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Foreword of the series editors

Construction history has experienced amazing momentum over the past
decades. It has become a highly vibrant, independent discipline attracting much
attention through its international networks. Although research projects at
national level focus on different themes, they are united through the knowledge
that their diversity in terms of content and methods, and hence the associated
synthesizing potential, are precisely the strengths that shape this new field of
research. Construction history opens up new ways of understanding construc-
tion between engineering and architecture, between the history of building and
history of art, between the history of technology and history of science.

Since Galileo’s time, engineers and architects have been using physical models
to build bridges between the conceptual design of engineering structures on
the one hand and their detailed design on the other. As editor and one of
the authors of the present volume of the Construction History Series/Edition
Bautechnikgeschichte, Bill Addis has gathered together contributions by authors
from very diverse backgrounds, different countries, to demonstrate the vital role
that physical models play in the design of engineering structures. The authors’
multi-method approach not only offers a fascinating and comprehensive insight
into the historical development of building and civil engineering, but also
enhances our perception of the changing relationship between experiment and
theory in times of paradigm shifts in the aforementioned fields of historical
research.

Karl-Eugen Kurrer and Werner Lorenz
Series editors
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Foreword

The art of devising and capturing geometrical parameters is an essential part
of architects’ and engineers’ daily working lives. In fact, no structures can be
designed without it. The problem is that the individual components of many
modern structures are subject to complicated internal stresses triggered by
external loads from the wind, earthquakes and a range of other potentially
complex phenomena. Building up a precise, scientifically rigorous picture of
these loads and the internal stresses and deformations that arise as a result (such
as the deflection of a bridge when a train travels over it) is certainly no easy
task. Indeed, predicting the stresses and deformations experienced by structures
and their components via purely theoretical means is, at best, only sufficient
for anticipating general trends and cannot provide the precision necessary for
reliable structural calculations. For this reason, both architects and engineers
have long used models to help them with their plans. ‘Models’, in this context,
are defined as physical or mathematical representations that demonstrate one or
more specific properties of a structure. For example, a model of a load-bearing
construction will display its structural and deformation characteristics, but not
the acoustic qualities of the design in question.

Mathematical models of selected slices of reality stand out thanks to the
high, comprehensive levels of precision they achieve in the predictions they
produce. This is one of their great strengths. Of course, the accuracy of these
predictions is dependent on the quality of each model’s design. In comparison
with their physical counterparts, mathematical models are also at a disadvantage
when it comes to clarity and intelligibility: they typically give their results in
two-dimensions and, as such, lack the potential for tactile exploration offered by
three-dimensional representations. This tangibility is one of the main benefits of
physical models and – alongside the consideration that they are relatively quick
and easy to make – is precisely the reason why they continue to play such a
central role in design processes in all branches of building and civil engineering
today. Indeed, physical models are still used to grasp the key behavioural
properties of a construction or engineering system at speed and to make initial
optimisations before mathematical models are brought in to help generate the
final result.

For hundreds of years, architects and engineers have depended on physical
models for developing optimal constructions and determining the stresses
and deformations experienced by entire structures and their constituent parts.
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Since the late nineteenth century physical models have also played a major role
in hydraulic, seismic, acoustic and wind engineering. In fact, for a long time,
physical models have ranked alongside empirical knowledge as cornerstones of
the construction industry, especially when new structures and novel materials
were being included in designs. As a consequence, a huge range of different
modelling techniques were employed from the days of the mason’s lodges at
Gothic building sites right up to the mid-twentieth century. In spite of their
tremendous significance for the development of construction as a discipline
overall, however, these creations have never been comprehensively described,
classified, categorised or placed in a historical sequence. That is, at least, not
until the publication of this book, which represents the very first time such a
feat has ever been achieved. Even this simple fact alone is enough to make it a
crucial, foundational text that will doubtless soon become an essential reference
work for students and professionals in the fields of architecture, building and
civil engineering alike.

Professor Werner Sobek
Institute for Lightweight Structures & Conceptual Design (ILEK)

University of Stuttgart
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Preface

Both historical and current civil and building engineering are often considered
in terms of the practical skills of using materials to construct artefacts, and
the theoretical tools used to calculate and predict their engineering behaviour
before construction begins. So often one hears talk of the theory and practice of
engineering. Yet there is more to engineering than this.

Many books have dealt with the historical development of the practical aspects
of construction – the history of canals, of dams, of bridges, of masonry structures,
of iron construction. Many others have dealt with the history of engineering
science and theory – the equations of fluid flow, the statics and equilibrium of
structures, the elasticity of materials, the curious behaviour of soil, the reverber-
ation and absorption of sound in a room.

I have long argued that there is a crucial third strand of engineering skill that is
equally deserving of historical study – the skill of design. I have argued that design
comprises two main activities or outcomes: to convey the designer’s ideas to the
people who will build an engineering artefact; and to provide the confidence that
the proposed design will perform as wished by the client, and as intended by the
designer [1].

Over centuries, the first outcome has been achieved by means of drawings,
geometrically-faithful models at reduced scale, material data, design rules and
codes of practice, and various types of performance specification specific to par-
ticular engineering disciplines.

The second outcome, providing the confidence to build, one might call it, has
been achieved in simple ways such as following precedent, or learning from
the experience of what was not successful. It has also been achieved in more
sophisticated ways including making and testing a full-size prototype structure1

or a reduced-scale model of an engineering construction, and the use of theories
of engineering science. Today this might be described as reducing risk to an
acceptable level.

The history of engineering design, then, comprises histories of the various ways
that engineers have communicated their designs, and how they have provided

1 In UK English it is always awkward to have to refer to a full-size, or full-scale, or actual or real
structure. In American English, the word ‘prototype’ is used, which is much easier. However, in UK
English this word means making the first few examples of a product that later goes into batch- or
mass-production. In this book the UK English terms are used, despite their awkwardness.
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Figure 1 Diagram showing the scope of civil and building engineering history.

sufficient confidence in their designs to persuade clients to fund their projects
and contractors to build them [2].

Using these ideas we can build up an overall picture of the history of civil
and building engineering which also indicates where the subject of this book fits
into the grand scheme (Figure 1). This diagram also provides an epistemological
framework for engineering knowledge, applicable equally to the modern practice
of civil and building engineering as to the history of the subject. For this reason,
it also has consequences for the nature of progress in these fields. When con-
sidering the mechanism(s) by which progress is achieved, according to the idea
that engineering is a matter of putting theory into practice, it is common to imply
that progress occurs as a consequence of developments and progress in engineer-
ing science. However, this is patently wrong: there are no significant examples of
progress in civil and building engineering construction that have arisen entirely
as the result of progress in engineering science. Furthermore, there are count-
less examples of progress in engineering science that arose out of construction
practice. Most progress has been symbiotic, with ideas and experience passing
between the two with equal intensity in both directions. Reduced-scale models
have often been the essential catalyst to the process, providing the only means by
which the practical and theoretical worlds are brought together.

This book is devoted to the use of reduced-scale models, especially in the design
process for civil and building engineering projects to help raise confidence in a
proposed design. While the testing of full-scale prototypes is common in other
engineering disciplines, the sheer size of construction projects generally pro-
hibits full-scale testing. Faced with this constraint, making and testing a model
is an intuitive thing to do, and surely goes back thousands of years for artefacts
made from the traditional materials – timber, mud and masonry. One advantage
of masonry construction is that the structural behaviour of a small model can
be scaled up linearly to full size, and give reliable guidance. This is why masonry
construction was able to make such dramatic progress from modest houses to the
temples of Ancient Greece, the vaults and domes of Ancient Rome and then to the
remarkable cathedrals of the Gothic era. However, most engineering phenomena
cannot be scaled up linearly, and engineering theory is needed to transpose the
results of small-scale tests to full-size behaviour. There was some understanding
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of this even in ancient Greece, and Vitruvius mentions that some aspects of model
behaviour can be scaled up linearly, while others cannot (see Appendix A1).

This book has two main aims – to fill a gap in the history of construction
by demonstrating the essential contribution to engineering progress made by
physical models, and to give an overview of some uses of physical models in the
twenty-first century. The greater part of the book looks at the history of using
physical models and within this theme, the larger part is devoted to the use of
models in structural and bridge engineering and some mechanical engineering
fields such as pumping water. This partition largely reflects when and how mod-
els have been used in engineering design and also the availability of historical
material. The first three sections look at mechanical and structural models from
ancient times to around 1980, by which time their use was in decline as computers
became more powerful and widely available. The next section deals with the use of
models in engineering disciplines other than structural engineering – measuring
the flow and forces associated with fluid flow in hydraulic engineering and wind
tunnels, the loads and dynamic response cause by seismic events, the acousti-
cal characteristics of buildings and the behaviour of soils under load. The final
section takes a look at current practice in using physical models today in several
branches of civil and building engineering.

The main focus of attention in the book is on physical models used by engineers
to determine quantitative data – for example predicting wind loads on a building
using a model in a wind tunnel. In German the word ‘Messmodell’ is a convenient
term that distinguishes this type of physical model from others that are merely
mechanical or ‘proof of concept’ models or geometrically representative. Where
appropriate, this book uses the term ‘measurement model’ – a direct translation
of the German word – for this purpose.

Despite being a large book, it has only scratched the surface of this enormous
subject. Nearly every chapter would merit the more thorough attention of sev-
eral doctoral students. I have not attempted to present the first instance of each
model-testing technique, nor to cover every field of civil and building engineering
that has made use of models, nor to look at the use of models in experimental sci-
ence with purely scientific aims, nor to present the model-testing efforts of every
country. The focus of the book has been on the use of models to inform engi-
neering design, and it uses examples wherever it has been possible to find them.
While aiming to provide an overview of the whole subject, I am aware of the
unintentional biases that have pervaded my own researches due to the libraries I
have been able to use, the relatively few languages that I speak, and the cultural
filtering of information via the non-egalitarian Internet. I have done my best to
overcome these challenges.

I would like to acknowledge the assistance I have been given in compiling the
book – first, and most of all, from the authors, many of whom have squeezed
the work required for their chapter into very tight work schedules. I would also
like to thank the authors of Chapters 3, 4, 11, 13, 16 and 19 for the help they gave
me in translating their contributions from their original languages. I would like
to thank colleagues and library staff in several universities and the Institution of
Structural Engineers in London for the help they gave me. I give special thanks
to Annette Ruehlmann in the Institution of Civil Engineers in London, who
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found many sources and scanned many images for me. And finally, I give my
heartfelt thanks to my partner, Martine Gowie, who has been very patient while
I have written and compiled the book, and who has been such a great supporter
of my project, in so many ways.

Before delving further into the book, it is worth shedding any idea that the
model testing discussed in the book, especially since the mid-nineteenth cen-
tury, is mainly a lot of (usually) men playing with toys. Even though two articles
in a 1920s popular-science journal about model tests for the Boulder Dam were
informative and ‘serious’, their titles portrayed a rather different image – ‘Toys
that save millions’ and ‘Toy dams to save lives’! The care and accuracy with which
model tests were carried out was extraordinary – often measuring strains or
deflections to a hundredth of a millimetre or better. They were no more ‘play-
ing’ than when brain surgeon is at work. Nevertheless, even in the 1930s, there
were engineers who scorned model testing – ‘a vet would hardly be entrusted
to operate on an elephant if he had gained his knowledge of anatomy from a
mouse’. On the other hand, another engineer noted that you can learn a lot about
the behaviour of dogs by observing puppies. It is to be hoped that this book will
clarify matters.

Bill Addis
May 2020

References
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