technology and Information Systems, University of Castilla-La Mancha Ciudad Real,
Ciudad Real, Spain
e-mail: javier.mancebo@uclm.es

F. Garcia
e-mail: felix.garcia@uclm.es

C. Calero
e-mail: coral.calero@uclm.es

A. Guldner (B) · E. Kern · P. Kesseler · S. Kreten · S. Naumann
University of Applied Sciences Trier, Environmental Campus Birkenfeld, Birkenfeld, Germany
e-mail: a.guldner@umwelt-campus.de
URL: http://green-software-engineering.de/en

P. Kesseler
e-mail: s.kreten@umwelt-campus.de
URL: http://green-software-engineering.de/en

S. Kreten
e-mail: s.kreten@umwelt-campus.de
URL: http://green-software-engineering.de/en

S. Naumann
e-mail: s.naumann@umwelt-campus.de
URL: http://green-software-engineering.de/en

E. Kern
Leuphana University, Lueneburg, Germany
e-mail: s14b75@umwelt-campus.de; mail@nachhaltige-medien.de
URL: http://green-software-engineering.de/en

© Springer Nature Switzerland AG 2020
R. Schaldach et al. (eds.), Advances and New Trends in Environmental Informatics,
Progress in IS, https://doi.org/10.1007/978-3-030-30862-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30862-9_1&domain=pdf
mailto:javier.mancebo@uclm.es
mailto:felix.garcia@uclm.es
mailto:coral.calero@uclm.es
mailto:a.guldner@umwelt-campus.de
http://green-software-engineering.de/en
mailto:s.kreten@umwelt-campus.de
http://green-software-engineering.de/en
mailto:s.kreten@umwelt-campus.de
http://green-software-engineering.de/en
mailto:s.naumann@umwelt-campus.de
http://green-software-engineering.de/en
mailto:s14b75@umwelt-campus.de
mailto:mail@nachhaltige-medien.de
http://green-software-engineering.de/en
https://doi.org/10.1007/978-3-030-30862-9_1

2 J. Mancebo et al.

that even though the methods use different measurement approaches (intrusive vs.
non-intrusive), the results are indeed comparable and combining the methods can
improve the findings.

Keywords Green software · Sustainable software · Software energy
consumption · Energy measurements

1 Introduction

In a study by Huawei Technologies on the total energy consumption of all consumers
in 2017, it was predicted that the entire information and communications technology
(ICT) will consume around 2,800 TWh of energy in 2025 at best. In the worst case,
the consumption could bemore than double. By 2018, the energy consumption of ICT
had already risen to 1,895TWh, or around 9% of total global energy consumption
[3]. In order to counteract this development, it is reasonable to review the energy
and resource consumption of a wide variety of software to provide ICT users and
developers with recommendations regarding sustainable software applications.

There are different approaches regarding energy measurements, which differ in
several aspects. Thus, in this paper, we describe and compare two methods on how
to measure the resource consumption of software.

2 Related Work

It is possible to identify different tools and techniques for measuring or estimat-
ing software energy consumption. They can be classified into two approaches.
(i) Software-based approaches, which are easy to adopt and use. However, they give
only a vague and global estimation of the power consumption of different components
[12]. In contrast, (ii) Hardware-based approaches are more difficult to implement,
but yield more accurate results. This is because they use physical energy meters,
connected directly to the hardware [13].

2.1 Software-Based Approaches

This type of method uses mathematical formulas to estimate the energy consump-
tion of the component under test. One of the best-known tools for estimating
consumption isMicrosoft’s Joulemeter.1 It is a software tool for estimating the energy

1cf. https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measur
ement-and-optimization/ [2019-04-25].

https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measurement-and-optimization/
https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measurement-and-optimization/

Assessing the Sustainability of Software Products—A Method Comparison 3

consumption of the hardware resources used to execute a software application on
a given PC. Joulemeter uses mathematical models to estimate the consumption on
the basis of the information obtained from resources such as CPU usage, monitor
brightness, etc. [10, 12].

Another tool that works in a similar way, estimating the energy consumption of
all CPU-intensive processes is Intel Power Gadget (IPG) 3.0 [16]. In [1], the authors
propose a tool called TEEC (Tool to Estimate Energy Consumption), to estimate
the power consumption of a given software at run time by taking into account CPU,
memory, and hard disk power consumption. Green Tracker is a similar tool [2], which
calculates the energy consumption of the software by estimating its CPU usage.
Unlike the previously presented tools, Green Tracker requires an external device to
register the energy consumption andCPUusage. Jalen [18] usesmathematicalmodels
to estimate the software consumption, dividing this amount by the hardware resources
used. It was created to control the energy consumption of software applications,
taking into account the granularity of the code.

In an earlier work that originated at the Environmental Campus Birkenfeld, pow-
erstat2 was used to estimate the energy consumption of a system and the results were
compared to the results from a hardware-based approach [4].

2.2 Hardware-Based Approaches

Hardware-based approaches use a hardware device to measure the power consump-
tion of a specific component or overall system. There are different hardware tools
that provide accurate measurements of energy consumption, such as the WattsUp-
Pro power meter.3 In [21], the authors indicate that this device makes it possible to
assess the overall consumption of a computer, providing only a measurement error
rate of 1.5%. Another tool is PowerPack [9], which consists of several hardware
components such as sensors or meters that allow direct measurement of power. It
also includes software components that control the creation of power profiles and
the synchronization of codes. GreenHPC [20] is a framework for measuring energy
consumption on High Performance Computing (HPC) environments. It has three
components: a sensor board which is responsible for current sensing; a data acqui-
sition board which collects the sensor board data and the voltage from the power
source; and a virtual instrument which is responsible for data processing, visual-
ization, and distributed clock synchronization. Rasid et al. [19] used a Raspberry
Pi in their measurement approach accessing the energy impact of algorithm execu-
tion using different programming languages (ARM assembly, C, Java). Within their
Software Energy Footprint Lab (SEFLab) [7], Hankel et al. [11] present a hardware
based approach which allows measuring the energy consumption of components
of the motherboard. They refer to other hardware-based approaches for analyzing

2cf. https://github.com/ColinIanKing/powerstat [2019-04-19].
3cf. https://www.wattsupmeters.com/secure/index.php [2019-04-24].

https://github.com/ColinIanKing/powerstat
https://www.wattsupmeters.com/secure/index.php

4 J. Mancebo et al.

the power consumption of software [11], e.g. the PowerScope architecture by [8],
addressing the energy consumption of mobile applications.

3 Methods

In the following, we describe the two methods that we compared. Method A was
developed at the Institute of Technology and Information Systems at the Univer-
sity of Castilla-La Mancha, and Method B was developed at the Institute for Soft-
ware Systems at the University of Applied Sciences Trier, Environmental Campus
Birkenfeld. These methods have been selected for comparison as they both follow
a hardware-based approach. Therefore, Method A as well as Method B allows us
to obtain accurate measurements of the energy consumed by a software when it is
running. In addition to these similarities, there are also some differences between the
twomethods. The possibility of combining the results obtained by bothmeasurement
methods provides us with the best information on the energy consumption.

3.1 Method A

The FEETINGS [17] (Framework for Energy Efficiency Testing to Improve eNviro-
mental Goals of the Software) is used to measure the energy consumed by a software
product running on a PC, to collect consumption data, and its subsequent visualiza-
tion and interpretation of the information. This framework is divided into two main
components, as shown in Fig. 1.

– The Energy Efficient Tester (EET) is the device that has been developed to
measure the energy consumption of a set of hardware components used by a
software product during its execution. EET is composed of different sensors that
support the measurement of three different hardware elements: processor, hard
disk, and graphics card. It also includes two sensors that provide both the total
power consumption of the PCand the power consumption of themonitor connected
to the equipment on which the software being evaluated is running. Once the
measurements are completed, they are stored in a removable memory, so that they
can be used for analysis.

– The Software Energy Assessment (SEA) is responsible for processing the data,
the analysis and generation of an appropriate visualization of the data collected
by EET. This part is currently under development.

In order to carry out the measurements, it is necessary to configure the computer
(Device Under Test, DUT) to which EET is connected. The DUT should only include
the applications necessary for its operation, such as the operating system, so that
there are no other applications running in the background that affect consumption

Assessing the Sustainability of Software Products—A Method Comparison 5

Fig. 1 FEETINGS overview

measurements. In addition, to ensure the consistency of the energy consumption
measurements, the measurements will be repeated 30 times for each of the test cases
that have been defined, so that the distribution in the sample will tend to be normal.

3.2 Method B

This assessmentmethodwasmainly developed in the course of two research projects:

– The measurement method was first developed by Dick et al. [5], in order to gain
insight into the hardware- and energy efficiency of software products. It was
devised, based upon ISO/IEC 14756, as described in [6].

6 J. Mancebo et al.

Fig. 2 Setup for measuring the energy consumption of software (cf. [5])

– The method was updated in [15], which focused on the development of a criteria
catalog4 to assess the sustainability of software on a broad level.

Figure2 depicts the implemented measurement setup. It mainly consists of four
parts:

– The System Under Test (SUT), which executes the software that is to be assessed
and measures its own hardware usage,

– a Workload Generator (WG), which generates the load on the SUT by executing
a scenario on it and logging the measurement timestamps,

– a Power Meter (PM), which measures the consumed energy of the SUT,5 and
– a central Data Aggregator and Evaluator (DAE), which is used to analyze the
results of the measurements.

To compare the energy and resource consumption of two software products (e.g.
word processors, browsers, etc.), we first devise a usage scenario with a duration
of approximately 10min that produces the same result for each software product
from the same product group. Depending on the software to be assessed, we use an
automation software (e.g. WinAutomation,6 a bash-script or benchmark program)
to ensure the scenario is executed in a reproducible and automated manner. We
currently also develop an Arduino-based mouse- and keyboard emulator to execute
inputs directly through USB on the SUT.

4The resulting catalog can be accessed at http://green-software-engineering.de/en/kriterienkatalog
[2019-04-16].
5Currently, we use a Janitza UMG 604.
6cf. https://www.winautomation.com/ [2019-04-16].

http://green-software-engineering.de/en/kriterienkatalog
https://www.winautomation.com/

Assessing the Sustainability of Software Products—A Method Comparison 7

The SUT is then set up with all the required software installed for the execution
of the software product. This includes the operating system, frameworks, packages,
etc. Afterwards, we perform a baseline measurement without the software product.
Then, the products are successively installed on the SUT and wemeasure the devised
scenarios, at least 30 times to receive a normally distributed sample.

To analyze the resultswith theDAE,we implemented an open source consumption
analysis calculator (OSCAR).7 So far, it is only available in German, which is why,
for the analysis of the case study presented in Sect. 4 of this paper, we created a
separate analysis script in RMarkdown for the purpose of this paper. It can be found,
together with the measurement results for the algorithms, in the replication package
for this paper.8

4 Case Study: Sorting Algorithms

To compare both systems, we measured the execution of a Java Program with Oracle
Java 8 on a Windows 10 System. Table1 shows the specifications of both systems.

The code was set up to run a loop for 30 times (test runs). Each loop sorted an item
array with 50,000 random numbers from 1 to 1,000, using five sorting algorithms,
namely bubble sort, cocktail sort, insertion sort, quicksort andmergesort. To increase
the quality of the recorded data, the test runs should take between 5 and 10min. Thus,
the sorting algorithms were executed multiple times, so that the execution of every
sorting algorithm takes approximately 2min. Therefore,

Table 1 System specifications

Component Research group 1 (Spain) Research group 2 (Germany)

Processor AMD Athlon 64 X2 Dual Core
5600+ 2,81 GHz

Intel Core 2 Duo E6750
2,66 GHz

Memory 4× 1 GB DDR2 4× 1 GB DDR2

Hard disk Seagate barracuda 7200
500 Gb

320 GB WD 3200YS-01PBG0

Mainboard Asus M2N-SLI Deluxe Intel Desktop Board DG33BU

Graphics card Nvidia XfX 8600 GTS Nvidia GeForce 8600 GT

Power supply 350 W AopenZ350-08Fc 430 W Antec EarthWatts
EA-430D

Operating system Windows 10 Enterprise Windows 10 Pro

Java version Oracle Java 8u201 Oracle Java 8u201

7cf. https://www.oscar.umwelt-campus.de (German only) [2019-04-18], source code available at
https://gitlab.umwelt-campus.de/y.becker/oscar-public [2019-04-18].
8cf. https://doi.org/10.5281/zenodo.3257517.

https://www.oscar.umwelt-campus.de
https://gitlab.umwelt-campus.de/y.becker/oscar-public
https://doi.org/10.5281/zenodo.3257517

8 J. Mancebo et al.

Table 2 Measurement results of the test runs

Result Method A Method B

Average power per second 104.565 W 109.610 W

Average scenario duration 779.347 s 603.846 s

Average energy consumption 22.631 Wh 18.386 Wh

Efficiency factor (sorted items
per Joule)

18,612.72 22,910.65

– Bubble Sort was executed 18 times (900,000 items sorted),
– Cocktail Sort was executed 30 times (1,5 million items sorted),
– Insertion Sort was executed 280 times (14 million items sorted),
– Quicksort was executed 20,000 times (1 billion items sorted) and
– Mergesort was executed 10,000 times (500 million items sorted).

Between every sorting algorithm there was a break of 10s and after every loop run
there was a break of 60s. The pauses between the execution of the algorithms was
added to allow the SUT to return to its idle state, before starting the next task, in
order to capture irregular patterns in the consumption, like CPU ramp-up and RAM
allocation. While the loop was running, two log files were generated for further
analysis with the power consumption data. In those log files, the starting and ending
timestamps of every test run, and every sorting algorithm loop were recorded.

4.1 Results

This section presents the results obtained from consumption measurements for the
methods described in Sect. 3. Table2 shows an overview of the results measured with
both methods.

The efficiency factor is calculated, based upon the metrics proposed in [14],
where, in this case, we use the number of sorted items (1.5156 × 109) as the “useful
work done”:

Energy efficiency = Useful work done

Used energy

As can be seen from Table1, the execution of the algorithms was carried out on
computers with different hardware specifications for Methods A and B. To be able to
compare both measurements, it is necessary to check the consumption of the com-
puters when they are in idle mode, running only the operating system (consumption
baseline). Table3 shows the results of the baseline measurements.

The mean adjusted baseline energy consumption is calculated by dividing the
average energy of the baseline by the average duration of the baseline andmultiplying
it by the average duration of the measurement:

Assessing the Sustainability of Software Products—A Method Comparison 9

Table 3 Measurement results of baseline

Result Method A Method B

Average power per second 73.395 W 78.785 W

Average scenario duration 302.910 s 599.999 s

Average energy consumption 6.176 Wh 13.133 Wh

Mean adjusted baseline energy
consumption

15.888 Wh 13.217 Wh

Table 4 Mean measurement results for the individual actions from Method A

Action Mean power (W) Energy cosumed
(Wh)

Efficiency factor
(items
Joule)

Software induced
energy
consumption
(Wh)

Bubble sort 96.743 3.427 72.95 0.826

Cocktail sort 97.497 3.425 121.64 0.847

Insertion sort 98.679 5.903 658.76 1.512

Quick sort 97.692 2.374 116.987 0.612

Merge sort 114.075 3.299 42.106 1.176

Table 5 Mean measurement results for the individual actions from Method B

Action Mean power (W) Energy consumed
(Wh)

Efficiency factor
(items
Joule)

Software induced
energy
consumption
(Wh)

Bubble sort 109.689 3.357 74.47 0.946

Cocktail sort 110.322 3.473 119.97 0.992

Insertion sort 116.709 4.554 853.95 1.484

Quick sort 108.469 2.419 114.834 0.661

Merge sort 111.860 3.404 40.802 1.005

Mean adjusted baseline energy consumption = EBaseline

tBaseline
∗ tTestrun

Finally, the adjusted mean reference energy is subtracted from the mean energy of
the scenario measurements (the execution of the sorting algorithms), resulting in the
additional energy needed to operate the software. Hence, the energy consumption
induced by the execution of the sorting algorithms in Method A is 6.742Wh, and
for Method B is 5.169Wh.

In addition, both methods allow for subdividing the scenario to analyze specific
parts. In this case, we divided the scenario according to the run time of the sorting
algorithms to calculate their efficiency factor. Tables4 and 5 show the results.

10 J. Mancebo et al.

Fig. 3 Comparison of the software induced energy consumption for both methods

Because of the differences in the hardware used in the approaches, the results
cannot be compared directly. However, there is a correlation between the software
induced energy consumption of both methods for each algorithm, as can be seen in
Fig. 3. Furthermore, the data can also be interpreted. As shown in Table4, the mean
consumption of insertion sort is 98.679 W, with a software induced consumption of
1.512 Wh. If we compare this with the corresponding values of insertion sort from
Table5, it can be seen, that the mean consumption there is higher with 116.709 W,
whereas the software induced consumption is significantly lower than in Table4
with 1.484 Wh. So there is a difference of +18.03 W between the systems A and B
considering the mean power and a difference of −0.028 Wh between the software
induced consumptions of A and B. If we assume a continuous and permanent use of
both systems, there is a difference of 18.03 Wh between the two systems which can
be compensated by the difference of the software-induced power consumption. If we
now consider the multiple successive execution of insertion sort on both systems, it
is noticeable that the difference in the mean power consumption between systems A
and B would be consolidated after 644 test runs. For this reason, it can be assumed
that evenwith less resource-efficient hardware, software induced power consumption
can be reduced over time. This would require an amortized analysis for each system
and algorithm.

