DIATOMS: BIOLOGY AND APPLICATIONS SERIES

FUNDAMENTALS AND APPLICATIONS

EDITED BY

Joseph Seckbach Richard Gordon

WILEY

Diatoms: Fundamentals and Applications

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Diatoms: Fundamentals and Applications

Edited by Joseph Seckbach and Richard Gordon

This edition first published 2019 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2019 Scrivener Publishing LLC For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters 111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www. wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

Names: Seckbach, J. (Joseph), editor. Title: Diatoms : fundamentals and applications / edited by Joseph Seckbach and Richard Gordon. Description: Hoboken, New Jersey : Wiley ; Salem, Massachusetts : Scrivener, [2019] | Includes bibliographical references and index. | Identifiers: LCCN 2019003170 (print) | LCCN 2019003908 (ebook) | ISBN 9781119370734 (ePDF) | ISBN 9781119370727 (ePub) | ISBN 9781119370215 (hardcover) Subjects: LCSH: Diatoms. Classification: LCC QK569.D54 (ebook) | LCC QK569.D54 D54 2019 (print) | DDC 579.8/5--dc23 LC record available at https://lccn.loc.gov/2019003170

Cover image: Exhibition diatom mount of mixed marine and freshwater diatoms by Klaus D. Kemp. Photomicrograph in polarized darkfield illumination by Stephen S. Nagy, M.D. Photo copyright reserved by the photographer. Cover design: Russell Richardson

Set in size of 11pt and Minion Pro by Exeter Premedia Services Private Ltd., Chennai, India

Printed in the USA

 $10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$

Dedication to Lawrence Bogorad

Lawrence Bogorad, born on August 21, 1921 in Tashkent, Uzbekistan, came to the USA at the age of two and passed away on December 28, 2003. He served as a professor in the Botany Department at the University of Chicago for 14 years (from 1953 to 1967) and in the Biology Department at Harvard University for 34 years.

At the University of Chicago he pioneered the molecular biology of chloroplast biogenesis, and investigated the photosynthetic pigments. He studied (after the discovery and publication of DNA in chloroplasts), the endosymbiotic ancestor from cyanobacteria as

the contributors of the chloroplast DNA. At Harvard, he continued his investigation on the molecular biology of the photosynthetic apparatus.

Laurie (his nickname among his colleagues, although I preferred to always approach him by his University title,) was involved in many scientific societies, among them the American Academy of Arts and Sciences (where he served a term as President) and the National Academy of Sciences (Merchant, 2009), and served on the editorial board of *Proceedings of the National Academy of Sciences*. Bogorad received many awards for his studies.

In the personal sphere, he was warm and friendly, full of optimism. His lab was home to five decades of graduate students, postdoctoral fellows, and visiting scientists—all benefit-ing from his training of them.

Here are some recollections of the four years I spent under the 'wings' of Professor Lawrence Bogorad at the University of Chicago. He was my mentor for my MSc and PhD (Seckbach, Bogorad and McIlrath, 1966; Rodermel, Viret and Krebbers, 2005). He welcomed me to the Botany Department at the end of 1961 when I first appeared at the gates of the University. During that interview, we planned my first-year program as a graduate student. Later on, he organized a research assistantship for me so I could continue with my graduate work. As a supportive professor close to his students, he shared with me the latest news on scientific updates in botany and even astrobiology.

Later on, when I was involved in a project on the possibilities of "Life on Venus" at UCLA in 1968 with Professor W. F. Libby (Seckbach and Libby, 1970), I approached him, among others, for advice on growing algae under high CO_2 and elevated temperatures. Bogorad suggested that I try the red alga *Cyanidium caldarium* (his "favorite alga") for my Venus project, and his advice worked very well. Therefore, I have to give him great credit for his guidance and for my finally changing my focus from plant physiology to the new field of astrobiology, and asked him to write the foreword for a book on *Cyanidium* (Bogorad, 1994).

During the subsequent years, I visited him at his lab in Harvard and he hosted evenings in his home in Lexington, Massachusetts. Sometimes he even waited for my arrival at the train station and took me to his home. When he visited Israel and presented a seminar at The Hebrew University of Jerusalem, he introduced me to his mother, and I drove his wife Rosalyn on a tour of Jerusalem. I had warm feelings toward Bogorad and his family, considered him a colleague and a dear friend and dedicate this volume to his memory. vi Dedication to Lawrence Bogorad

Joseph Seckbach, PhD University of Chicago, 1965; currently retired from The Hebrew University of Jerusalem; home address: P.O.B. 1132, Efrat, 90435, Israel [seckbach@huji. ac.il].

References

- Bogorad, L. (1994) Foreword. In: *Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells.* J. Seckbach, (ed.) Springer Science +Business Media, B.V., Dordrecht: pp. ix–x.
- Merchant, S.S. (2009) *Lawrence Bogorad*, 1921-2003, A Biographical Memoir. U.S. National Academy of Science, Washington, DC, USA.
- Rodermel, S., Viret, J.-F. and Krebbers, E. (2005) Lawrence Bogorad (1921–2003), a pioneer in photosynthesis research: a tribute. *Photosynthesis Research* 83(1), 17–24.
- Seckbach, J., Bogorad, L. and McIlrath, W.J. (1966) Xanthinin deacylase: A new enzyme from xanthium. In: *Plant Physiology*. American Society of Plant Physiologists, Rockville, MD, USA: p. R67.
- Seckbach, J. and Libby, W.F. (1970) Vegetative life on Venus? Or investigations with algae which grow under pure CO_2 in hot acid media at elevated pressures. *Space Life Sciences* **2**(2), 121–143.

Contents

Foreword	xvii
Preface	xxiii
1 A Memorial to Frithjof Sterrenburg: The Importance of the Amateur Diatomist	1
 Janice L. Pappas 1.1 Introduction 1.2 Background and Interests 1.3 The Personality of an Amateur Diatomist 1.4 The Amateur Diatomist and the Importance of Collections 1.5 The Amateur Diatomist as Expert in the Tools of the Trade 1.6 The Amateur Diatomist as Peer-Reviewed Scientific Contributor 1.7 Concluding Remarks Acknowledgments References 	1 3 7 11 12 15 20 21 21
2 Alex Altenbach – In Memoriam of a Friend Wladyslaw Altermann References	29 31
 3 The Beauty of Diatoms Mary Ann Tiffany and Stephen S. Nagy 3.1 Early History of Observations of Diatoms 3.2 Live Diatoms 3.3 Shapes and Structures 3.4 Diatom Beauty at Various Scales 3.5 Valves During Morphogenesis 3.6 Jamin-Lebedeff Interference Contrast Microscopy 3.7 Conclusion Acknowledgments References 	33 33 35 35 36 37 39 40 40 41
 4 Current Diatom Research in China Yu Xin Zhang 4.1 Diatoms for Energy Conversion and Storage 4.1.1 Introduction 	43 43 43

		4.1.2	Diatom	Silica: Structure, Properties and Their Optimization	46
		4.1.3	Diatom	s for Lithium Ion Battery Materials	48
		4.1.4	Diatom	s for Energy Storage: Supercapacitors	51
		4.1.5	Diatoms	s for Solar Cells	56
		4.1.6	Diatoms	s for Hydrogen Storage	58
		4.1.7	Diatoms	s for Thermal Energy Storage	59
	4.2	Diator	ms for Wa	iter Treatment	61
		4.2.1	Support	for Preparation of Diatomite-Based Adsorption	
			Compos	sites	61
		4.2.2	Catalyst	and Template for Preparation of Porous Carbon Materials	63
		4.2.3	Modific	ation of Surface and Porous Structure	66
		4.2.4	Support	for Preparation of Diatomite-Based Metal Oxide	
			Compos	sites	75
	4.3	Study	of Tribolo	ogical Performances of Compound Dimples Based	
		on Dia	atoms She	ell Structures	86
	Refe	erences			88
_	0.11	1 10			
5	Cell	ular M	echanism	s of Diatom Valve Morphogenesis	99
	Yek	aterina	D. Bedos	shvili and Yelena V. Likhoshway	00
	5.1	Introc	luction		100
	5.2	valve	Symmetr	y o l	100
	5.3	valve		n Order	102
	5.4	Silica	Within SI	JV	103
	5.5	Control)morpnog	enesis Control	104
	5.6		eletal Co	introl of Morphogenesis	100
	5./	Ine K	Die of ves	icies in Morphogenesis	10/
	5.0 5.0	Concl	EXOCYTOS		110
	5.9 Dofe	Conci	usion		110
	Rele	rences			110
6	App	licatio	n of Focu	sed Ion Beam Technique in Taxonomy-Oriented	
	Res	earch o	n Ultrast	ructure of Diatoms	115
	And	lrzei W	itkowski.	Tomasz Płociński, Justvna Grzonka, Izabela Zgłobicka,	
	Mał	gorzata	ı Bak. Pr	zemvsław Dabek. Ana I. Gomes and	
	Krz	s vsztof I.	Kurzvdł	owski	
	6.1	Introc	luction		116
	6.2	Mater	ial and M	ethods	117
	6.3	Result	ts		117
		6.3.1	Comple	x Stria Ultrastructure	117
			6.3.1.1	Biremis lucens (Hustedt) Sabbe, Witkowski &	
				Vyverman 1995	117
			6.3.1.2	Olifantiella mascarenica Riaux-Gobin & Compére 2009	120
	6.4	Discu	ssion		123
		6.4.1	Culture	d Versus Wild Specimens	124
	6.5	Concl	usions	*	124
	Ack	nowled	gements		126
	Refe	erences	-		126

7	On	Light and Diatoms: A Photonics and Photobiology Review	129
	Mol	iamed M. Ghobara, Nirmal Mazumder, Vandana Vinayak, Louisa Reis	sig,
	Ille	C. Gebeshuber, Mary Ann Tiffany and Richard Gordon	-
	7.1	Introduction	130
	7.2	The Unique Multiscale Structure of the Diatom Frustules	130
	7.3	Optical Properties of Diatom Frustules	139
		7.3.1 The Frustule as a Box with Photonic Crystal Walls	143
		7.3.2 Light Focusing Phenomenon	146
		7.3.3 Photoluminescence Properties	151
		7.3.4 Probable Roles of the Frustule in Diatom Photobiology	152
	7.4	Diatom Photobiology	153
		7.4.1 Underwater Light Field	153
		7.4.2 Cell Cycle Light Regulation	154
		7.4.3 The Phototactic Phenomenon in Pennates	154
		7.4.4 Chloroplast Migration (Karyostrophy)	156
		7.4.5 Blue Light and Its Effects on Microtubules of Cells	157
		7.4.6 Strategies for Photoregulation Under High Light Intensity	159
		7.4.7 Strategies for Photoregulation Under Ultraviolet Radiation (UV)
		Exposure	159
		7.4.8 Diatoms and Low Light	160
		7.4.9 Diatoms and No Light	161
		7.4.10 Light Piping and Cellular Vision	161
	7.5	Diatom and Light Applications	162
		7.5.1 In Photocatalysis	162
		7.5.2 Bio-Based UV Filters	164
		7.5.3 In Solar Cells	165
		7.5.4 Applications Based on Luminescence Properties	167
		7.5.5 Cloaking Diatoms	167
	7.6	Conclusion	169
	Ack	nowledgement	169
	Glo	ssary	169
	Refe	rences	171
8	Pho	tosynthesis in Diatoms	191
	Mat	teo Scarsini, Justine Marchand, Kalina M. Manoylov	
	and	Benoît Schoefs	
	8.1	Introduction	191
	8.2	The Chloroplast Structure Reflects the Two Steps Endosymbiosis	194
	8.3	Photosynthetic Pigments	196
		8.3.1 Chlorophylls	196
		8.3.2 Carotenoids	197
	8.4	The Organization of the Photosynthetic Apparatus	197
	8.5	Non-Photochemical Quenching (NPQ)	200
	8.6	Carbon Uptake and Fixation	202
	8.7	Conclusions and Perspectives	204
	Ack	nowledgment	205
	Refe	rences	205

9	Iron in Diatoms	213					
	John A. Raven						
	9.1 Introduction	213					
	9.2 Fe Acquisition by Diatoms	214					
	9.3 Fe-Containing Proteins in Diatoms and Economy of Fe	Use 214					
	9.4 Iron Storage	219					
	9.5 Conclusions and Prospects	220					
	Acknowledgements	220					
	References	220					
10	Diatom Symbioses with Other Photoauthotroph	225					
	Rosalina Stancheva and Rex Lowe						
	10.1 Introduction	225					
	10.2 Diatoms with a N ₂ -Fixing Coccoid Cyanobacterial End	dosymbiont 226					
	Find combined to N_2 - Fixing Final endows field of V_2	232					
	10.4 Eninbytic Endogloeic and Endophytic Diatoms	235					
	10.5 Distom Endosymbionts in Dinoflagellates	233					
	Acknowledgements	230					
	References	239					
11	Diatom Sexual Reproduction and Life Cycles	245					
	Aloisie Poulíčková and David G. Mann						
	11.1 Introduction	245					
	11.2 Centric Diatoms	247					
	11.2.1 Life Cycle and Reproduction	247					
	11.2.2 Gametogenesis and Gamete Structure	250					
	11.2.3 Spawning	251					
	11.3 Pennate Diatom Life Cycles and Reproduction	252					
	11.4 Auxospore Development and Structure	257					
	11.4.1 Incunabula	259					
	11.4.2 Perizonium	260					
	11.5 Induction of Sexual Reproduction	261					
	Acknowledgments	262					
	References	263					
12	Ecophysiology, Cell Biology and Ultrastructure of a Benthic Diatom						
	Isolated in the Arctic	273					
	Ulf Karsten, Rhena Schumann and Andreas Holzinger						
	12.1 Introduction	274					
	12.2 Environmental Settings in the Arctic	274					
	12.3 Growth as Function of Temperature	275					
	12.4 Growth After Long-Term Dark Incubation	277					
	12.5 Cell Biological Traits After Long-Term Dark Incubatio	on 279					
	12.6 Ultrastructural Traits	282					
	12.7 Conclusions	283					
	Acknowledgements						
	References	284					

13	Ecolo	ogy of Fr	eshwater Diatoms – Current Trends and Applications	289		
	Alois	ie Poulíd	čková and Kalina Manoylov			
	13.1	Introdu	action	289		
	13.2	Diatom	1 Distribution	292		
	13.3	Diatom	n Dispersal Ability	292		
	13.4	Functio	onal Classification in Diatom Ecology	294		
	13.5	Spatial	Ecology and Metacommunities	296		
	13.6	Aquatio	c Ecosystems Biomonitoring	299		
	13.7	Conclu	isions	301		
	Refer	ences		301		
14	Diate	oms fron	n Hot Springs of the Kamchatka Peninsula (Russia)	311		
	Tatia	na V. Ni	kulina, E. G. Kalitina, N. A. Kharitonova, G. A. Chelnokov,			
	Elena	a A. Vaki	h and O. V. Grishchenko			
	14.1	Introdu	action	311		
	14.2	Materia	als and Methods	313		
	14.3	Descrip	otion of Sampling Sites	313		
		14.3.1	Malkinsky Geothermal Field	314		
		14.3.2	Nachikinsky Geothermal Field	317		
		14.3.3	Verkhnaya-Paratunka Geothermal Field	317		
			14.3.3.1 Goryachaya Sopka Hot Spring	318		
			14.3.3.2 Karimshinsky Hot Spring	318		
		14.3.4	Mutnovsky Geothermal Field	318		
			14.3.4.1 Dachny Hot Springs	319		
			14.3.4.2 Verkhne-Vilyuchinsky Hot Spring	319		
	14.4	Results		320		
		14.4.1	Malkinsky Geothermal Field	320		
		14.4.2	Nachikinsky Geothermal Field	320		
		14.4.3	Verkhnaya-Paratunka Geothermal Field	326		
			14.4.3.1 Goryachaya Sopka Hot Spring	326		
			14.4.3.2 Karimshinsky Hot Spring	326		
		14.4.4	Mutnovsky Geothermal Field	326		
			14.4.4.1 Dachny Hot Springs	326		
			14.4.4.2 Verkhne-Vilyuchinsky Hot Spring	327		
	14.5	Summa	ary	330		
	Refer	rences		331		
15	Biod	iversity o	of High Mountain Lakes in Europe with Special Regards to			
	Rila	Rila Mountains (Bulgaria) and Tatra Mountains (Poland)				
	Nadj	a Ognjai	nova-Rumenova, Agata Z. Wojtal, Elwira Sienkiewicz,			
	Ivan	Botev an	id Teodora Trichkova			
	15.1	Introdu		335		
		15.1.1	Factors Which Control the Diatom Distribution	336		
		15.1.2	Biodiversity Assessment	337		
	15.2	Recent	Datom Biodiversity in High Mountain Lakes			
		in bulg	aria and Poland	338		
		15.2.1	The Rila Lakes, Bulgaria	338		
		15.2.2	The Tatra Lakes, Poland	339		

xii Contents

	15.3	Diatom	Communit	y Changes in High-Mountain Lakes in Bulgaria	
		and Pol	and from Pi	re-Industrial Times to Present Day	340
		15.3.1	The Rila M	lts.	340
		15.3.2	Tatra Mts.		342
	15.4	Monito	ring Data '2	015' and Correlations Between the Data Sets of the	
		Rila Mt	s. and the Ta	atra Mts.	344
		15.4.1	The Rila La	akes	344
		15.4.2	The Tatra I	Lakes	346
	15.5	Red-Lis	t Data: Cirq	ue "Sedemte Ezera", Rila Mts. and Tatra Mts.	349
		15.5.1	Cirque "Se	demte Ezera", Rila Mts.	349
		15.5.2	Tatra Mts.		349
	15.6	Summa	ry		349
	Ackn	owledger	nents		351
	Refer	ences			351
16	Diato	oms of th	e Southern	Part of the Russian Far East	355
	Tatia	na V. Ni	kulina and	Lubov A. Medvedeva	
	16.1	History	of the Stud	y of Freshwater Algae of the Southern	
		Part of	he Russian	Far East	355
		16.1.1	The Primo	rve Territory	357
			16.1.1.1	Lakes and Reservoirs	357
			16.1.1.2	Rivers and Streams	358
		16.1.2	The Amur	Region	360
			16.1.2.1	The Upper Amur	360
			16.1.2.2	The Middle Amur	360
		16.1.3	The Iewish	Autonomous Region	361
		16.1.4	The Khaba	rovsk Territory	361
			16.1.4.1	The Middle Amur	361
			16.1.4.2	The Lower Amur	361
		16.1.5	The Sakhal	lin Region	362
			16.1.5.1	Sakhalin Island	362
			16.1.5.2	Moneron Island	363
			16.1.5.3	The Kuril Islands	363
	16.2	Diatom	Flora of the	e Southern Part of the Russian Far East	363
	Refer	ences			377
17	Toxic	and Ha	mful Mari	ne Diatoms	389
	Steph	en S. Ba	tes. Nina Li	undholm, Katherine A. Hubbard,	
	Mari	na Mont	resor and C	Chui Pin Leaw	
	17.1	Introdu	ction		390
	17.2	Harmfu	l Diatoms		391
		17.2.1	How Diate	oms May Cause Harm	391
		17.2.2	Diatom Ox	xylipins	391
			17.2.2.1	Polyunsaturated Aldehydes (PUAs)	391
			17.2.2.2	Oxylipin Production by Pseudo-nitzschia	396
	17.3	Toxic D	iatoms	·	397
		17.3.1	Diatoms T	hat Produce B-N-Methylamino-L-Alanine (BMAA)	397

		17.3.2	Nitzschia	navis-varingica	400
		17.3.3	Nitzschia	bizertensis	400
		17.3.4	Pseudo-n	itzschia spp	401
			17.3.4.1	New Species	401
			17.3.4.2	Distribution	401
			17.3.4.3	Sexual Reproduction	401
			17.3.4.4	Genomic Insights Into Pseudo-nitzschia and Its	
				Population Genetic Structure	410
			17.3.4.5	New Knowledge of <i>Pseudo-nitzschia</i>	411
		17.3.5	Identifica	tion of Toxic Diatoms	414
			17.3.5.1	Classical Methods	414
			17.3.5.2	Molecular Approaches	415
	17.4	Gaps in l	Knowledg	ge and Thoughts for Future Directions	417
	Refere	nces	c	, 0	418
18	Diato	ms in Foi	rensics: A	Molecular Approach to Diatom Testing in	405
	Foren	sic Scien	ce		435
	Vanad	ina Vina	yak and S	S. Gautam	425
	18.1	Introdu	iction		435
	18.2	Postmo	rtem For	ensic Counter Measures	438
	18.3	Tachni	ices in Di	antify Distance in Pielogical Sample	439
	10.4	10/1	Jues to Iu Morph	alogical Analysis of Water Samples	440
		18/12	Role of	Site Specific Distoms	441
	18 5	Case St	udies	one specific Diatoms	443
	10.5	18 5 1	Case 1		443
		18.5.2	Case 2		443
		18.5.3	Case 3		444
	18.6	Identifi	cation of	Diatom Using Molecular Tools in Tissue	
	1010	and Wa	ter Samp	les	446
	18.7	Differei	ntiation o	f Diatom DNA in the Tissue of a Drowned Victim	447
	18.8	Polyme	rase Chai	n Reaction (PCR)	448
	18.9	Diatom	DNA Ex	traction from Biological Samples of a Drowned Victim	448
		18.9.1	Biologi	ical Samples	448
		18.9.2	Plankte	on/Diatom Isolation from Tissues Using Colloidal Silica	
			Gradie	nt and Phenol Chloroform Method for DNA Extraction	454
	18.10	Best Ba	rcode Ma	rkers for Diatoms to Diagnose Drowning	454
		18.10.1	Cytoch	rome C Oxidase Subunit 1 (COI)	455
		18.10.2	Nuclea	r rDNA ITS Region	456
		18.10.3	Nuclea	r Small Subunit rRNA Gene	457
	18.11	DNA Se	equencing	5	457
	18.12	Advanc	ement in	Sequencing Leads to Advancement of	
		Data In	terpretati	on	458
	18.13	Conclu	sion and I	Future Perspectives	459
	Ackno	wledgem	ents		459
	List of	Abbrevia	ations Use	ed.	460
	Refere	nces			460

19	Diatomite in Use: Nature, Modifications, Commercial Applications and					
	Prospective Trends				471	
	Mohamed M. Ghobara and Asmaa Mohamed					
	19.1	The Natu	are of Diat	omite	471	
		19.1.1	Diatomit	e Formation	472	
		19.1.2	Diatom I	Frustule's Resistance Against Dissolution (The Reason		
			for Their	Preservation Over Millions of Years)	473	
	19.2	The Hist	ory of Dis	covery and Ancient Applications	475	
	19.3	Diatomi	te Occurre	nce and Distribution	476	
	19.4	Diatomi	omite Mining and Processing			
	19.5	Diatomi	te Charact	erization	479	
	19.6	Diatom 1	Frustules N	Aodifications	480	
	19.7	Diatomi	te in Use		481	
		19.7.1	Diatomit	e-Based Filtration	482	
			19.7.1.1	Water Filtration	483	
			19.7.1.2	Beer Filtration	484	
			19.7.1.3	Recent Trends in Diatomite-Based Separation		
				Techniques	485	
			19.7.1.4	Reuse of Spent DE Filter Media	485	
		19.7.2	Diatomit	e for Thermal Insulation	485	
	19.7.3 Diatomite-Based Building Materials19.7.4 Diatomaceous Earth as an Insecticide		Diatomit	atomite-Based Building Materials		
			ceous Earth as an Insecticide	488		
	19.7.5 Diatomaceous Earth as a soil amendment		488			
	19.7.6 Diatomaceous Earth as a Filler		ceous Earth as a Filler	489		
		19.7.7	Diatoma	ceous Earth as Abrasive Material	490	
	19.7.8 Diatomaceous Earth as Animals' and Human's Food Additiv			ceous Earth as Animals' and Human's Food Additives	490	
		19.7.9	Diatoma	ceous Earth and Nanotechnology	491	
			19.7.9.1	Diatomaceous Earth in Solar Energy		
				Harvesting Systems	491	
			19.7.9.2	Diatomaceous Earth-Based Superhydrophobic		
				Surfaces	491	
			19.7.9.3	Diatomaceous Earth Composites as Catalysts	492	
			19.7.9.4	Diatomaceous Earth-Based Supercapacitors	492	
			19.7.9.5	Diatomaceous Earth-Based Pharmaceutical and		
				Biomedical Applications	492	
			19.7.9.6	Diatomaceous Earth-Based Lab-on-a-Chip	494	
	19.7.10 Non-Industrial Applications			ustrial Applications	494	
	19.8	19.8 Diatomite Fabrication and Future Aspects			495	
	19.9	Conclusi	ion	-	495	
	Ackn	owledgem	ients		496	
	Refer	ences			496	
20	Diato	om Silica f	for Biome	dical Applications	511	
	Shah	eer Mahe	r, Moom S	in Aw and Dusan Losic		
	20.1	Introduc	ction		511	
	20.2	Diatoms	: Natural S	ilica Microcapsules for Therapeutics Delivery	513	

		20.2.1	Structure		513		
		20.2.2	Surface N	Modification of Diatoms	514		
		20.2.3	Diatoms	Applications as Drug Carriers	516		
		20.2.4	Diatoms	as a Source of Biodegradable Carriers for Drug			
			Delivery	Applications	522		
			20.2.4.1	Diatoms as a Source of Biodegradable Silicon			
				Micro and Nano Carriers for Drug Delivery	525		
		20.2.5	Diatom S	Silica for Other Biomedical Applications	527		
			20.2.5.1	Tissue Engineering	527		
			20.2.5.2	Haemorrhage Control	528		
	20.3	Conclu	sions	č	530		
	Ackn	owledge	ments		531		
	Refer	ences			531		
21	Diafu	uel™(Dia	tom Biofu	el) vs Electric Vehicles, a Basic Comparison:			
	A Hi	gh Poter	tial Renev	vable Energy Source to Make India Energy			
	Inde	pendent			537		
	Vand	lana Vin	ayak, Kha	ıshti Ballabh Joshi and Priyangshu Manab Sarma			
	21.1	Introdu	uction		538		
	21.2	Debate	on Relatio	on of Green House Gas Emissions (GHG) with CO ₂			
		and Te	mperature		539		
	21.3	Outcomes of Paris Agreement 2015					
	21.4	Energy	Demands	for India	542		
	21.5	Critics	s Talking About Entry of EV in Market				
	21.6	Comparison Between Electric Vehicles vs Vehicles with					
		Diafue	l™ at Large		546		
		21.6.1	Electric V	Vehicles	546		
			21.6.1.1	Status of EV in India	548		
			21.6.1.2	Predicted Impact of EV on Global and Indian			
				Network Versus Their Energy Sources	549		
		21.6.2	Diafuel™		550		
			21.6.2.1	Diafuel [™] Industrial Production	552		
			21.6.2.2	Designing an Energy Self-Sufficient Indian House			
				Producing Diafuel [™]	554		
			21.6.2.3	Working Prototype of Diatom Panels for the			
				Indian House	555		
		0	21.6.2.4	Advantages of Diatuel	556		
	21.7	Source	for Genera	ation of Electricity to Drive EVs	557		
		21.7.1	Resource	es with Zero Carbon Emission	558		
			21.7.1.1	Nuclear Power	559		
			21.7.1.2	Solar Energy for Faster Adoption and			
				Manufacturing of Electric & Hybrid Vehicles			
				in India	559		
			21.7.1.3	Wind Power	560		
			21./.1.4	Barriers for Wind and Solar Energy	561		
	21.	.8 CO ₂	Emissions	by Electric Vehicle vs Gasoline Driven Vehicles	562		

xvi Contents

	21.9	Depletion of Earth Metals to Run EV's vs Abundant Resources	
		for Diafuel [™]	564
		21.9.1 Can Diafuel [™] be the Answer	566
		21.9.2 Harvesting Diafuel [™] from Diatoms	566
	21.10	Current Status	567
		21.10.1 Data Analysis and Comparison Between EV and Diafuel [™]	569
	21.11	Conclusions	569
	Ackn	owledgement	574
	List o	f Abbreviations Used	574
	Refer	ences	574
22	Bubble	e Farming: Scalable Microcosms for Diatom Biofuel and the	
	Next G	Breen Revolution	583
	Richar	d Gordon, Clifford R Merz, Shawn Gurke and Benoît Schoefs	
	22.1	Introduction	584
		22.1.1 The Bubble Farming Concept	588
		22.1.2 Bubble Injection, Sampling, Harvesting and Sealing,	
		Maybe by Drones	592
		22.1.3 Approach	594
	22.2	Mechanical Properties	594
		22.2.1 Optimal Bubble Size	596
	22.3	Optical Properties	597
	22.4	Surface Properties	599
		22.4.1 Gas Exchange Properties	599
	22.5	Toxicity Restrictions	609
		22.5.1 Algal Oil Droplet Properties	611
	22.6	Biofilms	611
	22.7	Bacterial Symbionts	612
		22.7.1 Soil as a Source of CO_2	613
	22.8	Demand	614
		22.8.1 The Choice of Diatoms vs Other Algae	614
	22.9	Exponential Growth vs Stationary Phase	617
	22.10	Carbon Recycling	619
	22.11	Packaging	619
		22.11.1 Crop Choice by Farmers	620
		22.11.2 Bubble Farming vs Photobioreactors and Raceways	620
	22.12	Summary	620
	Ackno	wledgements	626
	Refere	nces	626

Index

Foreword

Prof. Dr. Andrzej Witkowski Palaeoceanology Unit University of Szczecin Mickiewicza 16a PL-70-383 Szczecin, Poland http://www.marinebenthicdiatoms.univ.szczecin.pl tel. +48 91 4442465 Andrzej.Witkowski@usz.edu.pl

Already seven years have passed since the publication of *The Diatom World*, a review of progress in the field of diatom research, edited by Joseph Seckbach and John P. Kociolek (Seckbach & Kociolek 2011). Needless to say, this period was marked further with significant progress in studies on diatoms. In all certainty, the wealth of data acquired over this justifies the publication of this new book, "Diatoms: Fundamentals and Applications". In addition to fundamental issues of diatom biology including valve morphogenesis, sexual reproduction and cell cycle, ecology and biodiversity, it includes numerous contributions on applied aspects of diatom research.

The section on applied aspects begins with a review of diatomite applications, including commercial use and future trends (Ghobara 2019). A related chapter discusses photonic properties of biogenic silica brought into the intricate patterns of diatom valves, an inspiration for numerous generations of professional and self-taught diatomists, but also chemists and physicists (Ghobara et al. 2019). Progress in biomedical applications research is presented in chapters on drug delivery with diatomaceous silica as a potentially biodegradable drug carrier, for tissue engineering and hemorrhage control on the one hand (Maher, Aw & Losic 2019), and on the use of molecular methods in forensic science on the other (Vinayak & Gautama 2019). The latter chapter is a leap forward as it may spare the diatomists performing forensic examinations the burden of processing drowning victims' internal organs. The application of metabarcoding will not solve the problem of the physical presence of diatoms, e.g., in lungs, but will support the identification of diatoms and thus facilitate the identification of the habitat where the victim drowned. This may be another sign of metabarcoding outcompeting the classic light microscope (LM) examination and counting of processed diatom valves on slides. To remind the reader, the United Kingdom gave up the use of LM-based diatom valve counting in water quality assessment in 2017 (Mann et al. 2017). Metabarcoding became the preferred alternative, let us hope, successfully. This hope is expressed on behalf of all skeptical practitioners of classic diatom indices in river and lake monitoring.

Although diatom lipids are considered a very good source of biodiesel, and some species are even named as oleaginous forms (see *Fistulifera solaris* for an example), other microalgae

are still preferred in large scale biomass growth and oil production. The present book introduces a new term, and a corresponding trade mark, of Diafuel with Fistulifera saprophila valve graphics playing a central part (Vinayak, Joshi & Sharma 2019). Unlike other microalgae, diatom organelles and lipid drops are encased in a siliceous box-like frustule. Unlike the "soft bodied" microalgae, diatoms go undamaged unless the pressure applied to squeeze oil exceeds a critical strength. Shall this allow the process of milking diatoms? Let us wait and see. So far, however, a splendid field of research on nanoindentation is seeking to obtain a milking pressure that will not kill diatoms, and allow them to restore their lipid droplets. Considering human energy use forecasts, this shall be required within the time span of several human generations. A unique opportunity presented by the "diafuel" project is that the secondary product or "waste" of the technological process is the biogenic silica that - owing to its photonic properties - can be "recycled" in further production of energy, for instance in solar panels or as a component of new valuable materials with unique photonic properties (Ghobara et al. 2019). One drawback of using diatom mass cultures for biofuel production purposes is the necessity of choosing between open race ponds which can be contaminated with airborne mineral and microbial waste, and closed photobioreactors which are more expensive to maintain. Culturing diatoms in bubble wrap, proposed in the chapter by Gordon et al. (2019), could be an alternative to these two solutions. If successfully implemented, upon certain conditions, with "bubble farming" biofuel production costs could be lower than those of mineral fuels.

In line with this is the review of the enormous scale of applied ongoing research on diatoms in China (Zhang 2019). Discussed in this latter chapter are examples of applied research involving diatoms in materials and biomaterials science, energy production and storage, waste water treatment, composites, diatom-based ceramics, etc. Given that numerous laboratories in China also work on fundamental aspects in diatom research including ecology, biology, taxonomy and phylogeny, the overall impression is tremendous.

Framed prints of beautiful diatoms can generate substantial sums of money. However, it seems that the beauty of diatoms unspoiled with any commercial issues is a value in itself. It is quite common that professional diatomists maintain friendly relations with diatom enthusiasts who are experts in light microscopy, often using very sophisticated systems. Perhaps surprisingly, with the changing technologies there is also an increase in the number of non-professional diatomists who own scanning electron microscopes. I know at least a few in Europe. The diatom beauty chapter definitely hosts images that should rank within fine arts (Tiffany & Nagy 2019). Morphogenesis of the diatom frustule is the subject of another chapter (Bedoshvili & Likhoshway 2019). Despite the progress in our understanding of the cellular mechanism of valve formation, its genetic controls remain largely unknown.

Fundamental aspects of diatom research are represented by such highlights as a review of sexual reproduction and life cycle, with the latest perspective on these issues (Poulíčková & Mann 2019). This research, which involves experiments for scientists of Benedictine patience, is crucial for understanding numerous aspects in diatom taxonomy and systematics. However, despite its splendid reputation and importance, few young scholars are willing to learn the techniques and spend days, months and years at an inverted microscope isolating clonal cultures of similar strains to discover their sexual compatibility and perform successful crossing experiments. Certainly the use of molecular tools makes the search for potentially compatible clones easier, but does not guarantee offspring. Research on diatom symbiosis is less common. Fortunately, a chapter on endosymbionts in diatom cells (cyanobacteria), and on diatoms as endosymbionts (in dinoflagellates) is published in this book (Stancheva & Lowe 2019). Any attempt to define a diatom usually involves a phrase like: diatoms are unicellular, photosynthetic organisms present in all habitats providing enough ambient light and a minimum of moisture. Diatom life and valve morphogenesis are intertwined with photosynthesis. Despite the fact that diatoms play such an important role in aquatic and terrestrial ecosystems, their photosynthesis at the organellar level, as emphasized by the authors of the chapter on diatom photosynthesis diatoms, is rather poorly known (Scarsini et al., 2019).

A series of chapters presents reviews on biodiversity and comparisons of diatoms living in freshwater habitats including rivers and freshwater mountainous habitats on one hand and potentially toxic marine diatoms on the other. Research on inland diatom assemblages of the Russian Far East (Nikulina & Medvedeva 2019) and on those from hot springs in Kamchatka (Nikulina et al. 2019) is presented in two chapters. Included are also chapters on freshwater diatoms of the South and Central European Mountain Ranges, including Tatra (Poland) and Rila (Bulgaria) (Ognjanova-Rumenova et al. 2019). The review of freshwater diatom ecology provides a link between fundamental and applied aspects of diatom research (Poulíčková & Manoylov, 2019). Covered in this review are the most recent aspects of freshwater diatom ecology, dispersal, biodiversity and biogeography, with an emphasis on practical aspects of using freshwater diatoms, i.e., in biomonitoring of freshwater habitats. As in the chapter on Kamchatka hot springs, another extreme habitat is presented in a review on ecophysiology of the Arctic fjord diatom strain Navicula directa (Karsten & Holzinger, 2019). The adaptation of this species to harsh environmental conditions related to low temperatures and lack of light during the long polar night has been proven in a series of experiments. The role of iron (Fe) in diatom physiology is reviewed by (Raven 2019). Despite the importance of iron, the existing knowledge is scarce and mostly limited to marine planktonic taxa. This book is crowned with the most up to date review on diatoms as potential producers of toxins dangerous to humans and other living organisms (not only domoic acid). Aside from fairly numerous representatives of Pseudo-nitzschia, only two marine Nitzschia species have been detected as toxin producers. However, we should expect the list of toxins and their producers to increase. It is not always the case that bloom forming toxin producers appear in strongly human impacted environments (e.g. shrimp aquaculture). Some inhabit Arctic and Antarctic marine waters or cold oceanic currents. The chapter by Bates et al. (2019) presents the complex biology of toxic diatoms, their distribution, and detection methods.

The present book is unique as it provides also an emotional component: it includes several chapters that commemorate those of our diatomist colleagues who recently passed away. Joseph Seckbach commemorates his friend Lawrence Bogorad, a late professor at the University of Chicago and dedicates the whole volume to his memory (Seckbach 2019). This is a tribute to Joseph Seckbach's MSc and PhD mentor at the University of Chicago. They remained in very friendly contact after Joseph's graduation. Lawrence Bogorad's research on photosynthetic pigments made a considerable impact on our understanding of chloroplast origin and photosynthesis. Further, Wladyslaw Altermann summarizes the life and scientific career of Alex Altenbach, a renowned palaeontologist and protistologist (Altermann 2019). The third, touching text by Janice Pappas is dedicated to Frithjof Sterrenburg, a diatom enthusiast with whom many of us had collaborated in the past (Pappas 2019). Personally, I met Frithjof in Frankfurt am Main during his visit to Horst Lange-Bertalot. We spent a memorable few days with Frithjof. I cherish the memory of countless phone calls I made that were answered by Frithjof, when an answer to an urgent taxonomic issue was past due. It is a pity that our two joint efforts to get the Kinker collection project funded failed. One special recollection that I have is Frithjof's pride when he published a joint paper with his father (Sterrenburg & Sterrenburg 1990). Probably few diatomists know that *Nitzschia nienhuisii* Sterrenburg F.A.S. & Sterrenburg F.J.G. 1990 from the coast of Mauritania was described by son and father Sterrenburgs. This distinctive and beautiful diatom, common around African coasts of Atlantic and Indian Oceans, seems to require a transfer to a new (as yet unnamed) genus. Years after witnessing Frithjof's pride, I found myself moved by similar feelings when publishing a joint paper with my son (Dabek et al. 2015).

This book will definitely be a connection between the fundamental and applied research on diatoms, and a connection between two scientific communities. Personally, I consider my professional contacts with materials science community and use of their tools, i.e. Focused Ion Beam (FIB, Witkowski (2019)) as very inspiring and fruitful in my own, principally fundamental, diatom research.

References

- Altermann, W. (2019) Alex Altenbach in memoriam of a friend. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 27–30.
- Bates, S.S., Lundholm, N., Hubbard, K.A., Montresor, M. and Leaw, C.P. (2019) Toxic and harmful marine diatoms. In: *Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach*]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 388-434.
- Bedoshvili, Y.D. and Likhoshway, Y.V. (2019) Cellular mechanisms of diatom valve morphogenesis. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 97–112.
- Dabek, P., Witkowski, J., Witkowski, A. and Riaux-Gobin, C. (2015) Morphology of Biddulphia seychellensis (Grunow in Van Heurck) FW Mills and the generic limits of Biddulphia Gray. Nova Hedwigia 144(Supplement), 97-105.
- Ghobara, M.M. and Mohamed, A. (2019) Diatomite in use: Occurrence, characterization, modification, and prospective trends. In: *Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]*. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 471–510.
- Ghobara, M.M., Mazumder, N., Vinayak, V., Reissig, L., Gebeshuber, I.C., Tiffany, M.A. and Gordon, R. (2019) On light and diatoms: A photonics and photobiology review. In: *Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]*. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 127–188.
- Gordon, R., Merz, C.R., Gurke, S. and Schoefs, B. (2019) Bubble farming: Scalable microcosms for diatom biofuel and the next Green Revolution. In: *Diatoms: Fundamentals*

& Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 583.

- Karsten, U., Schumann, R., and Holzinger, A. (2019) Ecophysiology, cell biology and ultrastructural anatomy of a benthic diatom isolated in the Arctic. In: *Diatoms: Fundamentals* & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 271–286.
- Maher, S., Aw, M.S. and Losic, D. (2019) Diatom silica for biomedical applications. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 511–536.
- Mann, D.G., Kelly, M.G., Walsh, K., Glover, R., Juggins, S., Sato, S., Boonham, N. and Jones, T. (2017) Development and adoption of a next-generation-sequencing approach to diatom-based ecological assessments in the UK [Abstract]. *Phycologia* 56(4, Supplement), 125-126.
- Nikulina, T.V., Kalitina, E.G., Kharitonova, N.A., Chelnokov, G.A., Vakh, E.A. and Grishchenko, O.V. (2019) Diatoms from hot springs of the Kamchatka Peninsula (Russia). In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 309-332.
- Nikulina, T.V. and Medvedeva, L.A. (2019) Diatoms of the southern part of the Russian Far East. In: *Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]*. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 353–386.
- Ognjanova-Rumenova, N., Wojtal, A.Z., Sienkiewicz, E., Botev, I. and Trichkova, T. (2019) Biodiversity of high mountain lakes in Europe with special regards to Rila Mountains (Bulgaria) and Tatra Mountains (Poland) In: *Diatoms: Fundamentals & Applications* [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 333–352.
- Pappas, J.L. (2019) A memorial to Frithjof Sterrenburg: The importance of the amateur diatomist. In: *Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]*. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 1–26.
- Poulíčková, A. and Mann, D.G. (2019) Diatom sexual reproduction and life cycles. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 243–270.
- Poulíčková, A. and Manoylov, K.M. (2019) Ecology of freshwater diatoms current trends and applications. In: *Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach].* J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 287–308.
- Raven, J.A. (2019) Iron and ferritin in diatoms. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard

Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 211–222.

Scarsini, M., Marchand, J., Manoylov, K.M. and Schoefs, B. (2019) Photosynthesis in diatoms. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 189–210.

Seckbach, J. and Kociolek, J.P. (eds.) (2011) The Diatom World. Springer London, Limited.

- Seckbach, J. (2019) Dedication to Lawrence Bogorad. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. v-vi.
- Stancheva, R. and Lowe, R. (2019) Diatom symbioses with other photoauthotrophs. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 223-242.
- Sterrenburg, F.A.S. and Sterrenburg, F.J.G. (1990) An outline of the marine littoral diatom biocoenosis of the Banc-d'Arguin, Mauritania, West Africa. *Botanica Marina* **33**(5), 459-465.
- Tiffany, M.A. and Nagy, S.S. (2019) The beauty of diatom cells in light and scanning electron microscopy. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 31–40.
- Vinayak, V. and Gautama, S. (2019) Diatoms in forensics: A molecular approach to diatom testing in forensic science. In: *Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon* & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 435–470.
- Vinayak, V., Joshi, K.B. and Sarma, P.M. (2019) Diafuel[®] (diatom biofuel) vs electric vehicles, a basic comparison: A high potential renewable energy source to make India energy independent. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 537–582.
- Witkowski, A. (2019) Application of focused ion beam in studies of ultrastructure of diatoms. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 113–126.
- Zhang, Y.X. (2019) Current diatom research in China. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA: pp. 41–96.

Introduction to Diatoms: Fundamentals and Applications

Joseph Seckbach

Diatoms: Fundamentals and Applications is the first volume in the series Diatoms: Biology and Applications, published by Wiley-Scrivener and edited by Richard Gordon and Joseph Seckbach.

Diatoms: Fundamentals and Applications complements adds further to the knowledge presented in our first volume (*The Diatom World*, Joseph Seckbach and J. Patrick Kociolek, eds., Springer, 2011). Moreover, the current volume includes some topics not covered in the previous volume.

What are the diatoms? They are fascinating microscopic unicellular or colonial, micro scopic eukaryotic algae. They are ubiquitously distributed in aqueous habitats, considered a major part of phytoplankton. They are present in fresh water, saline environments, brackish water and marine areas, and they are a source of biofuel. They live in high and low temperatures, and at different pH values. Their cells are divided into 2 halves. Their cell wall is silicified.

This volume presents many facets of diatoms that you have never encountered and had no inkling of their existence. Diatoms utilize 20% of the atmospheric CO_2 and release (via their photosynthesis process) our atmospheric O_2 vital to all life. (See chapter by Matteo et al.). Their chloroplasts are uniquely composed and differ from other green algae and from higher plants by not possessing chlorophyll **b** as is present in other green plants.

Our contributors are from quite a few countries, including Canada, China, Egypt, France, Germany, India, Israel, Poland, Russia, South Africa, UK and USA.

The Topics Covered in This Volume are Varied

Ecology; cell biology; biodiversity, distribution in nature; photosynthesis, light and diatoms; iron and ferritin; toxic diatoms, sexual reproduction, biofuel; ion beams; diatom uses; external uses; forensic use; medical silica; and diatom research in China.

It is assumed that an endosymbiotic event (see Stancheva and Lowe), took place in the past during the evolution of diatoms. According to this theory, a host eukaryotic primitive cell absorbed a cyanobacteria type of cell and used this guest (or penetrator) as part of its eukaryotic plastid entity with some exchange of genetic material with the host nucleus. For full photosynthetic activity **iron** is required (chapter by Raven). Otherwise, with a lack of iron in its nutrition, the green algae and higher plants turn pale and chlorotic - green-less). Algal-ferritin presents as a storehouse of iron for the photosynthetic reaction and for other requirements for cellular iron.

Cytological studies of the silicon diatomic cell wall, exhibiting the most beautiful diatoms appearance, are presented by Karsten and Holzinger, by Witkowski, and by others. Furthermore, the "ideal beauty" of the diatomic walls is admired specifically in the chapter by Tiffany and Nagy.

From among the ecological environments, diatoms are ubiquitous, living in fresh water, cold Polar water, hot spring water, and mountain lakes (see Poulickova and Mann, Nikulina et al., Ognjanova-Rumenova et al.)

This book is dedicated to the memory of three close colleagues; Lawrence Bogorad, -who was my mentor for my MSc and PhD at the University of Chicago.

My colleague Alex Altenbach, whom I met when I was a DAAD in the Department of Geology at Ludwig Maximilian University in Munich.

Frithjof Sterrenburg, a colleague who was an electron microscopist and an amateur diatomist from The Netherlands.

All three of the above were involved in algae and diatom research.

Acknowledgment

We, the editors thank our authors for their contributions, specifically our Russian authors, and the reviewers of the chapters.

A Memorial to Frithjof Sterrenburg: The Importance of the Amateur Diatomist

Janice L. Pappas

Department of Mathematics, University of Michigan, Ann Arbor, USA

Abstract

Frithjof A.S. Sterrenburg was an amateur diatomist who became an expert in taxonomy, nomenclature, microscopy, and photomicrography. He is best known for his work on *Gyrosigma* Hassall and *Pleurosigma* W. Smith but contributed in many areas of diatom research. Because of who he was and the nature of his interactions with the diatom community, he has had and will continue to have a lasting impact. His contributions to diatom research have influenced our understanding and usage of diatom taxonomy and nomenclature and how taxonomy informs ecological, biostratigraphic and other biological studies. His affable yet incisive character enabled him to be a teacher and mentor to professionals and amateurs and to be respected and appreciated internationally.

Keywords: Diatoms, *Gyrosigma*, *Pleurosigma*, microscopy, amateur diatomists, photomicrography, museum collections, taxonomy, valve morphogenesis, constructal morphology

1.1 Introduction

Throughout science, amateurs have contributed to the body of knowledge in many disciplines. Amateurs dedicate themselves to the pursuit of knowledge concerning their specific interests, and when it comes to diatoms, this is no exception. During the 1800s, diatom research was conducted by hobbyists who had occupations in very different fields (Bahls 2015; Gordon et al. 2009). For example, Friedrich Traugott Kützing was a pharmacist and school teacher who became a diatomist. He discovered that diatoms were composed of silica and had two parts to their shells, one was "primary" and the other "secondary," and was aided in publishing his findings by C.G. Ehrenburg, the preeminent zoologist and diatomist of the time (Werner 1977). Some amateurs formed microscopical societies or clubs as enthusiasts pursuing their common interest in the microscopic world (e.g., The Quekett Microscopical Club). In the post-Victorian world, diatom research has become professionalized, and currently, individuals can find

Corresponding author: jlpappas@umich.edu

Joseph Seckbach and Richard Gordon (eds.) Diatoms: Fundamentals and Applications, (1–28) © 2019 Scrivener Publishing LLC

2 DIATOMS: FUNDAMENTALS AND APPLICATIONS

Figure 1.1 Frithjof A. S. Sterrenburg at his microscope. (courtesy of H. van Dam)

professional mentors for formalized training to become a diatom researcher as one's occupation.

Having said this, modern amateur or citizen scientists are still making contributions to diatom research. Because so few individuals are formally trained, credentialed, paid, and have a career specifically in diatom research, and because diatom research is at a stage where the enormity of necessary work involves potentially hundreds of thousands of species, amateurs have a vital role to play. Amateurs who engage in this role seriously soon realize that contributing requires associating oneself with professionals, especially concerning technical matters in taxonomy, nomenclature, microscopy, and photomicrography.

The quintessential example of the modern amateur diatomist was Frithjof Sterrenburg (Figure 1.1). He died on March, 11, 2016 and left his mark on diatom research. He had passion and dedication to diatom research that earned him recognition and respect from professionals internationally. Frithjof's work in diatom taxonomy and nomenclature as well as microscopy and photomicrography has benefited professional and amateur diatomists alike, and his contributions have continued to be influential in the way diatom researchers engage in and pursue their studies. No matter how one perceives what it means to be an amateur, Frithjof transcended the notion because of who he was and how he lived his life.

Historically, amateur diatomists were unpaid and typically worked in various occupations (Bahls 2015; Werner 1977). A prime example was Astrid Cleve-Euler. She was the first female to be awarded a doctorate in science at Uppsala University, Sweden in the late 19th century. Yet, throughout her life, she was never employed as a scientist despite her contributions to chemistry, botany, geology, and diatom research (Swedish Natural History Museum). Even van Leeuwenhoek (17th to 18th century) who was a tradesman and politician did not get paid to study the microscopic world (Pedrotti accessed on 2016; Sterrenburg 1982).

Other dedicated amateurs engaged in diatom research. *Pleurosigma angulatum*, originally named *Navicula angulata* by John Thomas Quekett (Sterrenburg 1990a), an amateur diatomist who was a microscopist and histologist, was typified by the Reverend William Smith, an amateur turned academic who was a prominent diatom researcher in the Victorian era (Werner 1977). As a common leisure activity, diatoms were mounted in various configurations, slides were either purchased or prepared by the individual, and mounts were viewed with microscopes situated in Victorian parlors (Lynk accessed on 2016). Diatom mounters such as Johann Diedrich Möller (originator of the art of diatom mounting) (Walker 2009) and dentist William Gatrell (Stevenson 2009) were much in demand to produce intricate arrangements for viewing. The advent of the microscope and its common usage paved the way for such activities and induced the proliferation of amateur diatomists interested in the natural history of these eye-catching, exquisite microorganisms.

Frithjof was a throwback, in a sense, to this ilk of diatom researcher. Yet, he developed his own style and went beyond amateurs such as surgeon and physician John Redmayne (Stevenson 2013) and teacher John Albert Long (Walker 2012). Like Quekett, Redmayne and Long plied their trade as amateur diatomists in the late 19th and early 20th century. They bought and sold diatom samples as well as made mounts and relied on popular publications such as Hardwicke's Science Gossip for the latest information on diatoms (e.g., Taylor 1885). In Hardwicke's volume XXI from 1885, an article on Jacques-Joseph Brun's publication, "The Diatoms of the Alps and the Jura," was presented in which Brun, a pharmacologist and diatomist (JStor Global Plants accessed on 2016), talked about the deposition of diatoms over time and the formation of Kieselgühr (Taylor 1885). His taxonomic work like that of his contemporaries on fossil diatoms provided the impetus for the commencement of Adolph Schmidt's Atlas in 1874 (Schmidt et al. 1874–1959) that was continued with contributions from others until 1959-including Friedrich Hustedt, a teacher turned professional diatomist who has had a great influence on diatom research (Alfred Wegener Institute 2015). Frithjof's trajectory into diatom research was more along the lines of Smith, Brun, and Hustedt. Like these predecessors, Frithjof progressed from amateur to expert, garnering respect for his expertise. Frithjof elevated his contributions to the level of scientific peer-review rather than being only presentable in popular publications, and like many of his predecessors, he has had a lasting impact on diatom research.

1.2 Background and Interests

Frithjof A. S. Sterrenburg was born in 1934. Originally, he studied medicine at Amsterdam University. His autodidactic nature conflicted with a formalized education approach, and inevitably, he would venture out on his own. He was well-read and able to learn various subjects at many levels of difficulty and did so as a life-long endeavor. For Frithjof, life and learning was an adventure.

4 DIATOMS: FUNDAMENTALS AND APPLICATIONS

Figure 1.2 Frithjof playing the trumpet with trombonist Bill Rank from the Paul Whiteman orchestra (1968). (permission from C.J.Sterrenburg)

Figure 1.3 Frithjof in his backyard, extolling a friend to see into the night sky (circa 1980). She and her biologist husband were hosts of the Sterrenburgs in Sulawesi, Indonesia. (permission from C.J. Sterrenburg)

Frithjof showed a propensity for immersing himself in a wide range of learning experiences, and some of his emerging talents were expressed in such divergent fields as music (e.g., Sterrenburg 1967) and astronomy. In his youth, Frithjof played trumpet (Figure 1.2), saxophone, clarinet, and piano in big-band style orchestras, and he also arranged compositions for such orchestras. He was a jazz musician for many years (de Wolf, personal communication). He owned many telescopes (Figure 1.3). Some of Frithjof's first publications in the early 1980's described how to see the stars more clearly (Sterrenburg 1983a, b). He liked to share conversations about the stars with many people, including long-time friends Michael Stringer and Wulf Herwig, as he relished being able to see beyond our immediate world.

Frithjof was a tinkerer and had a knack for all things electronic, electrical and mechanical (e.g., Sterrenburg 1979). Frithjof shared an interest in electrical devices with