Signals and Communication Technology

Hossam Mahmoud Ahmad Fahmy

Wireless Sensor Networks

Energy Harvesting and Management for Research and Industry

Signals and Communication Technology

Series Editors

Emre Celebi, Department of Computer Science, University of Central Arkansas, Conway, AR, USA Jingdong Chen, Northwestern Polytechnical University, Xi'an, China E. S. Gopi, Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India Amy Neustein, Linguistic Technology Systems, Fort Lee, NJ, USA H. Vincent Poor, Department of Electrical Engineering, Princeton University, Princeton, NJ, USA This series is devoted to fundamentals and applications of modern methods of signal processing and cutting-edge communication technologies. The main topics are information and signal theory, acoustical signal processing, image processing and multimedia systems, mobile and wireless communications, and computer and communication networks. Volumes in the series address researchers in academia and industrial R&D departments. The series is application-oriented. The level of presentation of each individual volume, however, depends on the subject and can range from practical to scientific.

"Signals and Communication Technology" is indexed by Scopus.

More information about this series at http://www.springer.com/series/4748

Hossam Mahmoud Ahmad Fahmy

Wireless Sensor Networks

Energy Harvesting and Management for Research and Industry

Hossam Mahmoud Ahmad Fahmy Faculty of Engineering Department of Computer Engineering and Systems Ain Shams University Cairo, Egypt

ISSN 1860-4862 ISSN 1860-4870 (electronic) Signals and Communication Technology ISBN 978-3-030-29698-8 ISBN 978-3-030-29700-8 (eBook) https://doi.org/10.1007/978-3-030-29700-8

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Dedicated to my family; parents, brothers and sister with whom I grew up warmly... wife and daughters who gave my life a caring taste...

Dedication is not only for who are in our world...

Preface

Writing a book is tempting, many ideas and topics, idea after idea, and topic upon topic, what to elaborate, which to mention, the reader must find a satisfying answer, enough knowledge; overlooking and going-by are painful choices for the author, space is limited, and a tough decision is to be made, without compromising what should be transferred to the audience. Writing a scientific book is navigating, across the Nile, the Mediterranean, the Atlantic and the Indian oceans, in boat and in glass submarine, looking and searching for known and unknown species, appreciating diversified colors and variety of sizes, collecting for a near benefit and for the future. I navigated for the second time, explored, day and night, when cold and hot, whether windy or breezing, without tolerating a least chance to know and learn.

Networking is a field of integration, hardware and software, protocols and standards, simulation and testbeds, wired and wireless, VLSI and communication, energy harvesting and management, an orchestrated harmony that collaborates dependably, all for the good of a connected well-performing network. That is the charm of networking, of life in a civilization that recognizes differences and goes on.

This book focuses on the concepts of energy, and energy harvesting and management techniques for WSNs; a meticulous care has been accorded to the definitions, terminologies, and protocols. Definitions and terminologies are made clear without leaning on the relaxing assumption that they are already known or easily reachable, and the reader is not to be diverted from the main course. Neatly drawn figures assist in viewing and imagining the offered topics. To make energy-related topics felt and seen, the adopted technologies as well as their manufacturers are presented in detail. With such a depth, this book is intended for a wide audience, and it is meant to be helper and motivator, for the senior undergraduates, postgraduates, researchers, and practicioners; concepts and energy-related applications are laid out, research and practical issues are backed by the appropriate literature, and new trends are put under focus. For senior undergraduate students, it familiarizes with conceptual foundations and practical project implementations. Also, it is intended for graduate students making a thesis and in need of specific knowledge on WSNs and the related energy harvesting and management techniques. Moreover, it is targeting researchers and practitioners interested in features and applications of WSNs, and on the available energy harvesting and management projects and testbeds.

Three parts form the backbone of this book. Part I (Concepts and Energy Harvesting) includes Chap. 1 and 2, for a review of WSN concepts and in-depth presentation of the energy harvesting techniques. Part II (Energy Management Perspectives) embodies Chap. 3 and Chaps. 4–6 for a thorough analysis of the three perspectives on energy management: specifically, duty-cycling, data-driven, and mobility-based approaches. Part III (Harvesting and Management Projects and Testbeds) containing Chaps. 7–9 brings practice to theory through energy harvesting and management projects and testbeds.

Part IV is a single concluding chapter. Chapter 10 ignites the launch into the wide realm of WSNs, research, and implementation of energy-focused protocols and techniques for energy harvesting and management. A longer WSN lifetime is the prime target.

Exercises at the end of each chapter are not just questions and answers; they are not limited to recapitulate ideas. Their design objective is not bound to be a methodical review of the provided concepts, but rather as a motivator for lot more of searching, finding, and comparing beyond what has been presented in this book.

Talking numbers, this book extends over ten chapters and embodies 188 acronyms, 238 colored figures, 41 tables, and above 650 references.

With the advance of technology, writing a book is becoming easier, and information is attainable; but it is certainly tedious, and details and depth are not to be missed within a comforting accuracy. Reader trust cannot be waived. Every bit of knowledge included in this book is checked and rechecked multiple times, no accidental slips. A book, any book, is a step in a long path sought to be correct, precise as possible, nonetheless errors are non-escapable, and they are avoided iteratively, with follow-up and care.

The preface is the first get-together between the author and the audience, it is the last written words, and it is lying in the ground after the end line, to restore taken breath, to enjoy relaxing after long painful efforts, mentally and physically, to relax in preparation for a new game. Bringing a book to life consumes months and months, days and nights, events after events, familial, social, and at the wide world of technology, sports, and politics. This book has seen much and recorded some. An author has his ups and downs, as everybody, but he is visible like nobody. Could he manage to hide some of his letdowns? Yes he has to, unlike anybody, for the sake of his book, his readership.

A book is a whole life, maybe in the current, in the past, or in future. The author has many dreams, completing the current chapter, reaching the last chapter, agreeing on the book cover, handing the book to the publisher, receiving the manuscript for revision, talking royalties, ...

Writing with care and feelings can be a title for my books. Authoring is a duty, a passion, an exhausting ordeal with mostly a moral reward...

If you find somebody talking to himself, tumbling, wearing a differently colored pair of shoes, don't laugh at him, he is probably writing a book...

Cairo, Egypt

Hossam Mahmoud Ahmad Fahmy email: Hossam.fahmy@ieee.org

Contents

Part I Concepts and Energy Harvesting

Wire	less Sensor Networks Essentials	3
1.1	Sensing, Senses, Sensors	4
1.2	Toward Wireless Sensor Networks	5
1.3	Mobile Ad Hoc Networks (MANETs)	7
1.4	Wireless Mesh Networks (WMNs)	8
1.5	Closer Perspective to WSNs	11
	1.5.1 Wireless Sensor Nodes	11
	1.5.2 Architecture of WSNs	12
1.6	Types of WSNs	13
	1.6.1 Terrestrial WSNs	13
	1.6.2 Underground WSNs	14
	1.6.3 Underwater Acoustic Sensor Networks (UASNs)	1.
	1.6.4 Multimedia WSNs	16
	1.6.5 Mobile WSNs	17
1.7	Performance Metrics of WSNs	19
1.8	WSNs Standards	21
1.9	Protocol Stack of WSNs	23
	1.9.1 Physical Layer	26
	1.9.2 Data Link Layer	27
	1.9.3 Network Layer	28
	1.9.4 Transport Layer	29
	1.9.5 Application Layer	30
	1.9.6 Cross-Layer Protocols for WSNs	32
1.10	Conclusion for Energetic Trip	33
1.11	Exercises	35
Refer	ences	36

2	Ene	rgy Harv	esting in WSNs	41
	2.1	Energy	Constraints	41
	2.2	Energy	Harvesting Concepts and Components	43
		2.2.1	Energy Harvesting Architectures	43
		2.2.2	Power and Energy Differentiated	44
		2.2.3	Energy Harvesting Versus Battery-Operated Systems	48
		2.2.4	Storage Technologies	50
		2.2.5	Harvesting Theory	55
		2.2.6	Conditions for Energy-Neutral Operation	56
		2.2.7	Characteristics and Classifications of the Harvestable	
			Energy Sources	58
		2.2.8	Multisupply and Autonomous Energy Harvesting	60
	2.3	Energy	Harvesting Mechanisms	62
		2.3.1	Photovoltaic Energy Harvesting	64
		2.3.2	Energy Harvesting from Motion and Vibration	64
		2.3.3	Energy Harvesting from Temperature Differences	69
		2.3.4	Wind Energy Harvesting	71
		2.3.5	Wireless Energy Harvesting	71
		2.3.6	Biochemical Energy Harvesting	73
		2.3.7	Acoustic Energy Harvesting	80
		2.3.8	Hybrid Energy Harvesting	82
	2.4	MEMS	for Energy Harvesters Fabrication	85
	2.5	Conclu	sion for Enlightenment	90
	2.6	Exercis	es	92
	Refe	erences		92
Par	t II	Energy I	Management Perspectives	
3	Ene	rgy Mana	agement Techniques for WSNs	103
	3.1	Energy	Conservation Approaches.	103
		3.1.1	Duty-Cycling Techniques	105
		212	Data Drivan Tachniquas	106

3.1.2Data-Driven Techniques1063.1.3Mobility-Based Techniques1063.2Conclusion for More on Energy Management1073.3Exercises107References107Energy Management Techniques for WSNs (1): Duty-CyclingApproach1094.1Duty-Cycling Approach Taxonomy109			
3.1.3 Mobility-Based Techniques1063.2 Conclusion for More on Energy Management1073.3 Exercises107References107Energy Management Techniques for WSNs (1): Duty-CyclingApproach1094.1 Duty-Cycling Approach Taxonomy109		3.1.2 Data-Driven Techniques	106
3.2 Conclusion for More on Energy Management. 107 3.3 Exercises 107 References 107 Energy Management Techniques for WSNs (1): Duty-Cycling Approach 109 4.1 Duty-Cycling Approach Taxonomy 109		3.1.3 Mobility-Based Techniques	106
3.3 Exercises 107 References 107 Energy Management Techniques for WSNs (1): Duty-Cycling 109 Approach 109 4.1 Duty-Cycling Approach Taxonomy 109 111 The charter is provided by the provide	3.2	Conclusion for More on Energy Management	107
References107Energy Management Techniques for WSNs (1): Duty-CyclingApproach1094.1Duty-Cycling Approach Taxonomy1094.1Duty-Cycling Approach Desteen109	3.3	Exercises 1	107
Energy Management Techniques for WSNs (1): Duty-Cycling Approach 109 4.1 Duty-Cycling Approach Taxonomy 109 4.1 Taxonomy 109	DC		107
4.1 Duty-Cycling Approach Taxonomy	Refer	rences	107
4.1.1 Transferred Distance In 111	Ener Ann	gy Management Techniques for WSNs (1): Duty-Cycling	107
4.1.1 Topology Control Protocols	Ener Appr 4.1	gy Management Techniques for WSNs (1): Duty-Cycling coach Duty-Cycling Approach Taxonomy	107 109 109
4.1.2 Power Management Protocols 133	Refer Ener Appr 4.1	gy Management Techniques for WSNs (1): Duty-Cycling roach 1 Duty-Cycling Approach Taxonomy 1 4.1.1 Topology Control Protocols 1	107 109 109 111
	Ener Appr 4.1	gy Management Techniques for WSNs (1): Duty-Cycling roach 1 Duty-Cycling Approach Taxonomy 1 4.1.1 Topology Control Protocols 1 4.1.2 Power Management Protocols 1	107 109 109 111 133

4

	4.2	Conclusion for Longer Duty-Cycling	246
	4.3	Exercises	251
	Refer	ences	251
5	Ener	gy Management Techniques for WSNs (2): Data-Driven	
	Appr	oach	259
	5.1	Data-Driven Approach Taxonomy	259
		5.1.1 Data Reduction Protocols	260
		5.1.2 Energy-Efficient Data Acquisition	340
	5.2	Conclusion for Well-Managed Lifestyle	383
	5.3	Exercises	388
	Refer	ences .	389
6	Ener	av Management Techniques for WSNs (3): Mobility-Based	
U	Annr	management reeningues for WBNS (3). Mobility-based	300
	6 1	Mobility in WSNs	300
	0.1	6.1.1 Architecture of WSNs with Mobile Elements	400
		6.1.2 Role of Mobile Elements in WSNs	401
	62	Mobility Based Approach Taxonomy	401
	0.2	6.2.1 Mobile Sink Protocols	405
		6.2.2 Mobile Balay Protocols	400
	62	0.2.2 Mobile Kelay Flotocols	440
	0.5		4/0
	0.4 Defer		403
	Refer	ences	484
Par	t III	Harvesting and Management Projects and Testbeds	
7	Ener	gy Harvesting Projects for WSNs	489
	7.1	Necessities-Driven Projects	489
	7.2	Energy Harvesting Projects	490
		7.2.1 ZebraNet: Energy-Efficient Computing for Wildlife	
		Tracking	490
		7.2.2 Prometheus for Perpetual Environmentally Powered	
		Sensor Networks	507
		7.2.3 Solar Biscuit: A Battervless Wireless Sensor Network	
		System for Environmental Monitoring Applications	514
		7.2.4 Heliomote for Solar Energy Harvesting in Wireless	
		Embedded Systems	526
		725 Everlast: Long-Life Super-Capacitor-Operated	020
		Wireless Sensor Node	536
		7.2.6 AmbiMax: Autonomous Energy Harvesting Platform	550
		for Multisupply Wireless Sensor Nodes	550
		7.2.7 Sunflower: Low-Power Energy Harvesting System	550
		with Custom Multichannel Communication Interface	550
		with Custom Withtenamer Communication Interface	220

		7.2.8 Micro-Solar Power Sensor Networks for Forest	5(0)
		 7.2.9 Energy Harvesting from Hybrid Indoor Ambient Light and Thermal Energy Sources 	569 580
	7.3	Conclusion for Radiance	599
	7.4	Exercises	601
	Refe	rences	602
8	Ener	rgy Management Projects for WSNs	611
	8.1 8.2	Energy Management Projects Evolution and Sustainability of a Wildlife Monitoring Sensor	611
		Network	612
		8.2.1 Initial System Design	614
		8.2.2 Evolution Stage 1: Improving Sensing and Data	
		Collection	619
		8.2.3 Evolution Stage 2: Hardware Improvements	626
		8.2.4 Network Maintenance Costs	630
		8.2.5 Gained Experience	633
	8.3	Conclusion for Brightness	634
	8.4	Exercises	635
	Refe	rences	636
9	WSN	Ns Energy Testbeds	639
	9.1	Functionalities	639
	9.2	Typical WSNs Energy Testbed	641
		9.2.1 PowerBench: A Scalable Testbed Infrastructure	
		for Benchmarking Power Consumption	641
	9.3	Conclusion for Brilliance	644
	9.4	Exercises	645
	Refe	rences	645
Par	t IV	Ignition	
10	Last	Flare	649

10 Last Flare	649
Index	651
Index of Abbreviations and Acronyms	659

About the Author

Prof. Hossam M. A. Fahmy Professor of Computer Engineering served as Chair of the Computer Engineering and Systems Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt, from 2006 to 2008 and from 2010 to 2012. He participates in many academic activities in Egypt and abroad. Prof. Fahmy has published and refereed extensively in Springer, Elsevier and IEEE journals and in several refereed international conferences. His teaching and research areas are focused on computer networks, MANETs, WSNs, VANETs, fault tolerance, software, and Web engineering. He authored Wireless Sensor Networks: Concepts, Applications, Experimentation and Analysis, book published by Springer, 2016.

He founded and chaired the IEEE International Conference on Computer Engineering and Systems (ICCES) from 2006 to 2008 and from 2010 to 2013. He is Senior IEEE Member, IEEE Region 8 Distinguished Visitor (2013–2015) and (2015–2018), Member of the Distinguished Visitor Committee of the IEEE Computer Society, and Member in the Cloud Computing Special Technical Community of the IEEE Computer Society. He speaks Arabic, French, and English.

List of Acronyms

2-DOF	2-degree of freedom
ACC	Active congestion control
ADC	Analog-to-digital converter
AEA	Adaptive election algorithm
AFECA	Adaptive fidelity energy-conserving algorithm
AINS	Autonomous Intelligent Networks and Systems
AMRP	Average minimum reachability power
AODV	Ad hoc on-demand distance vector
ARMA	Autoregressive-moving-average
ARQ	Automatic repeat request
ASCENT	Adaptive self-configuring sensor networks topologies
ASK	Amplitude-shift keying
AWP	Asynchronous wakeup protocol
B-MAC	Berkeley-MAC
BER	Bit error rate
BTU	British thermal unit
CC	Control/charger
CCA	Clear channel assessment
CDS	Connected dominating set
CEC	Cluster-based energy conservation
CLUDDA	Clustered diffusion with dynamic data aggregation
CNES	Centre National d'Etudes Spatiales
CNS	Center at nearest source
COP	Computer operating properly
CPLD	Complex programmable logic device
CSMA/CA	Carrier sense multiple access with collision avoidance
CTS	Clear to send
CUSUM	Cumulative sum
DAC	Digital-to-analog converter
DBMAC	Delay bounded medium access control

	•		•
xν	1	1	1
	-	-	•

DBP	Derivative-based prediction
DCF	Distributed coordination function
DCO	Digitally controlled oscillator
DCS	Data collection and location system
DOD	Depth of discharge
DOP	Dilution of precision
DPM	Dynamic probabilistic model
DS	Data send
DSDV	Highly dynamic destination-sequenced distance-vector routing
DSF	Damage Sensitive Feature
DSP	Digital signal processing
DSR	Data success ratio
DT-MSM	Delay-tolerant mobile sink model
DTN	Delay-tolerant networking
EADAT	Energy-aware distributed aggregation tree
ECN	Explicit contention notification
EDD	Enhanced directed diffusion
EDLC	Electric double-layer capacitor
EEDC	Energy-efficient data collection
EGS	Electronic grade silicon
EH	Energy harvesting
EM-EH	Electromagnetic energy harvester
EMACS	EYES-medium access control protocol for WSNs
EMI	Electromagnetic interference
ESR	Equivalent series resistance
FAR	FloodNet adaptive routing
FFT	Fast Fourier transform
FLAMA	Flow-aware medium access
FPA	Fast path algorithm
FR	Flame retardant
FRTS	Future request to send
FV	Frequency to voltage
GIF	Graphics interchange file
GIT	Greedy incremental tree
GLPK	GNU Linear Programming Kit
GMRE	Greedy maximum residual energy
GPIO	General-purpose input/output
HCL	High contention level
HEED	Hybrid energy-efficient distributed clustering
HEH	Hybrid energy harvesting
I2C	Inter-Integrated Circuit
ID	Identification
IDC	Insulation-displacement connector
IMD	Implantable biomedical device
	L .

ISI	Information Sciences Institute
JPEG	Joint Photographic Experts Group
JTAG	Joint Test Action Group
L-MAC	Lightweight medium access protocol
LCL	Low contention level
LCS	Location-based clustering scheme
LEACH	Low-energy adaptive clustering hierarchy
Li-ion	Lithium-ion
LiPo	Lithium polymer
LPL	Low power listening
MACAW	Media access protocol for wireless LAN
MANET	Mobile ad hoc network
MC3	Multicamera coordination and control
MDC	Mobile data collector
MDS	Minimal dominating set
MEH	Micro-energy harvester
MEMS	Microelectromechanical system
MILP	Mixed integer linear programming
MPP	Maximum power point
MPPT	Maximum power point tracking
MR	Mobile relay
MRE	Mean relative error
MS	Mobile sink
MSEMS	Macro-sensor electromechanical system
MSM	Mobile sink model
MSN	Maximum slot number
MSPR	Multiple shortest path routing
MTS	More to send
MULE	Mobile ubiquitous LAN extension
NAMA	Node activation multiple access
NAV	Network allocation vector
NiCd	Nickel–cadmium
NiMH	Nickel-metal hydrid
NOAA	National Oceanic and Atmospheric Administration
NP	Neighbor protocol
OEM	Original equipment manufacturer
ONR	Office of Naval Research
OOK	ON-OFF keying
OWFA	Optimal wakeup frequency assignment
P-MOSFET	P-type metal-oxide-semiconductor field-effect transistor
PAC/C	Power-aware computing and communications
PAMAS	Power-aware multi-access protocol with signaling
PANEL	Position-based aggregator node election
PCB	Printed circuit board
PDF	Probability density function

PEGASIS	Power-efficient gathering in sensor information system
PLA	Piecewise linear approximation
PLC	Programmable logic controller
POR	Polynomial regression
PREMON	Prediction-based monitoring
PTX	Primary transmitter
PRX	Primary receiver
PSM	Power saving mode/Power saving mechanism
PTT	Platform terminal transmitter
PTZ	Pan-tilt-zoom
PV	Photovoltaics
PWM	Pulse width modulation
RBS	Reference broadcast synchronization
RC	Reservoir capacitor
RCA	Reservoir capacitor array
RFID	Radio frequency identification
RINAS	Restricted input network activation scheme
RLE	Run length encoding
RLS	Recursive least square
RM	Random movement
ROI	Region of interest
RTC	Real-time clock
RTS	Request to send
RTWAC	Radio triggered wakeup with addressing capability
S-LEC	Sequential lossless entropy compression
S-MAC	Sensor-MAC
SAF	Similarity-based adaptive framework
SB	Solar biscuit
SC	Switched capacitor
SEP	Schedule exchange protocol
SHM	Structural health monitoring
SI	Standard international
SLA	Sealed lead acid
SMA	SubMiniature version A
SMP	Sensor Management Protocol
SMPS	Switched-mode power supply
SNGF	Stateless non-deterministic geographic forwarding
SNR	Signal-to-noise ratio
SOI	Silicon on insulator
SPIN	Sensor protocols for information
SSM	Static sink model
STC	Standard testing condition
SWIM	Shared wireless infostation model
T-MAC	Timeout-MAC
TAG	Tiny aggregation service

TDFN	Thin, dual-in-line flat package, no lead
TDMA	Time-division multiple access
TEG	Thermoelectric power generator
TEH	Thermal energy harvesting
TMPO	Topology management by priority ordering
TRAMA	Traffic-adaptive medium access protocol
TSR	Total solar radiation
TTL	Time to live
UASN	Underwater acoustic sensor network
UCLA	University of California, Los Angeles
USC	University of Southern California
VAR	Value-added reseller
VEH	Vibration-based energy harvester
WDT	Watchdog timer
WID	Wireless impedance device
WLAN	Wireless LAN
WMN	Wireless mesh network
WPAN	Wireless personal area network
WSF	Wakeup schedule function
WSN	Wireless sensor network
WSN-ME	WSN with mobile element
μ-TEG	Micro-scale thermoelectric generator

List of Figures

Fig. 1.1	Mobile ad hoc network (Cordeiro and Agrawal 2002)	7
Fig. 1.2	Three-tier architecture for wireless mesh networks	8
Fig. 1.3	Components of a sensor node (Akyildiz et al. 2002)	11
Fig. 1.4	Architecture of WSNs [based on (Tilak et al. 2002)]	12
Fig. 1.5	Fastest runners with different metrics	19
Fig. 1.6	IEEE 802 standards with focus on IEEE 802.15	22
Fig. 1.7	Wireless standards space	23
Fig. 1.8	Protocol stack of WSNs (Wang and Balasingham 2010)	25
Fig. 1.9	Instances of a linear wireless network (Holland et al. 2011)	27
Fig. 2.1	Energy harvesting architectures (Sudevalayam and	
	Kulkarni 2011)	44
Fig. 2.2	Power and energy	46
Fig. 2.3	Harvesting energy from the environment	49
Fig. 2.4	Energy conversion mechanisms [based on	
	(Basagni et al. 2013)]	63
Fig. 2.5	Piezoelectric transducer.	66
Fig. 2.6	Electromagnetic transducer [based on (Amirtharajah	
	and Chandrakasan 1998)]	67
Fig. 2.7	Energy harvesting from thermal differences	
	(Vullers et al. 2010)	69
Fig. 2.8	Resonant inductive coupling (Akhtar and Rehmani 2015)	73
Fig. 2.9	Possible power harvesting from body-centered sources	
	[based on (Starner 1996)]	75
Fig. 2.10	Principles of Helmholtz resonator-based energy scavenger	
	(Kinsler et al. 1999)	78
Fig. 2.11	Fabricated Helmholtz resonator-based energy scavenger	
	(Kim et al. 2009b)	79
Fig. 2.12	A 2-DOF motion mechanism to harvest vibration energy	
	in arbitrary directions in a plane (Zhu et al. 2011)	81
Fig. 2.13	The MEMS packaged harvester compared to an Australian	
	dollar (Zhu et al. 2011)	81

Fig. 2.14	Proposed 2-DOF MEMS EM-EH system (Tao et al. 2016)	88
Fig. 2.15	Proposed 3-DOF MEMS EM-EH (Liu et al. 2012)	89
Fig. 2.16	Redrawing the structure of the energy supply modules	
	in a wireless sensor node	91
Fig. 3.1	Energy management techniques (Anastasi et al. 2009b)	105
Fig. 4.1	Duty-cycling approach taxonomy (Anastasi et al. 2009)	110
Fig. 4.2	Example of a virtual grid (Xu et al. 2001)	112
Fig. 4.3	State transitions in GAF (Xu et al. 2001)	112
Fig. 4.4	Average number of hops \pm standard deviation (bars)	
	versus average number of active neighbors in range	
	for different distances D (Zorzi and Rao 2003b)	116
Fig. 4.5	Span positioning (Chen et al. 2002)	119
Fig. 4.6	Network self-configuration example (Cerpa and	
	Estrin 2004)	121
Fig. 4.7	ASCENT state transitions (Cerpa and Estrin 2004)	122
Fig. 4.8	Power management approach taxonomy	
	(Anastasi et al. 2009)	133
Fig. 4.9	Low-power listen mode (Schurgers et al. 2002)	137
Fig. 4.10	Interference due to aggressive wakeup	
	(Schurgers et al. 2002)	138
Fig. 4.11	Separate wakeup and data frequencies using two radios	
	(Schurgers et al. 2002)	139
Fig. 4.12	Separate data and wakeup along time	
	(Schurgers et al. 2002)	140
Fig. 4.13	PTW functioning (Anastasi et al. 2009)	141
Fig. 4.14	Radio-triggered power management (Anastasi et al. 2009)	142
Fig. 4.15	Network and traffic model (Keshavarzian et al. 2006)	143
Fig. 4.16	Fully synchronized wakeup pattern	
	(Keshavarzian et al. 2006)	148
Fig. 4.17	Shifted even and odd wakeup pattern	
	(Keshavarzian et al. 2006)	149
Fig. 4.18	Forward ladder wakeup pattern (Keshavarzian et al. 2006)	150
Fig. 4.19	Slot assignment under the (7, 3, 1)-design	
	(Zheng et al. 2003)	158
Fig. 4.20	Relationship between the wakeup schedule and the	
	communication schedule (Zheng et al. 2003)	159
Fig. 4.21	Forwarding candidate set (Paruchuri et al. 2004)	163
Fig. 4.22	Entry fields in a neighbor list maintained by each node	
	(Paruchuri et al. 2004)	163
Fig. 4.23	TRAMA time organization (Rajendran et al. 2006)	169
Fig. 4.24	FLAMA time organization (Rajendran et al. 2005)	177
Fig. 4.25	Traffic flows (Rajendran et al. 2005)	180
Fig. 4.26	Periodic listen and sleep (Ye et al. 2004)	186
Fig. 4.27	Node synchronization (Ye et al. 2004)	186
-		

List of Figures

Fig. 4.28	Timing relationship between a receiver and multiple senders (Ye et al. 2004)	189
Fig. 4.29	Adaptive listen reduces sleep latency by at least half	107
81	(Ye et al. 2004)	192
Fig. 4.30	Ten-hop linear topology (Ye et al. 2004)	194
Fig. 4.31	T-MAC basic data exchange (Van Dam and	
U	Langendoen 2003)	198
Fig. 4.32	FRTS packet exchange (Van Dam and Langendoen 2003)	201
Fig. 4.33	Taking priority on full buffers (Van Dam and	
C	Langendoen 2003)	202
Fig. 4.34	Part of the simulation network (Van Dam	
-	and Langendoen 2003)	203
Fig. 4.35	Nodes-to-sink at a 100-Bytes message length (Van Dam	
	and Langendoen 2003)	203
Fig. 4.36	Nodes-to-sink options at a 20-Bytes message length (Van Dam	
	and Langendoen 2003)	204
Fig. 4.37	Event-based unicast pattern at a 20-Bytes message length	
	(Van Dam and Langendoen 2003)	205
Fig. 4.38	D-MAC chain transmission (Lu et al. 2004)	209
Fig. 4.39	Data prediction to reduce sleep delay (Lu et al. 2004)	212
Fig. 4.40	Sleep delay due to interference between two sending nodes	
	(Lu et al. 2004)	213
Fig. 4.41	A random 1000 m \times 500 m topology with 50 nodes	
	(Lu et al. 2004)	214
Fig. 4.42	Mean packet latency for a data gathering tree at a different	
	number of sources (Lu et al. 2004)	216
Fig. 4.43	Energy consumption for a data gathering tree at a different	
	number of sources (Lu et al. 2004)	216
Fig. 4.44	Data delivery ratio for a data gathering tree at a different	
	number of sources (Lu et al. 2004)	217
Fig. 4.45	Tradeoff between energy, latency, and throughput for a data	
	gathering tree under different traffic loads (Lu et al. 2004)	217
Fig. 4.46	CCA effectiveness for a typical wireless channel	
	(Polastre et al. 2004)	220
Fig. 4.47	Application operations performed when the radio is turned ON	
	(Polastre et al. 2004)	221
Fig. 4.48	Measured throughput of each protocol with no duty-cycle	
	under a contended channel (Polastre et al. 2004)	225
Fig. 4.49	Measured power consumption for maintaining a given	
	throughput in a ten-node network (Polastre et al. 2004)	226
Fig. 4.50	Effective energy consumption per byte	
	(Polastre et al. 2004)	227
Fig. 4.51	End-to-end latency (Polastre et al. 2004)	228

Fig. 4.52	Effect of latency on power consumption	
	(Polastre et al. 2004)	229
Fig. 4.53	Time frame rule (Rhee et al. 2008)	234
Fig. 4.54	Throughput comparison thru the one-hop MICA2 benchmark (Rhee et al. 2008)	240
Fig 4 55	Throughput comparison thru the two-hop MICA2 benchmark	210
115. 4.55	(Rhee et al. 2008)	241
Fig 4 56	Throughput comparison thru the multihon MICA2 benchmark	241
115. 1.50	(Rhee et al. 2008)	242
Fig 51	Data-driven approach taxonomy (Anastasi et al. 2009)	260
Fig. 5.1	Data reduction approach taxonomy (Anastasi et al. 2009)	260
Fig. 5.2	Data aggregation in a WSN (Ozdemir and Xiao 2009)	261
Fig. 5.5	Tree-based data aggregation (Ozdemir and Xiao 2009)	263
Fig. 5.5	Directed diffusion (Ozdemir and Xiao 2009)	265
Fig. 5.6	Cluster-based data aggregation (Ozdemir and Xiao 2009)	265
Fig. 5.0	LEACH clustering protocol (Easolo et al. 2007)	268
Fig. 5.7	Aggregation naths over a ring structure (Fasolo et al. 2007)	200
Fig. 5.0	Tributaries' and deltas' protocol (Easolo et al. 2007)	271
Fig. 5.10	Block diagram of the compressor/uncompressor schemes	213
Fig. 5.10	(Marcelloni and Vecchio 2000)	278
Fig. 5.11	Data prediction approach taxonomy (Anastasi et al. 2000)	276
Fig. 5.11	Ken approach (Chu et al. 2006)	280
Fig. 5.12	Two dimensional Gaussian linear model (Chu et al. 2006)	207
Fig. 5.15	Disjoint Cliques model (Chu et al. 2006)	292
Fig. 5.14	Average model (Chu et al. 2006)	293
Fig. 5.15	Experimentation outcomes from Intel Pesearch Lab	294
Fig. 5.10	(Chu at al. 2006)	206
Fig. 5.17	Experimentation outcomes from Botanical Cardens	290
Fig. 5.17	(Chu et al. 2006)	207
Fig. 5.18	(Cliff et al. 2000)	291
Fig. 5.16	Use Porgra et al. 2007)	310
Fig. 5 10	(Le Dorghe et al. 2007)	310
Fig. 5.19	Data collection process (Han et al. 2004).	310
Fig. 5.20	Active listening model (AL) (Han et al. 2004)	319
Fig. 5.21	Active sleeping model (AS) (Han et al. 2004).	321
Fig. 5.22	Active listening sleening model (ALS) (Han et al. 2004)	325
Fig. 5.25	Energy consumption and guery response time comparison	520
Fig. 5.24	(Hen at al. 2004)	220
Fig. 5.25	(Hall et al. 2004) \dots adoptation on system performance	329
Fig. 5.25	(Here et al. 2004)	220
Fig 5.26	Impact of range size adaptation on system performance	550
Fig. 3.20	(Hen at al. 2004)	220
Fig 5 27	$(\Pi d \Pi d \Pi d \Pi d U U U 4)$ Panga of $n_{\mu}(\hat{n})$ varius the number of readings to be predicted	550
11g. 3.27	Kange of $p_v(p_v)$ versus the number of readings to be predicted (A) (Goal at al. 2006)	227
	(Δ) (0001 Cl al. 2000)	331

Fig. 5.28	Energy saving versus model accuracy (Goel et al. 2006)	338
Fig. 5.29	I_{ps} versus BER and m/d (Goel et al. 2006)	338
Fig. 5.30	Énergy-efficient data acquisition taxonomy (based on Anastasi	
-	et al. 2009)	340
Fig. 5.31	Frequency change recognition (Alippi et al. 2007)	344
Fig. 5.32	Sampling rate versus message loss rate (Alippi et al. 2007)	346
Fig. 5.33	MRE for low-frequency capacitance versus message loss rate	
	(Alippi et al. 2007)	346
Fig. 5.34	MRE for high-frequency capacitance versus message loss rate	
U	(Alippi et al. 2007)	347
Fig. 5.35	MRE for temperature versus message loss rate	
0	(Alippi et al. 2007)	347
Fig. 5.36	Original and reconstructed high-frequency capacitance	
0	(Alippi et al. 2007).	348
Fig. 5.37	A scenario of coordination and control of multiple PTZ	
	cameras (Natarajan et al. 2015).	353
Fig. 5.38	Multi-camera systems architectures (Nataraian et al. 2015)	354
Fig. 5.39	Functionalities of camera nodes (Nataraian et al. 2015)	355
Fig 5 40	Key features of WSNs for SHM	
119. 5.10	(Kijewski-Correa and Su 2009)	357
Fig 5.41	Multiscale approach for SHM a Multi-scale network applied	551
119. 5.11	to a beam (Kijewski-Correa et al. 2005) b Picturization	
	of multiscale WSN [based on (Kijewski-Correa	
	and Su 2009)]	358
Fig 5.42	Operation of the multi-scale network [based on	550
115. 5.12	(Kijewski-Correa et al. 2005)]	359
Fig 5.43	Model-based querving (Deshnande et al. 2004)	362
Fig. 5.15	Placement of WSN nodes in the tunnel (Raza et al. 2012)	371
Fig 5.45	Value and time tolerances (Raza et al. 2012)	372
Fig. 5.46	Derivative-based prediction (Raza et al. 2012)	373
Fig. 5.47	Comparison between DBP and PLA SAE POP	515
1 Ig. J.+/	(\mathbf{P}_{272} et al. 2012)	374
Fig 5.48	General framework for sensor energy management	574
11g. J.40	(Alippi et al. 2000)	387
Fig 61	Architecture of a WSN MSE with relocatable nodes	567
11g. 0.1	(Di Françasco et al. 2011)	402
Fig 62	Architecture of WSN MEs with MDCs	402
Fig. 0.2	(Di Erangassa et al. 2011)	402
Eig 62	(Di Finicesco et al. 2011)	405
Fig. 0.5	Atchitecture of a wSN-IVIE with mobile peers (DI Francesco et al. 2011)	404
E. C.A	Mahilita haad ammaal taranama (Amatari at al. 2000h)	404
$\Gamma_{1g} = 0.4$	Noointy-based approach taxonomy (Anastasi et al. 2009b)	403
Fig. 0.5	Shoriest pains from a sensor to the sink (wang et al. 2005)	408
г1g. 0.0	Datanows received and transmitted a node i	411
	(wang et al. 2005)	411

XXVIII		xxviii
--------	--	--------

Fig. 6.7 Fig. 6.8	Network size versus lifetime (Wang et al. 2005)	413
1 ig. 0.0	(Wang et al. 2005)	414
Fig 69	Sensor nodes sink communication (Panadimitriou and	
1 ig. 0.9	Georgiadis 2006)	416
Fig. 6.10	Sink node placement (Papadimitriou and Georgiadis 2006)	420
Fig. 6.11	Average lifetime for various networks sizes (Papadimitriou	420
11g. 0.11	and Georgiadis 2006)	421
Fig. 6.12	Average sink sojourn times for various network sizes	721
1 lg. 0.12	(Panadimitriou and Georgiadis 2006)	422
Fig. 6.13	Typical WSN scenarios (Basagni et al. 2008)	425
Fig. 6.14	Sink ontimum routes obtained by constraints Eqs. 6.33, 6.36	723
1 lg. 0.14	(Basagni et al. 2008)	120
Fig. 6.15	Naighboring sink sites (Basagni et al. 2008)	122
Fig. 6.16	Average network lifetime versus $t \in (Basagni et al. 2008)$	433
Fig. 6.17	Average data latency versus t , (Basagni et al. 2008)	135
Fig. 6.18	Average overhead per node (Basagni et al. 2008)	435
Fig. 6.10	SSM MSM and DT MSM instances (Vun and Via 2010)	430
Fig. 6.19	Lifetimes of MSM and DT MSM for various radii of sink	439
Fig. 0.20	coverage (Vup and Vie 2010)	111
Eig. 6.21	Lifetime versus the number of sink locations	444
Fig. 0.21	(Yun and Xia 2010)	115
Eig 6 22	Lifetime versus the number of sink locations	443
Fig. 0.22	(Yun and Yie 2010)	116
Fig 6.23	Lifetime versus transmission range (Yun and Yie 2010)	440
Fig. 6.23	Three tier MULE architecture [based on (Jain et al. 2006)]	447
Fig. 6.24	Oueue model for MILLE architecture (Jain et al. 2006)	453
Fig. 6.25	Amount of time a sensor is in contact with a MULE	433
11g. 0.20	(Jain et al. 2006)	156
Fig. 6.27	Effect of scaling <i>u</i> on performance metrics	430
11g. 0.27	(Jain et al. 2006)	450
Fig. 6.28	Effect of scaling K the amount of data transferred between a	ч <i>у</i> у
1 lg. 0.20	MULE and a sensor (Jain et al. 2006)	460
Fig 6 29	Effect of the mobility models (Jain et al. 2006)	461
Fig. 6.29	Energy consumption of MULE and ad hoc network models	401
1 15. 0.50	(Jain et al. 2006)	463
Fig. 6.31	Mobile relay at work (Wang et al. 2008a)	465
Fig. 6.32	Dividing the nodes in concentric circles around the sink	405
115. 0.32	(Wang et al. 2008a)	467
Fig 6 33	Traffic distribution for a randomly deployed network	107
- 18. 0.00	(Wang et al. 2008a)	471
Fig. 6 34	Network lifetime for nodes randomly deployed on a circular	.,.
1.6. 0.0 1	region (Wang et al. 2008a)	472
Fig. 635	Average lifetime improvement (Wang et al. 2008a)	473
8. 0.00		

Fig. 6.36	Route dilation compared (Wang et al. 2008a)	473
Fig. 6.37	Compared network lifetime for different approaches	
	(Wang et al. 2008a)	474
Fig. 6.38	Lifetime improvement of adding one mobile relay versus	
	adding more energy to static sensors (Wang et al. 2008a)	475
Fig. 6.39	Adding static sinks to improve network lifetime (Wang et al.	
	2008a)	475
Fig. 6.40	Coverage issue in mobile WSNs (Zhu et al. 2014)	479
Fig. 6.41	Localization issue in mobile WSNs (Zhu et al. 2014)	480
Fig. 6.42	Target tracking issue in mobile WSNs (Zhu et al. 2014)	480
Fig. 6.43	Data gathering issue in mobile WSNs (Zhu et al. 2014)	481
Fig. 7.1	ZebraNet structure (Zhang et al. 2004)	490
Fig. 7.2	Version 3 of ZebraNet architecture (Zhang et al. 2004)	491
Fig. 7.3	The $2'' \times 3'' \times 1.25''$ ZebraNet node (Zhang et al. 2004)	492
Fig. 7.4	ZebraNet power consumption during a periodic data sampling	
	(Zhang et al. 2004)	497
Fig. 7.5	Solar cells module (Zhang et al. 2004)	500
Fig. 7.6	Collared plains zebra at Sweetwaters Game Reserve (Zhang	
	et al. 2004)	505
Fig. 7.7	Prometheus architecture (Jiang et al. 2005)	507
Fig. 7.8	Perpetual Prometheus self-sustaining Telos mote (Jiang et al.	
	2005)	512
Fig. 7.9	Charging circuit block diagram (Jiang et al. 2005)	513
Fig. 7.10	Three basic modes in SB [based on (Minami et al. 2005)]	517
Fig. 7.11	Communication timing of a SB node (Minami et al. 2005)	518
Fig. 7.12	Multihop communication in ordinary mode [based on (Minami	
	et al. 2005)]	519
Fig. 7.13	Randomization algorithm (Minami et al. 2005)	520
Fig. 7.14	Communication in emergency mode (Minami et al. 2005)	521
Fig. 7.15	Block diagram of the SB node [based on	
	(Minami et al. 2005)]	522
Fig. 7.16	Activity of the SB node (Minami et al. 2005)	523
Fig. 7.17	SB nodes placement and experimental setup	
	(Minami et al. 2005)	525
Fig. 7.18	Measured IV characteristics of the Solar World 4-4.0-100 solar	
	panel (Raghunathan et al. 2005)	527
Fig. 7.19	Harvesting-aware power management	531
Fig. 7.20	Coordinated energy harvesting framework for a distributed	
	system (Raghunathan et al. 2005)	532
Fig. 7.21	Heliomote solar harvesting sensor node	
	(Raghunathan et al. 2005)	533
Fig. 7.22	Top and bottom sides of Heliomote PCB (Raghunathan et al.	
	2005)	533
Fig. 7.23	Everlast block diagram (Simjee and Chou 2006)	539

Fig. 7.24	Everlast prototype board (Simjee and Chou 2006)	539
Fig. 7.25	PFM regulator (Simjee and Chou 2006)	540
Fig. 7.26	Average PFM regulator efficiency (Simjee and Chou 2006)	542
Fig. 7.27	PFM controller and DC circuitry (Simjee and Chou 2006)	543
Fig. 7.28	Direct capacitor charging versus PFM-regulated charging	
	(Simjee and Chou 2006)	546
Fig. 7.29	Voltage and current tracking constants calculated over one day	
	(Simjee and Chou 2006)	547
Fig. 7.30	MPPT comparison: DC sweep versus V_{oc} method (Simjee and	
	Chou 2006)	547
Fig. 7.31	Two-day stress test (Simjee and Chou 2006)	549
Fig. 7.32	Components of AmbiMax platform (Park and Chou 2006a)	550
Fig. 7.33	Architecture of an energy harvesting subsystem in AmbiMax	
	platform	551
Fig. 7.34	AmbiMax board (Park and Chou 2006a)	551
Fig. 7.35	MPPT using a switching regulator and hysteresis comparator	
D : D O C	(Park and Chou 2006a)	553
Fig. 7.36	Hysteresis comparator configuration of MPP tracker (Park and	550
E. 7.27	Chou 2006a)	223
Fig. 7.37	Control and charger (Park and Chou 2006a).	222
Fig. 7.38	AmbiMax prototype (Park and Chou 2006a)	221
Fig. 7.39	Marculescu 2007)	560
Fig 7.40	Sunflower PCB (Stanley Merbell and Marculescu 2007)	561
Fig. 7.40	Average measured voltage drop per DIN diode	501
11g. 7.41	(Stapley-Marbell and Marculescu 2007)	568
Fig 7 42	Voltage at output of TPS61070 regulator the super-capacitor	500
115. 7.12	(Stanley-Marbell and Marculescu 2007)	568
Fig. 7.43	Charging the super-capacitor with a single PIN photodiode	200
1.8	(Stanlev-Marbell and Marculescu 2007)	569
Fig. 7.44	Micro-solar system architecture and parameters	
0	(Taneja et al. 2008)	571
Fig. 7.45	HydroWatch and HydroSolar (Taneja et al. 2008)	575
Fig. 7.46	Equivalent electrical circuit for a PV module	
	(Tan and Panda 2011)	580
Fig. 7.47	PV curves of solar panel at different lux conditions	
	(Tan and Panda 2011)	583
Fig. 7.48	PR experimental curves of solar panel at different lux	
	conditions (Tan and Panda 2011)	584
Fig. 7.49	Equivalent electrical circuit of the thermal energy harvester	
	(Tan and Panda 2011)	585
Fig. 7.50	PV curves of TEG at different thermal gradients	
	(Tan and Panda 2011)	586

List of Figures

Fig. 7.51	PR experimental curves of TEG at different thermal gradients	507
F: 7.50	(Tan and Panda 2011)	587
Fig. 7.52	Equivalent electrical circuit of the proposed HEH system	5 00
F : 7 5	(Tan and Panda 2011)	588
Fig. 7.53	Experimental and simulated electrical power harvested from	
	parallel solar and thermal energy sources	
	(Tan and Panda 2011)	589
Fig. 7.54	PV and PR curves of HEH system at fixed solar irradiance of	
	$380 \text{ lx} (3 \text{ W/m}^2)$ and different thermal conditions of 5–10 K	
	(Tan and Panda 2011)	591
Fig. 7.55	PV and PR curves of HEH system at fixed solar irradiance of	
	1010 lx (3 W/m ²) and different thermal conditions of $5-10$ K	
	(Tan and Panda 2011)	592
Fig. 7.56	PV and PR curves of HEH system at fixed thermal condition of	
	$\Delta T = 5$ K and varying solar irradiances of 380–1010 lx (Tan	
	and Panda 2011)	593
Fig. 7.57	PV and PR curves of HEH system at fixed thermal condition of	
	$\Delta T = 10$ K and varying solar irradiances of 380–1010 lx	
	(Tan and Panda 2011)	594
Fig. 7.58	Functional block diagram of HEH system	
	(Tan and Panda 2011)	595
Fig. 7.59	Efficiency of HEH boost converter at fixed voltage	
	reference-based MPPT and varying temperature difference	
	(Tan and Panda 2011)	598
Fig. 7.60	Efficiency of HEH boost converter at fixed voltage	
	reference-based MPPT and varying solar irradiance	
	(Tan and Panda 2011)	598
Fig. 8.1	European badger "Meles meles" (Hillman 2016)	612
Fig. 8.2	Heterogeneous wildlife monitoring network	
	(Dyo et al. 2010)	613
Fig. 8.3	Badger detection node and RFID tag potted in epoxy and	
	collar mounted (Dyo et al. 2010)	616
Fig. 8.4	Second design version (Dyo et al. 2010)	627
Fig. 9.1	PowerBench architecture (Haratcherev et al. 2008)	643

List of Tables

Table 1.1	Sensor and mesh nodes characteristics	10
Table 1.2	ISM bands defined by ITU-R	22
Table 2.1	Rechargeable battery technologies compared [based on	
	(Taneja et al. 2008)]	52
Table 2.2	Characteristics of energy sources (Sudevalayam and	
	Kulkarni 2011)	59
Table 2.3	Energy densities for motion and vibration transducers	
	(Roundy 2003)	68
Table 2.4	Motion and vibration transducers compared	
	(Roundy 2003)	68
Table 2.5	Human energy expenditures for selected activities	
	(Starner 1996)	74
Table 2.6	Characteristics and generation of indoor energy sources	
	(Tan and Panda 2011)	83
Table 2.7	Performance of energy harvesters under indoor and outdoor	
	conditions (Tan and Panda 2011)	84
Table 4.1	Performance analysis of Span (Chen et al. 2002)	118
Table 4.2	Characterization of radio power (Schurgers et al. 2002)	137
Table 4.3	Typical current draw values (Crossbow 2002)	164
Table 4.4	Transceiver TR1001 data (van Hoesel and Havinga 2004)	174
Table 4.5	Control message contents (van Hoesel and Havinga 2004)	174
Table 4.6	Time and current consumption to satisfy primitive operations	
	of the monitoring application (Polastre et al. 2004)	222
Table 4.7	Parameters for a monitoring application running B-MAC	
	(Polastre et al. 2004)	224
Table 4.8	Default settings of Z-MAC parameters (Rhee et al. 2008)	239
Table 4.9	Average energy consumption during the setup operations in	
	the multihop MICA2 testbed (Rhee et al. 2008)	243
Table 4.10	Duty-cycling techniques classified	248
Table 5.1	Dictionary used (Marcelloni and Vecchio 2009)	279

Table 5.2	Number of samples of the four smooth datasets	
	(Marcelloni and Vecchio 2009)	280
Table 5.3	Statistical characteristics of the four smooth datasets	
	(Marcelloni and Vecchio 2009)	281
Table 5.4	Compression ratios obtained by LEC on the four smooth	
	datasets (Marcelloni and Vecchio 2009)	282
Table 5.5	Number of packets to deliver the uncompressed and	
	compressed versions of the four datasets (Marcelloni and	
	Vecchio 2009)	283
Table 5.6	Compression ratios obtained by S-LZW on the four smooth	
	datasets (Marcelloni and Vecchio 2009)	283
Table 5.7	Complexity of LEC against S-LZW (Marcelloni and Vecchio	
	2009)	284
Table 5.8	Statistical characteristics of three non-smooth datasets	
	(Marcelloni and Vecchio 2009)	284
Table 5.9	Compression ratios for LEC against S-LZW for three	
	non-smooth datasets (Marcelloni and Vecchio 2009)	284
Table 5.10	Symbols used (Han et al. 2004)	320
Table 5.11	Data-driven techniques classified	378
Table 6.1	Mobility-based techniques classified.	482
Table 7.1	Conditions for Prometheus perpetual operation	
	(Jiang et al. 2005)	514
Table 7.2	Sample power modes (Simjee and Chou 2006)	548
Table 7.3	Comparison of Sunflower to contemporary sensor platforms	
	(Stanley-Marbell and Marculescu 2007)	562
Table 7.4	Operating voltage ranges and power budgets of the active	
	components (Stanley-Marbell and Marculescu 2007)	563
Table 7.5	Node lifetime using energy storage elements without	
	recharge (Taneja et al. 2008)	576
Table 7.6	Technical characteristics of solar panel used	
	(Tan and Panda 2011)	583
Table 7.7	Energy harvesting projects compared	601
Table 8.1	Routing table (Dyo et al. 2010)	624
Table 8.2	Comparative design evolution (Dyo et al. 2010)	626
Table 8.3	Compared average cost to maintain each stage for	
	four weeks	632