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Preface

Physics texts on general relativity usually devote several chapters to an overview
of semi-Riemannian geometry. Of necessity, the treatment is cursory, cover-
ing only the essential elements and typically omitting proofs of theorems. For
physics students wanting greater mathematical rigor, there are surprisingly few
options. Modern mathematical treatments of semi-Riemannian geometry re-
quire grounding in the theory of curves and surfaces, smooth manifolds, and
Riemannian geometry. There are numerous books on these topics, several of
which are included in Further Reading. Some of them provide a limited amount
of material on semi-Riemannian geometry, but there is really only one math-
ematics text currently available that is devoted to semi-Riemannian geome-
try and geared toward general relativity, namely, Semi-Riemannian Geometry:
With Applications to Relativity by Barrett O’Neill. This is a classic, but it is
pitched at an advanced level, making it of limited value to the beginner. I wrote
the present book with the aim of filling this void in the literature.

There are three parts to the book. Part I and the Appendices present back-
ground material on linear algebra, multilinear algebra, abstract algebra, topol-
ogy, and real analysis. The aim is to make the book as self-contained as possible.
Part II discusses aspects of the classical theory of curves and surfaces, but dif-
fers from most other expositions in that Lorentz as well as Euclidean signatures
are discussed. Part III covers the basics of smooth manifolds, smooth mani-
folds with boundary, smooth manifolds with a connection, and semi-Riemannian
manifolds. It concludes with applications to Lorentz vector spaces, Maxwell’s
equations, and the Einstein tensor. Not all theorems are provided with a proof,
otherwise an already lengthy volume would be even longer.

The manuscript was typed using the WYSIWYG scientific word processor
EXP R©, and formatted as a camera-ready PDF file using the open-source TEX-
LATEX typesetting system MiKTeX, available at https://miktex.org. Figure
19.5.1 was prepared using the TEX macro package diagrams.sty developed
by Paul Taylor. I am indebted to Professor John Lee of the University of
Washington for reviewing portions of the manuscript. Any remaining errors or
deficiencies are, of course, solely my responsibility.

I am most interested in receiving your comments, which can be emailed to
me at stephen.newman@ualberta.ca. A list of corrections will be posted on
the website https://sites.ualberta.ca/∼sn2/. Should the email address
become unavailable, an alternative will be included with the list of corrections.

xiii



xiv Preface

On the other hand, if the website becomes inaccessible, the list of corrections will
be stored as a public file on Google Drive that can be searched using “Corrections
to Semi-Riemannian Geometry by Stephen Newman”.

Allow me to close by thanking my wife, Sandra, for her unwavering support
and encouragement throughout the writing of the manuscript. It is to her, with
love, that this book is dedicated.



Part I

Preliminaries

1





3

Differential geometry rests on the twin pillars of linear algebra–multilinear
algebra and topology–analysis. Part I of the book provides an overview of
selected topics from these areas of mathematics. Most of the linear algebra
presented here is likely familiar to the reader, but the same may not be true
of the multilinear algebra, with the exception of the material on determinants.
Topology and analysis are vast subjects, and only the barest of essentials are
touched on here. In order to keep the book to a manageable size, not all theorems
are provided with a proof, a remark that also applies to Part II and Part III.
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Chapter 1

Vector Spaces

1.1 Vector Spaces

The definition of a vector space over a field and that of a subspace of a vector
space are given in Section B.6. Our focus in this book is exclusively on vector
spaces over the real numbers (as opposed to the complex numbers or some other
field).

Throughout, all vector spaces are over R, the field of real numbers.

For brevity, we will drop the reference to R whenever possible and write, for
example, “linear” instead of “R-linear”.

Of particular importance is the vector space Rm, but many other examples
of vector spaces will be encountered. It is easily shown that the intersection
of any collection of subspaces of a vector space is itself a subspace. The zero
vector of a vector space is denoted by 0, and the zero subspace of a vector
space by {0}. The zero vector space, also denoted by {0}, is the vector space
consisting only of the zero vector. We will generally avoid explicit consideration
of the zero vector space. Most of the results on vector spaces either apply directly
to the zero vector space or can be made applicable with a minor reworking of
definitions and proofs. The details are usually left to the reader.

Example 1.1.1. Let V and W be vector spaces. Following Section B.5 and
Section B.6, we denote by Lin(V,W ) the vector space of linear maps from V to
W , where addition and scalar multiplication are defined as follows: for all maps
A,B in Lin(V,W ) and all real numbers c,

(A+B)(v) = A(v) +B(v)

and
(cA)(v) = cA(v)

Semi-Riemannian Geometry, First Edition. Stephen C. Newman.
c© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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6 1 Vector Spaces

for all vectors v in V . The zero element of Lin(V,W ), denoted by 0, is the zero
map, that is, the map that sends all vectors in V to the zero vector 0 in W .
When V = W , we make Lin(V, V ) into a ring by defining multiplication to be
composition of maps: for all maps A,B in Lin(V, V ), let

A ◦B(v) = A
(
B(v)

)
for all vectors v in V . The identity element of the ring Lin(V, V ) is the identity
map on V , denoted by idV . ♦

A linear combination of vectors in a vector space V is defined to be a
finite sum of the form a1v1 + · · ·+ akvk, where a1, . . . , ak are real numbers and
v1, . . . , vk are vectors in V . The possibility that some (or all) of a1, . . . , ak equal
zero is not excluded.

Let us pause here to comment on an aspect of notation. Following the usual
convention in differential geometry, we index the scalars and vectors in a linear
combination with superscripts and subscripts, respectively. This opens the door
to the Einstein summation convention, according to which, for example,
a1v1+· · ·+akvk and

∑k
i=1 a

ivi are abbreviated as aivi. The logic is that when an
expression has a superscript and subscript in common, it is understood that the
index is being summed over. Despite the potential advantages of this notation,
especially when multiple indices involved, the Einstein summation convention
will not be adopted here.

Let S be a (nonempty and not necessarily finite) subset of V . The span
of S is denoted by span(S) and defined to be the set of linear combinations of
vectors in S:

span(S) = {a1v1 + · · ·+ akvk : a1, . . . , ak ∈ R;

v1, . . . , vk ∈ S; k = 1, 2, . . .}.

For a vector v in V , let us denote

span({v}) = {av : a ∈ R} by Rv.

For example, in R2, we have

span
(
{(1, 0), (0, 1)}

)
= R2

and
span

(
{(1, 0)}

)
= R(1, 0) = {(a, 0) ∈ R2 : a ∈ R}.

It is easily shown that span(S) is a subspace of V . In fact, span(S) is
the smallest subspace of V containing S, in the sense that any subspace of V
containing S also contains span(S). When span(S) = V , it is said that S spans
V or that the vectors in S span V , and that each vector in V is in the span
of S.

We say that S is linearly independent or that the vectors in S are
linearly independent if the only linear combination of distinct vectors in S
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that equals the zero vector is the one with all coefficients equal to 0. That is,
if v1, . . . , vk are distinct vectors in S and a1, . . . , ak are real numbers such that
a1v1 +· · ·+akvk = 0, then a1 = · · · = ak = 0. Evidently, any subset of a linearly
independent set is linearly independent. When S is not linearly independent, it
is said to be linearly dependent. In particular, the zero vector in any vector
space is linearly dependent. As further examples, the vectors (1, 0), (0, 1) in
R2 are linearly independent, whereas (0, 0), (1, 0) and (1, 0), (2, 0) are linearly
dependent.

The next result shows that when a linearly independent set does not span a
vector space, it has a linearly independent extension.

Theorem 1.1.2. Let V be a vector space, let S be a nonempty subset of V
such that span(S) 6= V , and let v be a vector in V�span(S). Then S is linearly
independent if and only if S ∪ {v} is linearly independent.

Proof. (⇒): Suppose av + b1s1 + · · · + bksk = 0 for distinct vectors s1, . . . , sk
in S and real numbers a, b1, . . . , bk. Then a = 0; for if not, then

v = −
[(

b1

a

)
s1 + · · ·+

(
bk

a

)
sk

]
,

hence v is in span(V ), which is a contradiction. Thus, b1s1 + · · · + bksk = 0,
and since S is linearly independent, we have b1 = · · · = bk = 0.

(⇐): As remarked above, any subset of a linearly independent set is linearly
independent.

A (not necessarily finite) subset H of a vector space V is said to be an
unordered basis for V if it spans V and is linearly independent.

Theorem 1.1.3. If V is a vector space and H is an unordered basis for V , then
each vector in V can be expressed uniquely (up to order of terms) as a linear
combination of vectors in H.

Proof. Since H spans V , each vector in V can be expressed as a linear combi-
nation of vectors in H. Suppose a vector v in V can be expressed as a linear
combination in two ways. Let h1, . . . , hk be the distinct vectors in the linear
combinations. Then

v = a1h1 + · · ·+ akhk and v = b1h1 + · · ·+ bkhk,

for some real numbers a1, . . . , ak, b1, . . . , bk, hence

(a1 − b1)h1 + · · ·+ (ak − bk)hk = 0.

Since H is linearly independent, ai − bi = 0 for i = 1, . . . , k.

Theorem 1.1.4. Let V be a vector space, and let S and T be nonempty subsets
of V , where S is linearly independent, and T is finite and spans V . Then S is
finite and card(S) ≤ card(T ), where card denotes cardinality.
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Proof. Since S is linearly independent, it does not contain the zero vector. Let
card(T ) = m and T = {t1, . . . , tm}. We proceed in steps. For the first step,
let s1 be a vector in S. Since V = span(T ), s1 is a linear combination of
t1, . . . , tm. Because s1 is not the zero vector, at least one of the coefficients in
the linear combination must be nonzero. Renumbering t1, . . . , tm if necessary,
suppose it is the coefficient of t1, and let S1 = {s1, t2, . . . , tm}. Then t1 can
be expressed as a linear combination of the vectors in S1, hence V = span(S1).
For the second step, let s2 be a vector in S�{s1}. Since V = span(S1), s2 is a
linear combination of s1, t2, . . . , tm. Because s1, s2 are linearly independent, at
least one of the coefficients of t2, . . . , tm in the linear combination is nonzero.
Renumbering t2, . . . , tm if necessary, suppose it is the coefficient of t2, and let
S2 = {s1, s2, t3, . . . , tm}. Then t2 can be expressed as a linear combination of the
vectors in S2, hence V = span(S2). Proceeding in this way, after k ≤ m steps, we
have a set Sk = {s1, . . . , sk, tk+1, . . . , tm}, with V = span(Sk). Then card(S) ≤
card(T ); for if not, at the mth step, we would have Sm = {s1, . . . , sm}, with V =
span(Sm) and S�Sm nonempty. Then any vector in S�Sm could be expressed
as a linear combination of vectors in Sm, which contradicts the assumption that
S is linearly independent.

We say that a vector space is finite-dimensional if it has a finite unordered
basis. Finite-dimensional vector spaces have an associated invariant that, as we
will see, largely characterizes them.

Theorem 1.1.5. If V is a finite-dimensional vector space, then every unordered
basis for V has the same (finite) number of vectors. This invariant, denoted by
dim(V ), is called the dimension of V .

Proof. Let H and F be bases for V , with F finite. By Theorem 1.1.4, H is finite
and card(H) ≤ card(F). Then H is finite, so we use Theorem 1.1.4 again and
obtain card(F) ≤ card(H). Thus, card(H) = card(F).

For completeness, we assign the zero vector space the dimension 0:

dim({0}) = 0.

Theorem 1.1.6. If V is a vector space of dimension m, then:
(a) Every subset of V that spans V contains at least m vectors.
(b) Every linearly independent subset of V contains at most m vectors.

Proof. (a): Let H be an unordered basis for V , and suppose T is a subset of V
that spans V . The result is trivial if T is infinite, so assume otherwise. Then
Theorem 1.1.4 and Theorem 1.1.5 give m = card(H) ≤ card(T ).

(b): Suppose S is a linearly independent subset of V . Then Theorem 1.1.4
and Theorem 1.1.5 yield card(S) ≤ card(H) = m.

Theorem 1.1.7. Let V be a vector space of dimension m, and let U be a
subspace of V . Then:
(a) U is finite-dimensional and dim(U) ≤ dim(V ).
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(b) If dim(U) = dim(V ), then U = V .
(c) If dim(U) < dim(V ), then any unordered basis for U can be extended to an

unordered basis for V . That is, given an unordered basis {h1, . . . , hk} for
U , there are vectors hk+1, . . . , hm in V such that {h1, . . . , hk, hk+1, . . . , hm}
is an unordered basis for V .

Proof. (a): We proceed in steps. For the first step, let u1 be a vector in U . If
span({u1}) = U , we are done. If not, for the second step, let u2 be a vector in
U�span({u1}). It follows from Theorem 1.1.2 that u1, u2 are linearly indepen-
dent. If span({u1, u2}) = U , we are done, and so on. By Theorem 1.1.6(b), this
process ends after k ≤ m steps. Then u1, . . . , uk are linearly independent and
span U , which is to say that {u1, . . . , uk} is an unordered basis for U .

(b): Let H and F be bases for U and V , respectively, and suppose U 6= V .
Since U = span(H), there is a vector v in V�span(H). By Theorem 1.1.2,
H ∪ {v} is linearly independent. We have from Theorem 1.1.5 that

card(H ∪ {v}) > card(H) = dim(U) = dim(V ) = card(F),

which contradicts Theorem 1.1.6(b).
(c): Given the unordered basis {h1, . . . , hk} for U , the algorithm described

in part (a) can be used to find vectors hk+1, . . . , hm in V such that {h1, . . . , hk,
hk+1, . . . , hm} is an unordered basis for V .

Throughout the remainder of Part I, unless stated otherwise,
all vector spaces are finite-dimensional.

Let V be a vector space, and let {h1, . . . , hm} be an unordered basis for
V . The m-tuple (h1, . . . , hm) is said to be an ordered basis for V , as is
any m-tuple derived from (h1, . . . , hm) by permuting h1, . . . , hm. For example,
(h1, h2, . . . , hm) and (h2, h1, . . . , hm) are distinct ordered bases for V .

Example 1.1.8 (Rm). Let ei be the vector in Rm defined by

ei = (0, . . . , 0, 1, 0, . . . , 0),

where 1 is in the ith position and 0s are elsewhere for i = 1, . . . ,m. For real
numbers a1, . . . , am, we have

a1e1 + · · ·+ amem = (a1, . . . , am),

from which it follows that e1, . . . , em span Rm and are linearly independent.
We refer to {e1, . . . , em} as the standard unordered basis for Rm, and to
(e1, . . . , em) as the standard ordered basis for Rm. Thus, not surprisingly,
Rm has dimension m. ♦

Throughout the remainder of Part I, unless stated otherwise,
all bases are ordered.
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Accordingly, we now refer to (e1, . . . , em) as the standard basis for Rm.
Let V and W be vector spaces. A map A : V −→W is said to be linear if

A(cv + w) = cA(v) +A(w)

for all vectors v, w in V and all real numbers c. Thus, a linear map respects
vector space structure. Suppose A is in fact a linear map. Given a basis H =
(h1, . . . , hm) for V , let us denote(

A(h1), . . . , A(hm)
)

by A(H).

We say that A is a linear isomorphism, and that V and W are isomorphic,
if A is bijective. To illustrate, let x be an indeterminate, and let

Pm = {a0 + a1x+ · · ·+ amx
m : a0, . . . , am ∈ R}

be the set of real polynomials of degree at most m. From the properties of
polynomials, it is easily shown that Pm is a vector space of dimension m+1, and
that the map A : Rm+1 −→ Pm given by A(a0, . . . , am) = a0 +a1x+ · · ·+amx

m

for all vectors (a0, . . . , am) in Rm+1 is a linear isomorphism. Following Section
B.5, we denote the existence of an isomorphism by Rm+1 ≈ Pm.

Since a linear isomorphism is a bijective map, it has an inverse map. The
next result shows that the inverse of a linear isomorphism is automatically a
linear isomorphism.

Theorem 1.1.9. If V and W are vector spaces and A : V −→ W is a linear
isomorphism, then A−1 : W −→ V is a linear isomorphism.

Proof. By assumption, A−1 is bijective. Let w1, w2 be vectors in W , and let c
be a real number. Since A is bijective, there are unique vectors v1, v2 in V such
that A(v1) = w1 and A(v2) = w2. Then

A−1(cw1 + w2) = A−1
(
cA(v1) +A(v2)

)
= A−1

(
A(cv1 + v2)

)
= cv1 + v2 = cA−1(w1) +A−1(w2).

A linear map is completely determined by its values on a basis, as we now
show.

Theorem 1.1.10. Let V and W be vector spaces, let H = (h1, . . . , hm) be a
basis for V , and let w1, . . . , wm be vectors in W . Then there is a unique linear
map A : V −→W such that A(H) = (w1, . . . , wm).

Proof. Uniqueness. Since H is a basis for V , for each vector v in V , there is a
unique m-tuple (a1, . . . , am) in Rm such that v = a1h1 + · · ·+ amhm. Suppose
A : V −→W is a linear map such that A(H) = (w1, . . . , wm). Then

A(v) = A(a1h1 + · · ·+ amhm)

= a1A(h1) + · · ·+ amA(hm)

= a1w1 + · · ·+ amwm,

(1.1.1)
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from which it follows that A is unique.
Existence. Let us define A : V −→ W using (1.1.1) for all vectors v in

V . The uniqueness of the m-tuple (a1, . . . , am) ensures that A is well-defined.
Clearly, A(H) = (w1, . . . , wm). Let u = b1h1 + · · · + bmhm be a vector in V ,
and let c be a real number. Then

cv + u = (ca1 + b1)h1 + · · ·+ (cam + bm)hm,

hence

A(cv + u) = (ca1 + b1)A(h1) + · · ·+ (cam + bm)A(hm)

= (ca1 + b1)w1 + · · ·+ (cam + bm)wm

= c(a1w1 + · · ·+ amwm) + (b1w1 + · · ·+ bmwm)

= cA(v) +A(u).

Thus, A is linear.

From the point of view of linear structure, isomorphic vector spaces are
indistinguishable. In fact, it is easily shown using Theorem 1.1.10 that all
m-dimensional vector space are isomorphic. More than that, they are all iso-
morphic to Rm. The isomorphism constructed with the help of Theorem 1.1.10
depends on the choice of bases for the vector spaces. However, we will see an
instance in Section 1.2 where an isomorphism can be defined without having to
resort to such an arbitrary choice.

Let V and W be vector spaces, and let A : V −→ W be a linear map. The
kernel of A is defined by

ker(A) = {v ∈ V : A(v) = 0},

and the image of A by

im(A) = {A(v) ∈W : v ∈ V }.

It is easily shown that ker(A) is a subspace of V , and im(A) is a subspace of
W . The nullity of A is defined by

null(A) = dim
(
ker(A)

)
,

and the rank of A by

rank(A) = dim
(
im(A)

)
.

The nullity and rank of a linear map satisfy an important identity.

Theorem 1.1.11 (Rank–Nullity Theorem). If V and W are vector spaces
and A : V −→W is a linear map, then

dim(V ) = rank(A) + null(A). (1.1.2)
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Proof. By Theorem 1.1.7(c), any basis (h1, . . . , hk) for ker(A) can be extended to
a basis (h1, . . . , hk, hk+1, . . . , hm) for V . We claim that

(
A(hk+1), . . . , A(hm)

)
is a basis for im(A). Let v be a vector in V . Since H spans V , we have
v = a1h1 + · · ·+ amhm for some real numbers a1, . . . , am. Then

A(v) = a1A(h1) + · · ·+ akA(hk) + ak+1A(hk+1) + amA(hm)

= ak+1A(hk+1) + amA(hm),

hence A(hk+1), . . . , A(hm) span im(A). Suppose

ck+1A(hk+1) + · · ·+ cmA(hm) = 0

for some real numbers ck+1, . . . , cm. Then A(ck+1hk+1 + · · · + cmhm) = 0, so
ck+1hk+1 + · · ·+ cmhm is in ker(V ). Since h1, . . . , hk span ker(A), there are real
numbers b1, . . . , bk such that

b1h1 + · · ·+ bkhk = ck+1hk+1 + · · ·+ cmhm,

hence
b1h1 + · · ·+ bkhk + (−ck+1)hk+1 + · · ·+ (−cm)hm = 0.

From the linear independence of h1, . . . , hk, hk+1, . . . , hm, we have ck+1 = · · · =
cm = 0. Thus, A(hk+1), . . . , A(hm) are linearly independent. This proves the
claim. It follows that

rank(A) = dim
(
im(A)

)
= m− k = dim(V )− dim

(
ker(A)

)
= dim(V )− null(A).

As an example of the rank–nullity identity, consider the linear map A :
R3 −→ R2 given by A(x, y, z) = (x+ y, 0). Then

ker(A) = {(x, y, z) ∈ R3 : x+ y = 0}

and
im(A) = {(x, y) ∈ R2 : y = 0}.

In geometric terms, ker(A) is a plane in R3 and im(A) is a line in R2. Thus,
null(A) = 2 and rank(A) = 1, which agrees with Theorem 1.1.11.

In the notation of Theorem 1.1.11, we observe from (1.1.2) that rank(A) ≤
dim(V ). Thus, a linear map at best “preserves” dimension, but never increases
it.

Theorem 1.1.12. If V and W are vector spaces and A : V −→ W is a linear
map, then the following are equivalent:
(a) rank(A) = dim(V ).
(b) null(A) = 0.
(c) ker(A) = {0}.
(d) A is injective.
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Proof. (a)⇔ (b)⇔ (c): By Theorem 1.1.11,

rank(A) = dim(V )

⇔ null(A) = 0

⇔ dim
(
ker(A)

)
= 0

⇔ ker(A) = {0}.

(c)⇒ (d): For vectors v, w in V , we have

A(v) = A(w)

⇔ A(v − w) = 0

⇔ v − w is in ker(A)

⇒ v − w = 0.

(d)⇒ (c): Clearly, 0 is in ker(V ). For a vector v in V , we have

v is in ker(A)

⇔ A(v) = 0

⇔ A(v) = A(0)

⇒ v = 0.

Theorem 1.1.13. Let V and W be vector spaces, let H be a basis for V , and
let A : V −→W be a linear map. Then:

(a) A is a linear isomorphism if and only if A(H) is a basis for W .
(b) If A is a linear isomorphism, then dim(V ) = dim(W ).

Proof. Let H = (h1, . . . , hm).

(a)(⇒): Since A is surjective, for each vector w in W , there is a vector v
in V such that A(v) = w. Let v = a1h1 + · · · + amhm for some real numbers
a1, . . . , am. Then

w = A(v) = a1A(h1) + · · ·+ amA(hm),

so A(H) spans W . Suppose b1A(h1)+ · · ·+bmA(hm) = 0 for some real numbers
b1, . . . , bm. Then A(b1h1 +· · ·+bmhm) = 0, hence b1h1 +· · ·+bmhm is in ker(A).
Since A is injective, it follows from Theorem 1.1.12 that b1h1 + · · ·+ bmhm = 0,
hence b1 = · · · = bm = 0. Thus, A(H) is linearly independent.

(a)(⇐): Let w be a vector in W . Since A(H) spans W , we have w =
b1A(h1)+ · · ·+ bmA(hm) for some real numbers b1, . . . , bm. Then w = A(b1h1 +
· · ·+bmhm), so A is surjective. Let v = a1h1 + · · ·+amhm be a vector in ker(A).
Then 0 = A(v) = a1A(h1)+ · · ·+amA(hm). Since A(H) is linearly independent,
it follows that a1 = · · · = am = 0, so v = 0. Thus, ker(A) = {0}. By Theorem
1.1.12, A is injective.

(b): This follows from part (a).
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We pause here to comment on the way proofs are presented when there is an
equation or other type of display that stretches over several lines of text. The
necessary justification for logical steps in such displays, whether it be equation
numbers, theorem numbers, example numbers, and so on, are often provided
in brackets at the end of corresponding lines. In order to economize on space,
“[Theorem x.y.z]” and “[Example x.y.z]” are abbreviated to “[Th x.y.z]” and
“[Ex x.y.z]”. The proof of the next result illustrates these conventions.

Theorem 1.1.14. If V and W are vector spaces of dimension m and A : V −→
W is a linear map, then the following are equivalent:
(a) A is a linear isomorphism.
(b) A is injective.
(c) A is surjective.
(d) rank(A) = m.

Proof. (a)⇒ (b): This is true by definition.
(b)⇔ (c): By Theorem 1.1.11,

dim(W ) = dim(V ) = rank(A) + null(A) = dim
(
im(A)

)
+ null(A),

hence
W = im(A)

⇔ null(A) = 0 [Th 1.1.7(b)]

⇔ A is injective. [Th 1.1.12]

(c) ⇒ (a): Since A is surjective, we have from (b) ⇔ (c) that A is also
injective.

(d)⇔ (b): This follows from Theorem 1.1.12.

Let V be a vector space, and let U1, . . . , Uk be subspaces. The sum of
U1, . . . , Uk is denoted by U1 + · · ·+ Uk and defined by

U1 + · · ·+ Uk = {u1 + · · ·+ uk : u1 ∈ U1, . . . , uk ∈ Uk}.

For example, R(1, 0) + R(0, 1) = R2. It is easily shown that

U1 + · · ·+ Uk = span(U1 ∪ · · · ∪ Uk),

from which it follows that U1 + · · ·+Uk is the smallest subspace of V containing
each of U1, . . . , Uk, in the sense that any subspace containing each of U1, . . . , Uk
also contains U1 + · · ·+ Uk. We observe that

U1 + · · ·+ Uk + {0} = U1 + · · ·+ Uk,

which shows that adding the zero vector spaces does not change a sum. For
vectors v1, . . . , vk in V , we have the following connection between spans and
sums:

span({v1, . . . , vk}) = Rv1 + · · ·+ Rvk.


