F. Martin Ralph · Michael D. Dettinger Jonathan J. Rutz · Duane E. Waliser *Editors*

Atmospheric Rivers

Atmospheric Rivers

F. Martin Ralph • Michael D. Dettinger Jonathan J. Rutz • Duane E. Waliser Editors

Atmospheric Rivers

Editors F. Martin Ralph Center for Western Weather and Water Extremes Scripps Institution of Oceanography University of California–San Diego La Jolla, CA, USA

Jonathan J. Rutz Science and Technology Infusion Division National Weather Service Salt Lake City, UT, USA Michael D. Dettinger Retired, U.S. Geological Survey Carson City, NV, USA

Duane E. Waliser Jet Propulsion Laboratory California Institute of Technology Pasadena, CA, USA

ISBN 978-3-030-28905-8 ISBN 978-3-030-28906-5 (eBook) https://doi.org/10.1007/978-3-030-28906-5

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

This book is dedicated to those who came before us, who discovered these rivers in the sky, and to those who will ride them into the future.

Foreword

I agreed to write this foreword because I was motivated by the scope and breadth of the research related to atmospheric rivers (ARs) in this volume. It is my pleasure to recommend this scholarship, which represents the first comprehensive collection of research on the increasingly important phenomenon of ARs. It is both a benchmark for the field now and a springboard for future discoveries.

ARs are "increasingly important" because they are basic to extratropical dynamics of weather and climate and they are increasingly recognized as causes of precipitation totals and extremes in many regions of the world. This volume describes the observations, models, and analyses that are the basis of current understanding of ARs; their global distributions and impacts; the roles of ARs in extratropical meteorology and climatology; forecasting issues and the likely effects of climate change on future ARs; and some nascent applications of AR science.

As a result of research over the past 10 to 15 years, and rapidly advancing and heightened scientific and public awareness, we now know that a significant fraction of the annual precipitation on the western side of continents in the Northern and Southern Hemispheres, as well as extreme precipitation events, occurs in conjunction with landfalling ARs. As a result of those extreme precipitation events, from a practical and operational perspective, it is critical to be able to distinguish the smaller subset of ARs that may be associated with dangerously high-impact precipitation events from the larger and weaker group of ARs that pose no immediate danger to public safety.

For example, based on reliable records dating back to 1921, the all-time wettest water year (1 Oct–30 Sep) on record in northern California occurred during 2016–2017, when the northern Sierra's record rainfall occurred in conjunction with multiple landfalling ARs between December 2016 and April 2017. The record rainfall in February 2017 contributed to concerns about the safety of Oroville Dam on the Feather River. Water-level heights behind the Oroville Dam rapidly increased, damaging the main spillway as excessive water began to overtop it. As the rains continued, the emergency spillway was additionally damaged by erosion. This resulted in heightened concerns that a concrete weir around the dam could fail—which could have caused a devastating 10-meter-high wall of water to surge down into the Feather River and all the way to the Central Valley, potentially flooding communities downstream (see Chap. 7).

To facilitate the identification of this kind of high-impact AR, Ralph et al. (2019) have constructed an AR impact scale based on the magnitude and duration of the integrated water vapor transport (IVT) along ARs that should facilitate the identification of and communications about these ARs. This sort of scale is important because duration and IVT matter. I usually pay attention to ARs when the associated IVT first becomes >250 kg m⁻¹ s⁻¹—and I give them my undivided attention when the IVT becomes >1000 kg m⁻¹ s⁻¹ (see detailed information on this AR scale in Chap. 8).

The last 10 to 15 years of AR research have also heightened the scientific community's understanding of important synoptic-scale and meso-scale aspects of ARs and have resulted in better knowledge of the relationships among ARs, tropical moisture exports (TMEs), and warm conveyor belts (WCBs) (see Chap. 2). This overall increased knowledge about ARs has culminated in the formal approval of an AR definition that appeared in the glossary of the

American Meteorological Society in 2017 (see Chap. 3, Sect. 3.1). This integration of AR science into these other, more traditional aspects of mid-latitude meteorology puts AR science on a firmer footing for future research and is described here by several of the leaders in the fields of AR, TME, and WCB science.

Of course, in the end, given these newly recognized risks of extreme precipitation and hazards that ARs can pose, and the key role in extratropical climate dynamics that they play, forecasting ARs is of growing importance. Currently, we are not able to properly forecast the global and regional distribution of ARs beyond a few days. This limitation is one likely source of the current limitations on predictability of precipitation amounts or types (e.g., snow, sleet, freezing rain, and rain). Verification studies of forecast models have shown that they can better predict the probability of precipitation rather than precipitation amounts or types. The practical implication of this is that precipitation amounts remain hard to forecast, so that forecasters are better able to distinguish between the occurrence of wet and dry days, and are somewhat less able to predict how much precipitation will fall, given the occurrence of a wet day. In an increasing range of settings globally, it is now recognized that forecasts of cold-season precipitation amount and type are limited by uncertainties about the following:

- · the strength and location of upstream low- and upper-level jets
- the extent of the coupling between the low-level and upper-level jets
- where the nose of the low-level jet that transports AR moisture poleward will intersect a surface boundary
- the overall structure and configuration of the horizontal and vertical precipitation-producing circulations associated with a progressive upstream upper-level trough

AR representations and forecast ability in modern weather and climate models are described in Chap. 6.

As a result of these (and other) key findings and issues covered within, this book should appeal to a broad spectrum of readers interested in both basic and applied research opportunities, and in undergraduate and graduate education; operationally oriented readers; resource managers; and federal, state, and local emergency management officials as well as technically oriented public officials. Among these readers may be the next generation of AR researchers.

> Lance Bosart Distinguished Professor, Department of Atmospheric and Earth Sciences, University at Albany, SUNY

Preface

This book is intended to summarize the state of the science of atmospheric rivers (ARs) and its application to practical decision-making and broader policy topics. It is the first book on the subject and is intended to be a learning resource for professionals, students, and indeed anyone new to the field, as well as a reference source for all.

We first envisioned the book during the heady days of 2013 when the Center for Western Weather and Water Extremes was being planned and established. However, right from the start, we recognized that the effort required would exceed that of any single or couple of authors, and that the book would surely benefit from a broad range of perspectives and knowledge from a variety of leaders of atmospheric-river science from around the world. Consequently, the first step toward this book was to organize workshops addressing various aspects of AR science that we were able to co-opt, in part, for recruitment of, and discussions among, possible contributing authors. This led to the diverse authorship team that ultimately wrote this book, as well as our engagement of an experienced publication and book editing team. Among the strategies agreed to by the contributing authors, one key decision was that the book would focus mostly on results that have already been published and would emphasize figures and references from those formal publications. Where vital, new information has been developed and incorporated. Each chapter was led by a few expert lead authors recruited by the four of us, and those chapter leads recruited contributions from other experts on the chapter topic. Each chapter was reviewed by other specialists who were not part of its authorship team, generally including one highly technical expert and one reviewer intended to represent members of a broader audience. This helped ensure the accuracy of interpretations as well as high standards and accessibility of presentation. We, the editors of the book, reviewed all chapters at various stages of composition and layout.

Given currently high levels of interest in ARs in the scientific community as well as by the public, we hope that the book will be a useful starting place for many readers. Writing a book about a topic that is as new and that is advancing as quickly as AR science is today (in 2018) poses many difficult challenges but, with the help of the large team of expert authors who have contributed, we believe that, with this book, we are providing a firm foundation for future expansion and advances in this important field.

La Jolla, CA, USA Carson City, NV, USA Salt Lake City, UT, USA Pasadena, CA, USA F. Martin Ralph Michael D. Dettinger Jonathan J. Rutz Duane E. Waliser

Acknowledgements

Co-Editors

- F. Martin Ralph, Editor-in-Chief (Scripps Institution of Oceanography, CW3E)
- Michael D. Dettinger (United States Geological Survey; Retired) *MDD's contributions in chapters 5 and 7 were undertaken as a research hydrologist for the U.S. Geological Survey Water Mission Area.*
- Jonathan J. Rutz (National Oceanic & Atmospheric Administration/National Weather Service)
- Duane E. Waliser (National Aeronautics and Space Administration/Jet Propulsion Laboratory) *DEW's contribution to this study was carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.*

The co-editors acknowledge the diligent efforts of all the authors and co-authors to the chapters of this book, without which—of course—this book would not exist. Thanks for stick-ing with us.

Chapter authors/contributing authors: Michael Alexander, Michael L. Anderson, Deniz Bozkurt, Gilbert Compo, Jason M. Cordeira, Dale A. Cox, Francina Dominguez, Bin Guan, Huancui Hu, Jay Jasperse, David A. Lavers, Alexander Gershunov, Irina Gorodetskaya, Bin Guan, Peter Knippertz, Paul J. Neiman, Kelly M. Mahoney, Benjamin J. Moore, William Neff, Florian Pappenberger, Alexandre M. Ramos, David S. Richardson, Lawrence J. Schick, Harald Sodemann, Ryan Spackman, Hans Christian Steen–Larsen, Andreas Stohl, Maria Tsukernik, Raúl Valenzuela, Maximiliano Viale, Andrew J. Wade, Heini Wernli, Allen B. White, Gary A. Wick, Ervin Zsoter

We acknowledge the generous support from the following entities that allowed this book to be conceived of, developed, and produced.

Funders/sponsors: This book would not have been possible without funding from the "Water Operations Technical Support: Research to Investigate Atmospheric Rivers (AR) and the Feasibility of Developing and Using AR Forecast Capabilities to Inform Reservoir Operations Within the USACE" project led by the Center for Western Weather and Water Extremes at UC San Diego's Scripps Institution of Oceanography. This Forecast-Informed Reservoir Operations program is sponsored by and collaboratively executed with researchers from the US Army Engineer Research and Development Center (ERDC) and water management professionals from the US Army Corps of Engineers (USACE).

We also acknowledge the persistence and efforts of the publication team who polished our contributions into this final form.

Publication team: Lauren Muscatine, Managing Editor (UC Davis), Mary Beth Sanders, Designer (Metography), Sheila Chandrasekhar, Developmental Editor (Persuasive Pages)

The co-editors would also like to acknowledge those individuals who provided guidance, critique, and mentorship throughout their careers.

Finally, the co-editors would like to acknowledge the original advance made by Yong Zhu and Reginald E. Newell (1998) who not only identified an intriguing and important phenomena for study, but were insightful enough to also provide a descriptive name that is well posed scientifically as well as attractive and intuitive for the broader community and public.

Contents

1	Introduction to Atmospheric Rivers 1 F. Martin Ralph, Michael D. Dettinger, Lawrence J. Schick, 1 and Michael L. Anderson 1
2	Structure, Process, and Mechanism
3	Observing and Detecting Atmospheric Rivers
4	Global and Regional Perspectives89Jonathan J. Rutz, Bin Guan, Deniz Bozkurt, Irina V. Gorodetskaya,Alexander Gershunov, David A. Lavers, Kelly M. Mahoney,Benjamin J. Moore, William Neff, Paul J. Neiman, F. Martin Ralph,Alexandre M. Ramos, Hans Christian Steen-Larsen, Maria Tsukernik,Raúl Valenzuela, Maximiliano Viale, and Heini Wernli
5	Effects of Atmospheric Rivers
6	Atmospheric River Modeling: Forecasts, Climate Simulations, and Climate Projections
7	Applications of Knowledge and Predictions of Atmospheric Rivers
8	The Future of Atmospheric River Research and Applications
Ind	ex

List of Figures

Fig. 1.1	The low-level jet (Browning and Pardoe 1973; image courtesy
	of Jay Cordeira)
Fig. 1.2	Warm and cold conveyor belt concepts (Carlson 1980; image courtesy
	of Jay Cordeira)
Fig. 1.3	Global analysis of a 2-degree grid (Zhu and Newell 1998).
	Atmospheric rivers are outlined in red
Fig. 1.4	ARs are responsible for 90–95% of the total global meridional water
	vapor transport at mid-latitudes, yet constitute $<10\%$ of the earth's
	circumference at those latitudes (Zhu and Newell 1998)
Fig. 1.5	Satellite imagery on the morning of 7 Nov 2006 (a) composite
	Special Sensor Microwave/Imager (SSM/I) image of integrated
	water vapor (IWV) (cm) constructed from polar orbiting swaths
	between -0200 and 0615 UTC; (b) GOES-11 10.7 µm channel
	(i.e., IR) image of surface and/or cloud-top brightness temperature
	(K) at 0600 UTC; and (c) Geostationary Operational Environmental
	Satellite (GOES)-11 6.7 µm channel (i.e., infrared [IR]) image
	of brightness temperature (K) related to the moisture content of
	a broad layer of the upper troposphere (approximately
	200–500 hPa) at 0600 UTC. The <i>white inset box</i> in (a) is the domain
	shown in Fig. 1.3. (Neiman et al. 2008)
Fig. 1.6	Low-level iet airborne P-3 observing strategy used in CALJET
0	(1998) and the Pacific Land-falling Jets Experiment (PACJET)
	(2001) (Ralph et al. 2004)
Fig. 1.7	(a) Plan view of the mean location of the vertical profile shown in
0	(b) and of major weather features. (b) Composite vertical structure
	of an AR from 17 cases observed by research aircraft. (Ralph et al. 2005)5
Fig. 1.8	Composite vertical structure of an AR from research aircraft
8	and SSM/I satellite measurements (Ralph et al. 2004)
Fig. 1.9	California extreme precipitation network (White et al. 2013:
8	Ralph et al. 2014).
Fig. 1.1	0 The forecasting challenge (left panel: Ralph et al. 2010: right panel:
8	Wick et al. 2013)
Fig 1.1	1 Evaluation of biases in the number of AR landfalls in re-forecasts
1.8.1.1	for the North American West Coast (Nardi et al. 2018) 9
Fig 1.1	2. Evaluation of the skill of AR forecasts globally but shown
1.8.1.1	for the North Pacific/Western USA (DeFlorio et al. 2018)
Fig 1.1	3 Concentual schematic for this case study denicting tropical_extratropical
115.1.1	interactions that led to the extrusion of tropical moisture into an AR
	over the eastern Pacific on 24, 26 March 2005; (a) Large scale depiction
	of 150 bPa streamling anomalies (<i>rad</i> : planetary scale sirgulations)
	or 150-fir a succarifing anomalies (<i>rea</i> , pranetary-scale circulations;
	size and output wave packet [D wr] ued to the AK). The A and C
	labels refer to anticyclonic and cyclonic circulation centers, respectively.

The *purple arrows* show the mean direction of BWP energy dispersion. Gray shading depicts Cloud Archive User Service (CLAUS) observations of coherent cold cloud tops associated with the MJO, 3 Kelvin waves (K1, K2, and K3), and the AR (enclosed within a *dashed line*). (**b**) Regional-scale depiction of the BWP (*thick gray-shaded arrow*; purple arrow shows propagation direction) and associated extratropical cyclone (standard frontal notation). Green shading depicts the tropical IWV reservoir and narrow IWV plume associated with the AR, and the green arrows depict the tapping of tropical water vapor into the AR. Kelvin waves 2 and 3 are enclosed with thin, black lines. The lower-tropospheric flow pattern is shown with black arrows. Dashed inset boxes in (a, b) correspond to the domains in the follow-on panels. Panel (c) is a frontal isochrone analysis on 26–27 March 2005 that shows a frontal wave propagating across the eastern Pacific and making landfall in northwestern Oregon where heavy rain and flooding occurred. The blue isopleths represent the number of hours of AR conditions, based on the isochrone analysis, and an assumption that the AR was Fig. 1.14 The greater the AR strength and duration, the greater the precipitation Fig. 2.1 (Top row) Aircraft used in collecting dropsonde data between 2005 and 2016 to develop the observations-based composite of the cross-AR vertical structure (see Fig. 2.2). (Bottom rows) Satellite images of vertically integrated water vapor (IWV) including the AR transect baseline for each of the flights used in the study. The values of TIVT ($\times 108$ kg s⁻¹) are shown as text atop each IWV panel for each case based on both the IWV (subscript 1) and IVT (subscript 2) AR threshold methods. (Adapted from Ralph et al. 2017a) Fig. 2.2 Schematic summary of the structure and strength of an AR based on dropsonde measurements deployed from research aircraft across many ARs, and on corresponding reanalyses that provide the plan-view context. Magnitudes of variables represent an average mid-latitude AR. Average width is based on AR boundaries defined by vertically integrated water vapor transport (IVT; from surface to 300 hPa) lateral boundary threshold of 250 kg m⁻¹ s⁻¹. Depth corresponds to the altitude below which 75% of IVT occurs. The total water vapor transport (AKA flux) corresponds to the transport along an AR, bounded laterally by the positions of IVT = $250 \text{ kg m}^{-1} \text{ s}^{-1}$, and vertically by the surface and 300 hPa. (a) Plan view including parent low pressure system, and associated cold, warm, stationary, and warm-occluded surface fronts. IVT is shown by *color fill* (magnitude, kg m⁻¹ s⁻¹) and direction in the core (white arrow). Vertically integrated water vapor (IWV, cm) is contoured. A representative length scale is shown. The position of the cross-section shown in panel (**b**) is denoted by the *dashed line* A-A'. (**b**) Vertical cross-section perspective, including the core of the water vapor transport in the AR (orange contours and color fill) and the pre-cold-frontal low-level jet (LLJ), in the context of the jet-front system and tropopause. Water vapor mixing ratio (green dotted lines, g kg⁻¹) and cross-section-normal isotachs (blue contours, m s⁻¹) are shown. (From Ralph et al. (2017a), including elements from Cordeira et al. (2013) and others; Schematic

Fig. 2.3	(left) Frequency of occurrence of AR widths based on ERA-Interim and MERRA2 reanalysis data using the Guan and Waliser (2015) ARDT applied to the northeast Pacific basin in January–March each year from
	19/9-2010. Means are shown of all ~0000 ARS (<i>solid red line</i>), the
	reanalysis representations of the 21 aircraft-observed ARs (<i>dashed red line</i>),
	and the aircraft observations (dashed blue line). The 95% confidence
	range for the mean is shown (<i>red shading</i>), as is the distribution
	of the actual aircraft-measured cases (blue circles). (right) Same
	as (left), but for TIVT (Guan et al. 2018)
Fig. 2.4	Schematic depiction of the objective identification algorithms for
	(a) TMEs and (b) WCBs. <i>Blue lines</i> show example trajectories started
	from pre-defined 3-D atmospheric volumes marked by <i>blue boxes</i> with
	24-h periods marked by <i>blue circles</i> . (a) To classify as TME, trajectories
	need to start equatorward of 20° latitude and reach a water vapor flux of at least
	100 g kg ⁻¹ m s ⁻¹ somewhere poleward of 35° latitude (example for Northern
	Hemisphere is shown here). (b) WCB trajectories need to cross the objectively
	identified area of a cyclone and ascend by more than 600 hPa in 48 h.
	(Panel (a) is modified from Fig. 2 in Knippertz and Wernli 2010)
Fig. 2.5	Illustrative case study of a North Atlantic cyclone (position marked
0	with label "L") at (a) 0000 UTC 22 Nov. (b) 0000 UTC 23 Nov. and
	(c) 0000 UTC 24 Nov 1992. <i>Black</i> contours show mean sea-level
	pressure (in hPa), red shading marks the identified ARs, and green
	and <i>blue</i> contours are the identified TMEs and WCBs, respectively 23
Fig 2.6	Climatological frequencies (in %) of TMEs (a , b) ARs (c , d) and
1 19. 2.0	WCBs (e f) derived from ERA-Interim data for the time-period
	1979–2014 Left-hand panels show horeal winter (DIF): right-hand
	nanels show boreal summer (IIA). See text for exact definitions
	of the three features 24
Fig 27	Vann diagrams for (a) boreal winter (DIE) and (b) boreal summer
Fig. 2.7	(IIA) showing the percentage of area in the Northern Hemisphere
	extratronics (north of 20°N) that is on average, covered by APs
	TMEs, and WCRs only and simultaneously by two or three of the features
	The value in the ten right of each panel indicates that on average, about 80%
	of the area is not covered by any of the three features
Fig 28	Schematic of a TME AP WCB configuration related to an extratronical
Fig. 2.0	schematic of a TME-AK-wCB comiguration related to an extratropical
	and others with WCP traisatories. The main ascent phase of the WCP
	and others with wCB trajectories. The main ascent phase of the wCB
	uses not overlap with the AK, because of strong condensation and rain-out.
	Such a configuration is observed (e.g., Fig. 2.12) but should not be
E. 20	A supervised to be the second
F1g. 2.9	Air mass trajectories (<i>thick black lines</i>) calculated for 96 h backward
	for an AR making landfall at the US west Coast. Contours in (\mathbf{a}) are
	sea-level pressure (hPa), and contours in (b) are convergence at 0
T : 0 10	and $-1.0 \times 10^{-5} \text{ s}^{-1}$. (Bao et al. 2006, Fig. 7b, c)
Fig. 2.10	(a) Time-integrated Lagrangian $e - p$ (evaporation minus precipitation; mm)
	budget over 12 days before arrival of intense precipitation at the west coast
	of Norway during a landfalling AR on 13–14 September 2005. Negative
	values indicate that precipitation dominates moisture removal from the
	air mass; positive values indicate net evaporation into air masses on the
	way to the target area $(2-8^{\circ}E \text{ and } 58-65^{\circ}N)$ for the same period in southern
	Norway. Note the asymmetric color scale. (Stohl et al. 2008, Figure 9d).
	(b) Moisture sources for precipitation in the target area (<i>red box</i>) identified
	from the Lagrangian moisture accounting method of Sodemann et al. (2008a).
	Units in (b) are kg m^{-2} day ⁻¹ of evaporation contributing to precipitation
	in the target area

Fig. 2.11	Schematic overview of water vapor source regions during AR development
	(i.e., tropical source regions) and during AR evolution (i.e., subtropical
	and extratropical source regions) of two ARs making landfall in October
	2010 in the western USA. The 48-h accumulated precipitation ending
	at 1200 UTC 25 Oct 2010 is <i>contoured</i> and <i>shaded in gray</i> above 50 mm.
	Thick solid, dashed, and thin solid arrows denote moisture contributed
	by tropical, subtropical, and extratropical regions at different stages
	of the AR life cycle (Cordeira et al 2013 Fig 11e) 29
Fiσ 2.12	Case study of an AR event that caused flooding on the western coast
115. 2.12	of Norway during 13–14 Sep 2005. The papels show (a) integrated vanor
	transport (IVT kg m ⁻¹ s ⁻¹) and (b) integrated water valuer (IWV kg m ⁻²)
	at 00 LITC on 13 Son 2005 from European Centre for Medium Pange Weather
	Ecrecosts (ECMWE) EDA Interim reanalyses (a) vertically integrated
	vistor venor transport (amoug) and surface freshuster flux (ahading
	water vapor transport (<i>arrows</i>) and surface neshwater hux (<i>shading</i> ,
	kg m ^{-s} s ⁻) at 00 UTC 12 Sep 2005 from ECMWF analyses, (d) Meteosat-8
	infrared origntness temperatures in 10.8 m channel at 00 UTC on 13 Sep 2005.
	<i>Red colors</i> indicate high (cool) cloud-top temperatures. (Panels (\mathbf{c}, \mathbf{d}) from
F: 0.10	Stohl et al. 2008, Figs. 6c and 4a)
Fig. 2.13	Schematic view of the moisture transport during anticyclonic (LC1-like)
	wave breaking with a meridional upper-level jet. Dashed white line shows
	the orientation of the upper-level jet, <i>solid white lines</i> show sea-level pressure
	(SLP), and <i>shaded colors</i> indicate oceanic moisture from source regions at
	different latitudes (<i>red</i> most southerly, <i>blue</i> most northerly). The right-hand
	side of the figure shows a vertical cross-section of moisture originating from
	different latitudes lifted to different altitudes. (Sodemann and Stohl 2013,
	Fig. 10a)
Fig. 2.14	(a) Initial water tracer evaporation source regions in a regional model
	simulation with latitude band initialization. (b) Time-series of Eulerian
	water-vapor tracer contributions over southern Norway (<i>red box</i> in Panel a).
	(c) Snapshot of water-vapor tracers during an AR making landfall
	in Dec 2006. <i>Colors</i> show contributions from moisture with sources
	at different latitudes to IWV. <i>Black contour</i> at 14 mm IWV outlines
	AR region. (d) Vertical cross-section in West–East direction
	(letter b in panel c) of tracer fraction >30% of specific humidity (<i>shading</i>)
	and meridional moisture flux (<i>black contours</i>)
Fig. 2.15	Schematic representations of mid-latitude storm track evolution typifying
	(a) an LC1-type (anticyclonic wave breaking) life cycle and
	(b) an LC2-type (cyclone wave breaking) life cycle. The <i>black contour</i>
	represents a characteristic potential temperature contour on the 2-potential
	vorticity unit (PVU) surface. The <i>dashed black line</i> identifies the approximate
	position of the mean jet stream axis at each stage. The gray-to-black arrow
	indicates the potential region of poleward water vapor (WV) flux.
	(Adapted from Thorncroft et al. 1993)
Fig. 2.16	A schematic representation of cyclogenesis with the approach of an upper-level
	PV anomaly over a low-level baroclinic zone. In (a) the cyclonic circulation
	associated with the upper-level PV anomaly (indicated by blue upper-level
	arrow around the "+" symbol) induces a weak cyclonic circulation (given by
	arrow thickness) to the near surface. The sense of the low-level cyclonic
	circulation will induce temperature advections ahead of and behind the
	upper-level PV anomaly. In (b) the warm temperature anomaly that has
	developed can be represented by a low-level positive PV anomaly
	(represented by the <i>low-level</i> "+"). The cyclonic circulation associated

	with the low-level PV anomaly will induce a weak upper-level cyclonic circulation, given by the <i>red arrows</i> , thus reinforcing the upper-level PV anomaly and slowing down its eastward progression. The <i>green arrow</i> indicates a potential region of poleward water vapor (WV) flux.
Fig. 2.17	(Adapted from Hoskins et al. 1985)
Fig. 2.18	region of poleward water vapor flux. (Adapted [<i>colorized</i>] from Schultz et al. (<i>1998</i>) and based on Bjerknes and Solberg (<i>1922</i>))
- 9	tropospheric frontal zone (<i>dashed lines</i>) with poleward water vapor (WV) flux (<i>thin lower-tropospheric contours</i>) along an AR that contains frontogenesis (<i>shaded</i>) and a strong thermally-direct ageostrophic circulation (<i>counter-clockwise rotating arrow</i>) within the equatorward entrance region of an intense tropopause-level jet stream (<i>thick contours labeled</i> 50, 70, and 90 m s ⁻¹). (Originally modeled after Shapiro (1982) and has been adapted from Cordeira et al. 2013)
Fig. 2.19	(a , b) IVT (<i>shaded according to scale:</i> kg m ⁻¹ s ⁻¹) and 875-hPa geopotential height (<i>dashed contours; m</i>) composites for all AWB–ARs and CWB–ARs that impinge on the Pacific Northwest US Coast (44–49°N). The <i>blue line</i> is the average location of the IVT axis extending upstream 2000 km, whereas the <i>dashed blue lines</i> indicate ±1 standard deviation in the average location for the IVT axis. (c , d) Ratio of AR-related precipitation from all AWB–ARs and CWB–ARs to all AR-related precipitation for all US West Coast locations (36–49°N). (Image adapted from Hu et al. <i>2017</i>)
Fig. 2.20	Number of top 20 streamflow events to AWB–ARs (<i>red</i>) and CWB–ARs (<i>blue</i>) for each gauge within the (a) Chehalis River basin and (b) the Russian River basin (Hu et al. 2017)
Fig. 3.1	Vision from 2008, and implementation as of 2018, of specialized observations designed largely to monitor AR conditions offshore and over California, including a statewide mesonet of roughly 100 observing sites installed across the state (Tiers 1 and 2). Tiers 3 and 4 are under development, with significant efforts underway starting in 2016–2017. (Note that manned aircraft are being used to prototype AR Recon)
Fig. 3.2	Four broad conceptual elements of the vision for the twenty-first-century monitoring in the western US derived from a cross-disciplinary, multi-agency report, "A Vision for Future Observations for Western US Extreme Precipitation and Flooding" (Ralph et al. 2014)
Fig. 3.3	First use of satellite-based Special Sensor Microwave/Imager (SSM/I) observations ("retrievals") of integrated water vapor (IWV) to document AR conditions, with a graphical portrayal of how the satellite measurements were used in the first observations-based AR detection method (ARDM). Graphical depiction of the methodology used to generate composite 1500-km- wide baselines of SSM/I-derived IWV, cloud liquid water, rain rate, and surface wind speed across moisture plumes measured by SSM/I over the eastern Pacific during the CALJET winter of 1997–1998: (a) length and width criteria of IWV plumes that exceeded 2 cm. (b) baseline geometry criteria relative to the SSM/I swaths for IWV plumes that exceeded 2 cm. (From Ralph et al. 2004)

Fig. 3.4	Comparison of the representation of ARs provided by satellite-based infrared (IR) and passive microwave imagery. Panels (a , b) correspond to IR observations from the Geostationary Operational Environmental Satellite (GOES)-10 satellite at 6.8 μ m ((a), a water vapor channel) and 10.7 μ m ((b), a thermal IR channel); panel (c) shows a retrieval of integrated water vapor (IWV) from passive microwave channels from the Special Sensor Microwave/Imager (SSM/I) on the Defense Meteorological Satellite Program (DMSP) F-13, F-14, and F-15 satellites. All images correspond to 16 Feb 2004. The GOES images are single scenes sampled at 1830 UTC; the SSM/I IWV image is a composite of retrievals between 1200 and 2400 UTC. (This case was documented by Ralph et al. 2006)
Fig. 3.5	 (a) Dual-Frequency Precipitation Radar–Global Precipitation Measurement (DPR–GPM) swath through AR conditions on 4 Feb 2015 at 000 UTC and (b) the vertical profile of reflectivity from the Ka band satellite-borne radar along the center of the DPR–GPM swath subset within the <i>red box</i> in (a). (From Cannon et al. 2017)
Fig. 3.6	<i>Left</i> Schematic summary of an AR observatory (ARO) and <i>right</i> photo of part of the ARO installed and operating at Bodega Bay, California, since 2014. (From White et al. <i>2013</i>)
Fig. 3.7	Schematics from Neiman et al. (2002) and Ralph et al. (2005 <i>a</i>) highlighting the role of winds aloft (near 1 km MSL) in controlling orographic rainfall downwind. (a , b) Conceptual representation of orographic rainfall distribution in California's coastal mountains, and the impact of terrain-blocked flow on this distribution: (a) plan view, and (b) cross-section perspective, with representative coastal profiles of wind velocity (<i>flags</i> and <i>barbs</i> as in Fig. 3.3) and correlation coef (based on the magnitude of the upslope flow at the coast vs the rain rate in the coastal mountains) shown on the <i>left</i> . The variable h in (b) is the scale height of the mountain barrier. The spacing between the rain streaks in (b) is proportional to rain intensity. The symbol "&" within the blocked flow in (b) portrays a terrain-parallel barrier jet (from Fig. 19 of Neiman et al. 2002). (c , d) Conceptual representation focusing on conditions in the pre-cold-frontal LLJ region of a landfalling extratropical cyclone over the northeastern Pacific Ocean. (c) Plan-view schematic showing the relative positions of an LLJ and trailing polar cold front. The average position of the 17 dropsondes used in this study is shown with a <i>star</i> (~500 km offshore of San Francisco), and the Cazadero microphysics site is marked with a <i>bold white dot</i> . The points A and A' along the LLJ provide the approximate endpoints for the cross-section in (d). (d) Cross-section schematic along the pre-cold-frontal LLJ [i.e., along A–A' in (c)] highlighting the offshore vertical structure of wind speed, moist static stability, and along-river moisture flux at the location of the altitude scale. Schematic orographic clouds and precipitation are shown, with the spacing between the rain streaks proportional to rain intensity (from Fig. 13 Ralph et al. 2005 <i>a</i>)
Fig. 3.8	The 10-m meteorological tower deployed at Bodega Bay, California. The tower is instrumented with an anemometer at a height of 10 m, as well as with pressure, temperature, relative humidity, solar, and net radiation sensors at a height of ~2 m. A rain gauge is mounted on the post to the left of the tower. Midway up the tower is a solar panel that powers the sensors. (Photo Credit: C. King)

Fig. 3.9	<i>Left</i> An example of the surface meteorology time-series plot generated from
	the 10-m meteorology tower at Bodega Bay, California for the period 28–29 December 2010. Time proceeds from right to left along the horizontal axes
	Atmospheric surface variables plotted in each papel from <i>top to bottom</i> are wind
	speed and wind direction. 2-min. Maximum wind speed and surface pressure.
	temperature and relative humidity, temperature and wet-bulb temperature,
	accumulated precipitation, integrated water vapor (IWV) and mixing ratio, and
	solar and net radiation. Units for these variables are given <i>along the vertical axes</i> .
	The horizontal dashed line on the IWV panel is drawn at 2 cm—the minimum
	IWV threshold used to identify AR conditions. <i>Right</i> Corresponding composite
	passive microwave satellite image of IWV (see Sect. 3.2) showing the AR
F 2 10	present during the afternoon satellite overpasses on 28 December 2010
F1g. 3.10	Example from 1200z 5 Feb to 1200z 7 Feb 2015 of the AR water vapor flux
	Time height section of hourly everaged wind profiles (flags = 50 lt
	harbs = 10 kt. half-barbs = 5 kt: wind speed color coded) with hourly
	snow level (<i>bold dots</i>) and retrospective hourly Rapid Refresh (RAP) model
	forecasts of the freezing level (<i>dashed line</i>) at 3-h verification time. Time moves
	from right to left along the X-axis. The current time is indicated by the <i>vertical</i>
	<i>line in the top panel.</i> Data plotted to <i>the left of this line in each panel</i> show the
	current RAP model forecast only (i.e., no observations), whereas data plotted to
	<i>the right of the line in each panel</i> are a combination of observations and model
	output. <i>Middle</i> Time-series of hourly-averaged upslope flow (kt; from 230°)
	observed (<i>nistogram</i>), and predicted (<i>I posts</i>) in the layer between 750 and 1250 m MSL (bounded by the thin horizontal lines in the top panel) and
	integrated water vanor (IWV: in) observed (solid evan curva) and predicted
	(<i>dashed cvan curve</i>) by the RAP forecast model. Minimum thresholds of
	upslope flow and IWV for the potential occurrence of heavy rain
	$(>0.4 \text{ in } h^{-1})$ in AR conditions defined by Neiman et al. (2009) are indicated
	by the thin horizontal lines color-matched to the variable each threshold
	represents. <i>Bottom</i> Time-series of hourly-averaged upslope IWV flux (in kt ⁻¹)
	observed (solid blue curve) and predicted (dashed blue curve) by the RAP
	forecast model, and hourly rainfall histogram from Bodega Bay (in; red)
	and Cazadero (in; green) in the coastal mountains. Black T-posts refer to
	the prior RAP forecasts of precipitation (in); <i>colored 1-posts</i> refer to the surrent PAP forecasts of precipitation (in) for Podege Pay (wed) and Cagadara
	(<i>green</i>) Minimum threshold of upslope IWV flux for the potential of
	heavy rain calculated by multiplying the thresholds for upslope flow
	and IWV, is indicated by the <i>horizontal blue line</i>
Fig. 3.11	<i>Left</i> —Enhanced infrared satellite imagery for the dates and times shown in
U	the <i>upper right</i> for an AR making landfall on the California coast. <i>Right—Bottom</i>
	panel of the water vapor flux tool (WVFT) (as in Fig. 3.10 except without
	numerical model forecasts) highlights the relationship between upslope
	integrated water vapor (IWV) flux (based on upslope wind directions of 230°,
	225°, and 195° from <i>top panel to bottom panel</i> , respectively) and the
	orographically enhanced coastal mountain rainfall (orographic ratios
Fig. 2.12	snown in <i>Dold Dlack Text</i>)
11g. 5.12	the seven AR observatories (AROs) that constitute the US West Coast ARO
	"picket fence." (Adapted from White et al. 2015a)
	1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X

Fig. 3.13	Base-map of California indicating the locations of the AR monitoring
	network consisting of six AR observatories (AROs; white stars), 58 Global
	Positioning System/Meteorology (GPS/MET) sites (<i>pink dots</i>), ten snow-level
	radars (<i>open blue squares</i> ; see Sect. 3.4.2), and 39 HMT sites where soil moisture
	is measured (<i>red circles</i> : see Sect. 3.5.3). These complement pre-existing soil
	moisture networks operated by the Scripps Institution of Oceanography the
	Natural Resources Conservation Service and the National Centers for
	Environmental Information NDCS Show Talenating (SNOTEL) sites measure
	Environmental mornation. INKCS Show Telemetry (SNOTEL) sites measure
F ' 2.14	show depth and show-water equivalent. (Adapted from white et al. 2013)
F1g. 3.14	Hourly median profiles of signal-to-noise ratio (SINR) and Doppler vertical
	velocity (DVV; positive downward) measured with the vertical beam of the
	915-MHz wind profiler at Bodega Bay, California, between 1100 and 1200 UTC
	on 24 February 2001. The snow level is indicated by the <i>bold dashed line</i> at
	0.772 km above ground level (AGL). The freezing level measured by a
	rawinsonde launched from Bodega Bay at 1126 UTC is shown by
	the <i>dashed line</i> at 0.994 km AGL. For illustration, the bottom of the melting
	layer is estimated to be at the bottom of the bright band, which is also where
	DVV is largest. The profiles were measured in stratiform rain. (Adapted from
	White et al. 2002)
Fig. 3.15	<i>Top</i> The snow-level radar (SLR) at Pine Flat Dam, with a collocated surface
	meteorology station and a global positioning system (GPS) antenna for
	measuring integrated water vapor IWV; see Sect. 3.4.2). bottom A 48-h time-
	height display from the SLR that indicates the snow level (<i>black dots</i>) at
	10-min, Resolution. The <i>color contours</i> are of the radial velocity (Rv), which in
	precipitation closely represents the hydrometeor fall velocities (m s^{-1}) indicated
	by the <i>color scale on the right</i> . Time (UTC) and dates are <i>listed on the</i>
	<i>horizontal axis.</i> The <i>table below the plot</i> quantifies the snow level altitude
	during periods of precipitation, and provides collocated surface temperature
	observations (Photo credit: Clark King) 64
Fig 3 16	Left Terrain base-map of northern California that highlights the locations
115. 5.10	of four river basing prope to flooding <i>Right</i> River forecast model simulations
	of the sensitivity of runoff to changes in melting level for these same four
	river basing. The nosted numbers give the approximate percentage
	of basin area below the altitude that corresponds to the melting level
	(White at al. 2002) 65
E = 2.17	(while et al. 2002)
Fig. 5.17	Left ferrain base-map of California, with a schematic showing the interaction $($
	(<i>purple curve</i>) between unimpeded AR now through the San Francisco Bay
	Area gap (<i>blue curve</i>) with the Sierra Barrier Jet (SBJ; see Sect. 5.2) flowing
	northward along the eastern side of the Central Valley (<i>red curve</i>) during a
	typical winter storm with an embedded AR. Instrumented sites with Doppler
	wind profilers in California at Bodega Bay (BBY), Chico (CCO), Chowchilla
	(CCL) Colfax (CFC), Concord (CCR), Lost Hills (LHS), Sacramento (SAC),
	Sloughhouse (SHS), and Truckee (TRK) are indicated by white dots. Cross-
	sections (black lines) are used to represent AR and SBJ flow characteristics
	(not shown). Locations of vertically pointing precipitation-profiling radars
	(part of NOAA's Hydrometeorological Testbed's [HMT's] observing network)
	at Cazadero (CZD), Sugar Pine Dam (SPD) and Mariposa (MPI) are indicated
	by <i>pink dots. Right</i> (a – j) integrated water vapor (IWV; cm) over central
	California at 4-h intervals from 1200 UTC 23 Feb to 0000 UTC 25 Feb 2010.
	The dates and times are shown near the top of panels $(\mathbf{a}-\mathbf{i})$. Two Central Vallev
	Global Positioning System/Meteorology (GPS/MET) sites upwind of SPD
	are enclosed by a rectangle and two Central Valley GPS/MET sites upwind
	of MPI are enclosed by an <i>oval</i> to illustrate that more water vapor arrives
	at SPD than at MPI. (White et al. 2015b)

Fig. 3.18	 Design of soil moisture measurement system used for the California soil moisture network (From Zamora et al. 2011)
Fig. 3.19	 <i>Left</i> The soil monitoring station in Hopland, California. Instruments are listed in Table 3.4. <i>Right (top)</i> Soil temperature (°C). (<i>middle</i>) volumetric soil water
	content (%), and (<i>bottom</i>) accumulated precipitation (mm) observed at Hopland.
	from 0000 UTC 26 Nov. 2012 to 1400 UTC 3 Dec. 2012. Peaks in Russian River
	stream flow provided by the US Geological Survey are indicated by <i>blue vertical</i>
	lines in the middle panel. The thin horizontal line in the bottom panel indicates
	the amount of rainfall required to achieve field capacity initially for the 10-cm
	soil moisture probe. (White et al. 2013)
Fig. 3.20	Conceptual representation of an AR over the northeastern Pacific Ocean.
	(a) Plan-view schematic of concentrated integrated water vapor (IWV; IWV
	$\geq 2 \text{ cm}; dark green)$ and associated rain-rate enhancement (RR $\geq 0.5 \text{ mm h}^{-1};$
	<i>red</i>) along a polar cold front. The tropical IW V reservoir (>3 cm; <i>light green</i>) is
	(b) Cross section schematic through an AR (along A A' in a), highlighting the
	(b) cross-section schematic through an AK (along AA in a), inglinghting the vertical structure of the along-front isotachs (blue contours: $m s^{-1}$) water vanor
	specific humidity (dotted green contours: $g kg^{-1}$) and horizontal along-front
	moisture flux (<i>red contours</i> and shading; $\times 10^5$ kg s ⁻¹). Schematic clouds and
	precipitation are also shown, as are the locations of the mean width scales of the
	75% cumulative fraction of perturbation IWV (widest), cloud liquid water
	(CLW), and RR (narrowest) across the 1500-km cross-section baseline (bottom)
	(Ralph et al. 2004)
Fig. 3.21	Profile of the correlation coefficient between hourly averaged upslope flow
	measured at Bodega Bay (BBY), California, and hourly rain rate measured
	downwind in the coastal mountains at Cazadero County, Cantornia (CZD) for the 25 CAL JET winter season cases consisting of 468 h of data pairs (hold curve)
	The composite profile of wind speed measured in ten different lower-level jets
	(LLJs) measured offshore of California near BBY with the National
	Oceanic and Atmospheric (NOAA) WP-3D (light curve). (Adapted from
	Neiman et al. 2002)
Fig. 3.22	(a) Composite winter-season profiles of (<i>top left</i>) Doppler vertical velocity
	(DVV; m s ⁻¹ ; positive downward) and (<i>top right</i>) equivalent radar reflectivity
	factor (dBZ _e) measured by the S-band vertically profiling precipitation profiler
	(S-PROF) during bright band (BB) rain (<i>solid</i>) and non-bright band (NBB) rain
	(<i>dashed</i>). The altitude scale of individual BB profiles was normalized for BB
	relative to the average BB height. The average rain rate for each rain type is
	approximately the same (3.95 mm h^{-1}). These profiles were obtained at CZD
	during winter 1997–1998. (b) Conceptual representation of shallow NBB rain in
	California's coastal mountains, and the inability of the operational Weather
	Surveillance [Doppler] Radar (WSR)-88D radars to adequately observe it
	(bottom). NBB rain is portrayed falling from a shallow feeder cloud forced by
	warm and moist onshore flow associated with a land-falling LLJ in an AR
	(<i>bold arrow</i>). (White et al. 2003)
Fig. 3.23	Top Base-map indicating the location of the X-band scanning radar at Fort
	Ross (FRS). Other PACJE1 2003 observing equipment was located at Cazadero
	Example to illustrate the gap-filling radar concept for precipitation monitoring
	The nearest National Weather Service (NWS) operational scanning radar
	(KMUX) scans too high above the precipitating clouds along the coast north
	of San Francisco and therefore cannot measure the precipitation echoes
	detected locally by the X-band radar

Fig. 3.24	Season of occurrence [winter (DJF) = <i>dark blue</i> , spring (MAM) = <i>pink</i> , summer (JJA) = <i>gold</i> , fall (SON) = <i>light blue</i>] of heavy precipitation events matched with ARs within 250 km and 24 h, plotted over terrain (elevation, m; <i>shaded</i> as in legend). Location indicated by <i>circle</i> is the center point of the heavy precipitation. <i>Circle size</i> indicates size (in number of grid points with ~38 km spacing from the National Centers for Environmental Protection–Climate Forecast System Reanalysis (NCEP–NCAR) as shown in legend at bottom right. <i>Black</i> + <i>signs</i> indicate heavy precipitation events in which no AR was matched. (Mahoney et al. 2016)
Fig. 3.25	Cross-section derived from dropsonde data during the GhostNets field campaign of 2005. (From Ralph et al. 2011)
Fig. 3.26	Comparison of AR cross-sections of integrated water vapor (IWV) and integrated water vapor transport (IVT) obtained from the NASA Global Hawk. (a) Traces of 1000–200-hPa IWV (cm) for the three cross-sections. The traces are centered on the maximum value of IWV. (b) As in (a), except for AR-parallel IVT (kg s ⁻¹ m ⁻¹). (Wick et al. 2018b)
Fig. 3.27	Conceptual design of the CalWater-2/ACAPEX field program. (Ralph et al. 2016)
Fig. 3.28	 (a) Left AR Recon targeting concept and example using three aircraft, executed on 27 Jan 2018. (b) Right In addition, the moist adjoint method is used to identify regions of large initial condition error impacts, which largely match the location of the AR. 77
Fig. 3.29	Dropsonde locations for the first three-aircraft AR Recon mission,
Fig. 3.30	Snapshots of each of the 21 aircraft-observed ARs are shown overlaid on satellite-observed integrated water vapor (IWV), with the baseline (<i>white line</i>) marking the location of aircraft track used in the analysis. Each of the four aircraft types used to collect these data over nearly 20 years is shown (From Ralph et al. 2017) 79
Fig. 3.31	Composite schematic of AR structure based on (a) aircraft observations of 21 ARs, and (b) used in the AMS <i>Glossary of Meteorology</i> definition of ARs. (From Ralph et al. 2017, 2018a)
Fig. 3.32	Histogram of AR total integrated vapor transport (TIVT) (10 ⁸ kg s ⁻¹) based on all ARs detected in ERA-Interim over the northeastern Pacific (AR centroids within 163.4–124.6°W, 23–46.4°N) during 15 January to 25 March of 1979–2016 (<i>gray bars</i>). From Guan et al. (<i>2018</i>). Also shown are the mean AR TIVT based on all reanalysis ARs that contributed to the histogram (<i>red solid</i>), the subset of the reanalysis ARs that correspond to the 21 dropsonde transects (<i>red dashed</i>), and the observed value based on the 21 dropsonde transects as reported in Ralph et al. (<i>2017</i>) (<i>blue dashed</i> for the mean, and <i>blue circles</i> for individual transects). The mean AR TIVT value is also indicated in the figure legend for each sample. <i>Red shading</i> indicates the 95% confidence interval of the mean reanalysis ARs based on 10,000 iterations. The error bar centered on the <i>blue</i> <i>dashed line</i> indicates the 95% confidence interval of the difference between the <i>blue</i> and <i>red dashed lines</i> based on a two-tailed, paired t-test
Fig. 4.1	The 85th percentile of integrated water vapor transport (IVT) magnitude (kg m ⁻¹ s ⁻¹) at each grid cell for the months of (a) November–March (NDJFM)

E. 4.0	(-) I de la companya
F1g. 4.2	(a) Integrated water vapor transport ($1V1$) AR frequency (percent of time-steps;
	shading) and mean AR IVI (kg m ⁻¹ s ⁻¹ ; arrows) at each grid cell over the period
	of 1979–2015. White shading in limited areas indicates no AR detected over the
	analysis period. (b) Zonally integrated meridional IVT (kg s ⁻¹) associated
	with AR transport (green), non-AR transport (red), and their combination
	(black). (c) Integrated AR zonal scale expressed as the fraction of the total
	zonal circumference at given latitudes. (Updated from Guan and
	Waliser 2015)
Fig. 4.3	Frequency (days per year) of AR landfalls based on all months of 1979–2015.
	The frequency values in days per year were obtained by multiplying the fraction
	of 6-hourly time-steps with AR landfalls (i.e., probability of landfall
	occurrence) by 365.2425. (Updated from Guan and Waliser 2015)
Fig 44	Mean duration (hour) of ARs at each grid cell. Calculations are based on all
1.8	months of 1979–2015 (Undated from Guan and Waliser 2015) 93
Fig. 4.5	Mean AR fractional contribution to total precipitation over the period of
1 15. 4.5	1997–2015 for which precipitation data from Global Precipitation Climatology
	Project version 1.2 (Huffmon et al. 2001) are evailable. (Undeted from Guen
	and Walicer 2015)
Eia 16	Month of mode alimatelesised AB frequency for the period of 1070, 2015
FIg. 4.0	Wolth of peak climatological AK frequency for the period of 1979–2015.
F: 47	(Updated from Guan and Wallser 2015)
F1g. 4./	AR frequency (percent of time-steps) in (a) ONDJFM and (b) AMJJAS for
-	the period of 19/9–2015. (Updated from Guan and Waliser 2015)
Fig. 4.8	Schematic showing one of the many possible configurations of four climate
	modes for a given time-period, i.e., the negative phases of the Arctic Oscillation
	(AO) and Pacific/North American (PNA) pattern, the cold phase of the El Niño–
	Southern Oscillation(ENSO), and the western Pacific phase of the
	Madden–Julian Oscillation (MJO). For AO and PNA, the <i>solid/dashed contours</i>
	show the representative locations of the high-/low-pressure anomaly centers
	associated with the negative phases of the two modes. The green shading shows
	examples of ARs detected on an arbitrary day. The climate modes modulate AR
	activity through their influence on the large-scale atmospheric circulation95
Fig. 4.9	(a, b) Composite ONDJFM AR frequency anomalies (percent of time-steps)
	during (a) La Niña and (b) El Niño conditions. (c) ONDJFM climatology
	of AR frequency, based on which the composite anomalies in (a , b) are calculated.
	(d – f) as (a – c), but for AR precipitation (mm/day). In (a , b) and (d , e), values are
	shown only if they are statistically significant at the 95% level based on 2-tailed
	z-test and the number of samples contributing to the calculation is >200. AR
	frequency is based on integrated water vapor transport (IVT) derived from
	ERA-Interim reanalysis (Dee et al. 2011). Precipitation is from Global
	Precipitation Climatology Project version 1.2 (Huffman et al. 2001).
	(Undated from Guan and Waliser 2015) 96
Fig 4 10	Composite ONDIFM AR frequency anomalies (nercent of time-steps) relative
115. 1.10	to the ONDIFM climatology during each phase of the Madden-Julian
	Oscillation (MIO) The two hemispheres are shown separately in two columns
	to improve the visualization. Values are shown only if they are statistically
	cignificant at the 05% level based on two tailed z test and the number
	of samples contributing to the calculation is >50. (Undeted from Guan
	or d Waliaar 2015)
Ex. 4.11	Composite ONDIEM AD prosinitation or smaller (see [dec]) selection to the
г1g. 4.11	Composite ONDIFINIAK precipitation anomalies (mm/day) relative to the
	UNDJFW climatology during each phase of the Madden–Julian Oscillation
	(MJO). The two hemispheres are shown separately in two columns to improve the
	visualization. Values are shown only if they are statistically significant at the 95%
	level based on two-tailed z-test and the number of samples that contribute to the
	calculation is >50. (Updated from Guan and Waliser 2015)

Fig. 4.12	(a, b) Composite ONDJFM AR frequency anomalies (percent of time-steps)
	for the Arctic Oscillation. (c–d) as (a–b), but for AR precipitation (mm/day).
	In (a , b) and (c , d), values are shown only if they are statistically significant
	at the 95% level based on two-tailed z-test and the number of samples
	contributing to the calculation is >200. AR frequency is based on integrated
	water vapor transport (IVT) derived from ERA-Interim reanalysis
	(Dee et al. 2011). Precipitation is from Global Precipitation Climatology
	Project version 1.2 (Huffman et al. 2001) (Undated from Guan
	and Waliser 2015) 99
Fig 4 13	(a b) Composite ONDIFM AR frequency anomalies (percent of time-steps)
115. 4.15	during the Pacific/North American (PNA) pattern (c) ONDIEM climatology of
	AB frequency based on which the composite anomalies in (a, b) are calculated
	At frequency, based on which the composite anomalies in (a, b) are calculated. (d f) as (a, a) but for AP precipitation (mm/day). In (a, b) and (d, a) values are
	(\mathbf{u}, \mathbf{f}) as (\mathbf{a}, \mathbf{c}) , but for AK precipitation (initi/day). In (\mathbf{a}, \mathbf{b}) and (\mathbf{u}, \mathbf{c}) , values are shown only if they are statistically significant at the 05% level hand on two tailed
	snown only if they are statistically significant at the 95% level based on two-tailed
	z-test and the number of samples that contribute to the calculation is >200 . AR
	frequency is based on integrated water vapor transport (IVI) derived from
	ERA-Interim reanalysis (Dee et al. 2011). Precipitation is from Global
	Precipitation Climatology Project version 1.2 (Huffman et al. 2001).
	(Updated from Guan and Waliser 2015)100
Fig. 4.14	Monthly distribution of the average number of days Special Sensor
	Microwave Imager (SSM/I)-observed integrated water vapor (IWV) plumes
	intersected the north-coast and south-coast domains of North America
	during the water years 1998–2005. (From Neiman et al. 2008a)101
Fig. 4.15	Statistics of landfalling ARs along the west coast of North America as a
	function of month and landfall latitude, based on National Centers for
	Environmental Prediction–National Center for Atmospheric Research
	(NCEP-NCAR) reanalysis data from 1948–2015. (a) Number of 6-hourly AR
	occurrences rounded to days, (b) average duration (of consecutive AR
	occurrences) at landfalling latitude, (c) mean integrated water vapor transport
	(IVT) per AR occurrence, and (d) mean integrated water vapor (IWV) per AR
	occurrence
Fig. 4.16	Probability density functions for landfalling ARs over Nov–Mar for the years
U U	1979–2011 sorted according to (a - c) month (749 dates), (d - f) El Niño–Southern
	Oscillation (ENSO) phase (749 dates), and (g-i) Madden–Julian Oscillation
	(MJO) phases with amplitudes >1 (469 dates). Each column shows the
	distribution of (<i>left</i>) landfalling latitude. (<i>center</i>) landfalling peak daily water
	vapor flux, and (<i>right</i>) landfalling total daily precipitation. The y-axis shows
	the probability density function for each panel, where the center column is an
	order of magnitude less than the right and left columns. Averages for each
	category are shown in the legend in each panel. (From Payne
	and Magnusdottir 2014) 103
Fig 4 17	Composite 500 hPa geopotential height (<i>laft</i>) and anomalies (<i>right</i>) derived
11g. 4.17	from the National Centers for Environmental Prediction. National Center for
	Atmospheric Descents (NCED NCAD) Breenslysis data set for Special
	Autospheric Research (NCEP-NCAR) Riednarysis data set for Special
	Sensor Microwave/Imager (SSM/I) integrated water vapor (Iw V) plumes
	(i.e., ARs as defined in Neiman et al. (2008a)) intersecting the (<i>top</i>) north-coast
F 110	and (<i>bottom</i>) south-coast domains on a daily basis in winter (DJF) 104
Fig. 4.18	Composite 500-hPa geopotential height (<i>left</i>) and anomalies (<i>right</i>) derived from
	the National Centers for Environmental Prediction–National Center for
	Atmospheric Research (NCEP–NCAR) reanalysis data-set for integrated water
	vapor transport (IVT; kg s ⁻¹ m ⁻¹). (i.e., ARs as defined in Neiman et al. 2008a)
	intersecting the (top) north-coast and (bottom) south-coast domains on a daily
	basis in winter (DJF)

Fig. 4.19	Composite integrated water vapor (IWV) derived from (<i>left</i>) Special Sensor Microwave/Imager (SSM/I) imagery and (<i>right</i>) the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data set for SSM/I IWV plumes (i.e., ARs as defined in Neiman et al. 2008a) intersecting the (<i>top</i>) north-coast and (<i>bottom</i>) south-coast domains on a daily basis in winter (DJF). Dotted lines represent the core of the IWV plumes and the inter-tropical conversion zone (ITCZ). Standard frontal notation is used to mark approximate positions of relevant synoptic features
Fig. 4.20	Composite 500-hPa geopotential height (<i>left</i>) and anomalies (<i>right</i>) derived from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data set for mean vertical velocity ω (μ b s ⁻¹) (i.e., ARs as defined in Neiman et al. 2008a) intersecting the (<i>top</i>) north-coast and (<i>bottom</i>) south-coast domains on a daily basis in winter (DJF)
Fig. 4.21	Conceptual representation of synoptic conditions associated with landfalling ARs during DJF, based on an average of the north-coast and south-coast reanalysis composites. <i>Left:</i> Plan view of integrated water vapor transport (IVT) (<i>solid contours; light shading:</i> IVT 250–350 kg m ⁻¹ s ⁻¹ , <i>medium shading:</i> IVT 350–450 kg m ⁻¹ s ⁻¹ , <i>dark shading:</i> IVT > 450 kg m ⁻¹ s ⁻¹), daily rainfall (<i>dashed;</i> mm d ⁻¹), 925-hPa cold front and pre-cold-frontal flow (<i>bold arrow</i>). The <i>black</i> <i>square</i> marks the position of the composite sounding shown below. <i>Right:</i> Mean profiles of wind speed and direction, mountain-normal water vapor flux, and vertical velocity for winter and summer (<i>solid</i> and <i>dashed</i> , respectively). The <i>vertical gray-shaded bar</i> marks the mean orientation orthogonal to the mountain ranges in the north-coast and south-coast domains (i.e., the orographically most favored flow direction) (Neiman et al. 2008a)
Fig. 4.22	Counter-clockwise from <i>top left</i> fraction of cool-season (November–April) precipitation attributable to landfalling ARs between 32.5°–52.5°N at western US cooperative weather stations (Dettinger et al. 2011). <i>Bottom left</i> : As previous but using the 0.25° gridded Climate Prediction Center (CPC) Unified Precipitation Data (Rutz and Steenburgh 2012). <i>Bottom right</i> : As previous but including landfalling ARs along the Baja Peninsula (24.5°–32.5°N; Rutz and Steenburgh (2012). <i>Top right</i> : Difference between the previous two (Rutz and Steenburgh 2012)
Fig. 4.23	Seasonal contribution of AR-related precipitation to total seasonal precipitation based on Livneh et al. (2013) 6 × 6-km gridded daily precipitation data. (Gershunov et al. 2017)
Fig. 4.24	Conceptual representation of the atmosphere at 0000 UTC 22 January, and 24-h precipitation accumulations ending at 1200 UTC 22 January 2010. <i>Top:</i> Plan view schematic of integrated water vapor (IVT) magnitude (<i>red con-</i> <i>tours</i> , with units of kg s ⁻¹ m ⁻¹ ; <i>bold red arrow</i> shows the IVT vector direction in the AR core), the 85 m-s ⁻¹ isotach at 250 hPa (<i>gray dashed contour; interior</i> <i>shading</i> > 85 m s ⁻¹), the melting level at 2.5 km mean sea level (MSL) (<i>blue</i> <i>contour</i> ; estimated from the Climate Forecast System Reanalysis (CFSR) 0 °C altitude at 2.7 km, with the assumption that the melting level is located ~200 m below the 0 °C isotherm (e.g., Stewart et al. <i>1984</i> ; White et al. <i>2002</i>), and the 75-mm isohyets (<i>thin solid contours; interior shading</i> >75 mm). The <i>black</i> <i>dashed line</i> along SW–NE shows the baseline for the cross-section in the bottom panel. Standard notation is used for the near-surface fronts. <i>Bottom:</i> Cross-section schematic across the Mogollon Rim (along SW–NE in the top panel) showing the melting level (<i>gray-shaded bar</i>), the AR (<i>red arrow</i>), and representative 24-h precipitation totals (mm) at three locations (<i>bold black dots</i>).

	The following vertical profiles at the southwest end of the cross-section are also
	shown: wind velocity and barbs (<i>flags</i> = 25 m s ^{-1} , <i>barbs</i> = 5 m s ^{-1} , <i>half</i> -
	$barbs = 2.5 \text{ m s}^{-1}$), water vapor flux (kg s ⁻¹ m ⁻¹ ; directed from 220°), and
	moist Brunt–Väisälä frequency squared (×104 s ⁻²)111
Fig. 4.25	ERA-Interim (a) integrated water vapor (IWV) and (b) integrated water vapor
U	transport (IVT) at 0000 UTC 21 December 2010. <i>Thick red line</i> in (a , b) denote
	threshold values of 20 mm and 250 kg m ⁻¹ s ⁻¹ , respectively. (c) Advanced
	Hydrologic Prediction Services (AHPS) accumulated precipitation analysis
	for 24-h period ending 1200 UTC 21 December 2010 112
Fig 4 26	The (a) AR frequency (b) mean AR duration (c) ton-decile AR fraction
115. 1.20	and (d) seasonal AR fraction (Rutz et al. 2014) 113
Fig 4 27	Backward trajectories that were initiated near the top of the boundary layer
11g. 4.27	(50, 100 bBa above the surface) at the four Climate Ferencest System Deepelveis
	(SD=100 IIF a above the sufface) at the four Chinate Forecast System Realitysis
	(CFSR) grid points around a station in western Idano at 002 16 Feb 1982, the day
	that 104 mm of precipitation fell. This was the largest 1-day precipitation event
	that occurred at a station in a region in eastern Oregon–southern Idaho. The
	pressure (hPa) along a trajectory segment is shown by the color (<i>blue-red</i>)
	scale and the terrain height (m) by the (green-white) scale, both shown
	at <i>bottom</i> . The <i>black curve</i> —extending along the crest of the Cascade,
	Sierra, and Peninsular mountains—indicates the position of the cross-section
	shown in Fig. 4.29
Fig. 4.28	(a) Coastal-decaying and (b) interior-penetrating 950-hPa AR trajectories with
	color indicating water vapor flux (<i>scale at right</i>). (c, d) as in (a, b), but for
	trajectory count. Black circles indicate points from which trajectories
	are initiated
Fig. 4.29	Schematic showing the primary pathways for the penetration of AR-related
C	trajectories into interior western North America. Plan view based on Rutz et al.
	(2015) with pathways shown as <i>black arrows</i> , and regions associated
	with frequent AR decay <i>shaded in red. Note:</i> Although this schematic highlights
	common regimes and pathways, individual trajectories follow many
	different paths 116
Fig 4 30	Count mans <i>left</i> and vertical cross-sections <i>right</i> indicating the number
115. 1.50	of back trajectories that pass through (a) Climate Forecast System Reanalysis
	(CESR) grid column that originates in the following regions: (a, b) Washington_
	northern Idaha (a, d) Oregon southern Idaha (a, f) Nevada (a, b) Utah
	Colorada, and (i, i) Arizona. New Maxiaa. A total of 2400 traisatorias ware
	colorado, and (i, j) Anzona-New Mexico. A total of 2400 trajectories were initiated in each racion. The position of a trajectory is estimated at 1 h intervals
	initiated in each region. The position of a trajectory is estimated at 1-in intervals
	over the live previous days using the 6-nourly 3-D CFSR wind helds.
	Topography is indicated by <i>contours</i> at 1000 m (3281 ft), 1500 m (4921 ft), (2200 m)
	and 2300 m (7546 ft) and <i>stippling</i> above 2300 m. The cross-sections are
	aligned along the crest of the Cascade, Sierra, and Peninsular mountains
	(<i>black curve</i> in Fig. 4.31), with the terrain shown in <i>black</i>
Fig. 4.31	Composites of 850-hPa geopotential heights (<i>contours</i>) and integrated
	water vapor transport (IVT) (color shading) at the time of trajectory initiation
	for (a) coastal-decaying and (b) AR trajectories from selected points (<i>starred</i>
	<i>locations</i>). (c, d), (e, f) as in (a, b), but for different selected locations.
	Number of observations (<i>n</i>) contributing to each composite shown
	in lower left
Fig. 4.32	(left) Hovmöller diagram of 35°–55°N averaged meridional wind anomalies
	(m s ⁻¹ , <i>shaded</i> according to the color bar) on the dynamic tropopause
	(two-potential vorticity unit [PVU] surface) from the National Centers for
	Environmental Prediction Climate Forecast System Reanalysis (NCEP CFSR).
	Anomalies are relative to a long-term (1979–2009) daily climatology. The green

	<i>box</i> denotes the approximate time-period and location of the heavy precipitation event over Tennessee and Kentucky. (right) Time-series of 1000–300-hPa integrated water vapor transport (IVT) (<i>red</i> ; <i>top abscissa</i>) and total column integrated water vapor (IWV) (<i>blue</i> ; <i>bottom abscissa</i>) from the NCEP CFSR and of 6-h precipitation (<i>black, bottom abscissa</i>) from the NCEP Stage-IV data set (Lin and Mitchell 2005) at the grid point closest to Nashville, Tennessee. The gray box denotes the time-period of the heavy precipitation event.
Fig. 4.33	(a) Total column integrated water vapor (IWV) (mm, <i>shaded according</i>
	to the color bar), 1000–300-hPa integrated water vapor transport (IVT)
	vectors (kg m ^{-1} s ^{-1} , reference vector in <i>lower right</i>), sea level pressure
	(black contours every 4 hPa), and the two-potential vorticity unit (PVU)
	contour on the 320-K isentropic surface at 1200 UTC 2 May 2010 from the
	Recording (NCEP CESP), (b) 06 h backward trainetories released
	at 1200 UTC 2 May 2010 from grid points between 1000 and 200 hPa within the
	green hox with >90% relative humidity. Only those trajectories exhibiting a
	specific humidity decrease of at least 5 g kg ⁻¹ in the final 24 h are plotted.
	Trajectories are shaded according to the parcel-specific humidity value
	(g kg ⁻¹ ; see color bar), and starting locations for the trajectories are marked by
	<i>black dots</i> . Trajectories were calculated using the NOAA Hybrid Single Particle
	Lagrangian Integrated Trajectory Model (HYSPLIT) model (Stein et al. 2015)
	with the NCEP CFSR. For reference, time-mean sea level pressure
	(<i>black contours</i> every 4 hPa) and 2-PVU contour on the 320-K isentropic
	Surface for 0000 UTC 1 May–0000 UTC 3 May 2010 from the
Fig. 4.34	The season of occurrence (winter (DJF) = $dark \ blue$, spring (MAM) = $pink$,
	summer $(JJA) = gold$, ran $(SON) = light blue)$ of neavy precipitation events matched with ABs within a 250 km radius and a 24 h period, plotted over a
	terrain elevation baseman (m. shaded according to the color bar). Each marker
	denotes the center location of a heavy precipitation event. <i>Circle size</i> corresponds
	to area extent (in number of grid points) as indicated by the legend at <i>bottom</i>
	right. Black plus symbols indicate heavy precipitation events not matched to
	an AR. The <i>white box</i> denotes the domain in which the heavy precipitation
	events were identified. (Figure 9 from Mahoney et al. 2016)
Fig. 4.35	(a) integrated water vapor transport (IVT) (kg $m^{-1} s^{-1}$, magnitude shaded
	according to the <i>color bar with vectors overlaid</i> ; reference vector in <i>lower left</i>
	during the extratropical transition of Tropical Storm (TS) Nicole Nicole (2010)
	from the National Centers for Environmental Prediction Climate Forecast
	System Reanalysis (NCEP CFSR). (b) as in (a), but for integrated water
	vapor (IWV) (mm). (c) The 24-h precipitation ending at 1200 UTC 30 September
	2010 from the Livneh et al. (2013) data set (mm, shaded according to the color
	bar) with white points denoting the location of the AR as identified by the
	Automated Atmospheric River Detection (ARDT-IVT) at 1200 UTC 30
	September 2010. (Figure 10 from Mahoney et al. 2016)
F1g. 4.36	Example of an AR impacting Europe on 28 December 2009. <i>Left:</i> The wind
	with the sea level pressure (contours) on 28 December 2000 at 00 UTC
	(FRA-Interim reanalysis) right the North Atlantic satellite image of integrated
	water vapor (IWV) measured with the Special Sensor Microwave/Imager
	(SSM/I) (morning passes)

Fig. 4.37	The average AR fraction (in %) across Europe for (a) January, (b) April,
	(c) July, and (d) October over the period 1979–2012. (Results from Lavers
	and Villarini 2015)
Fig. 4.38	The median position (colored line) and the respective 90th and tenth
	percentile (dashed line) of the AR path along the North Atlantic Ocean
	before arriving in each studied domain: (a) Iberian Peninsula (red),
	(b) France (<i>blue</i>) and the UK (<i>green</i>), and (c) southern Scandinavia
	and the Netherlands (yellow) and northern Scandinavia (purple). In addition,
	the number of persistent ARs in each domain during the 1979–2012 period
	is also highlighted. (Adapted from Ramos et al. 2016)
Fig. 4.39	Conceptual representation of the typical meteorological conditions during the
	heavy precipitation events over the subtropical west coast of South America.
	The long and narrow white arrow along the cold front associated with the
	extratropical cyclone corresponds to the AR making landfall and impacting
	the Andes. Typical airflow and weather conditions in the windward and lee sides
	of the Andes are indicated by gray filled arrows and weather symbols. In the
	windward side, an along-barrier jet, rain, and snowstorm are typically
	observed; in the lee side, a downslope windstorm and orographic clouds
	denoted the strong air mass drying that typically occurs. (Adapted from
	Viale and Nuñez 2011)
Fig. 4.40	(a) Geostationary Operational Environmental Satellites (GOES) image in
U	the visible channel at 1745 UTC 26 August 2005 showing the inverted
	comma-shaped cloud associated with the extratropical cyclone on the west coast
	of South America. The inverted comma-shaped cloud is abruptly disrupted
	immediately lee of the Andes by downslope flow (adapted from Viale and
	Norte 2009). (b) Special Sensor Microwave/Imager (SSM/I) composited
	image around 1200 UTC 27 August 2005 showing the plume of integrated
	water vapor (IWV) (mm) that represents a landfalling AR
Fig. 4.41	Special Sensor Microwave/Imager (SSM/I) satellite images showing the
	evolution of an AR after it made landfall on the west coast of South America at
	around (a) 1200 UTC 06 Jun, (c) 1200 UTC 07 Jun, and (d) 1200 UTC 08 Jun
	2006. The panels (b , d , f) show the same times of the satellite observations
	but, for the Weather Research and Forecasting (WRF) model output,
	configured with a grid spacing of 9 km. (Adapted from Viale 2010)
Fig. 4.42	Vertical sections of Tropical Rainfall Measuring Mission precipitation radar
	(TRMM PR) reflectivity (dBZ) satellite observation in cross-barrier directions at
	(a) 1200 UTC 7 Jun 2006 at 35°S and (b) 0922 UTC 8 Jun 2006 at 32°S.
	Surface observations at (c) Malargue Station at 35.5°S and (d) Mendoza
	Station at 32.7°S plotted every 3 h from 1200 UTC 5 Jun to 1200 UTC 9 Jun
	2006 showing temperature (°C red solid line), dew point temperature
	(°C, dotted-dashed red line), sea level pressure (hPa, black dots), winds
	(<i>full barb</i> = 10 m s ^{-1}), and 6-h accumulated precipitation (mm, <i>shaded</i>)
	<i>light blue</i>). (Adapted from Viale 2010)
Fig. 4.43	Schematic representation of the kinematic and microphysical behavior
	of the AR impacting against the mountainous west coast of South America:
	(a) plan view and (b) cross-barrier view
Fig. 4.44	(a) Special Sensor Microwave/Imager (SSM/I) image showing the developing
-	AR and associated water vapor filaments that extend from the USA toward
	the southwest coast of Greenland on 7 July 2012 together with back trajectories.
	(b) ERA-Interim wind vectors (700 hPa) and speeds (ms ⁻¹ , scale below)
	for 7 July 2012

Fig. 4.45	Comparison of <i>left</i> Special Sensor Microwave/Imager (SSM/I)-derived integrated water vapor (IWV) with that from the <i>middle</i> Global Forecast System (GFS)
	analysis and right 500-hPa-height fields for 2012
Fig. 4.46	(a) Special Sensor Microwave/Imager (SSM/I) image of total integrated water vapor (IWV) on 24 August 2011 (compliments of G. Wick), (b) surface melt patterns for 24 and 27 August. Making Earth System data records for Use in
	Research Environments (MEaSUREs) Greenland Surface Melt Daily 25 km
	Equal-Area Scalable Earth (EASE)-Grid 2.0, V1 derived from satellite microwave measurements, compliments of Thomas Mote; images produced by M. Shupe). Highest precipitation rates occurred on 27 August as noted by Doyle et al. (2015).
	 (c) IWV on 25 August from ERA-interim. (d) wind vectors on 25 August. (e) IWV from 20CR reanalysis on 25 August. (f) IWV on 25 August from the National Centers for Environmental Prediction–National Center for
	Atmospheric Research (NCEP–NCAR) reanalysis
Fig. 4.47	Vertically integrated meridional moisture transport (<i>shading</i> , kg s ⁻¹ m ⁻¹), 500-hPa geopotential height (<i>black contours</i>) and sea ice edge (<i>white contour</i>)
	for 20°S-80°S on 19 May 2009, 0000 UTC. Figure adapted from
	Gorodetskaya et al (2014)
Fig. 4.48	Vertically integrated water vapor (<i>shading</i> , cm) and total horizontal moisture
	transport (red arrows: kg m ⁻¹ s ⁻¹) within each AR as identified using the
	definition adapted for Antarctica by Gorodetskaya et al (2014) during
	(a) 19 May 2009 00 UTC and (b) 15 February 2011 00 UTC. Black
	contours are 500-hPa geopotential heights, where L shows a closed
	trough at 500 hPa influencing Dronning Maud Land and H shows the
	blocking high-pressure ridge downstream of the low. Red cross shows the
	location of the Princess Elisabeth station, where high precipitation events
	associated with the ARs were measured. (c) Integrated water vapor threshold
	as a function of latitude. Red cross shows the location of the Princess
	Elisabeth station, where high precipitation events associated with the ARs
Fig. 4.49	Composite profiles (from near the surface to 500 hPa) for temperature, specific humidity, wind speed and maisture flux during the enhanced maisture transport
	events (with integrated water vapor transport greater than 100 kg m ⁻¹ s ⁻¹ , and a peak in the meisture flux along the profile exceeding 50 g kg/l m s ⁻¹). Besed on
	radiosonde measurements at two coastal stations in Dronning Maud I and East
	Antarctica: Syowa (SV dashed lines) and Neumaver (NEU solid lines)
	during 2009–2012. Mean values are shown by lines and spread (±one standard deviation) is shown by color sheding. The data are interpolated to 10 bPa
	height steps. Figure is adapted from Silva et al. (2017)
F1g. 4.50	(a) Latitudinal cross-section of specific numidity averaged over a sector 200 (OSE ($h = hli = 100 \text{ m}$) and $h = h = 100 \text{ m}$
	20°-60°E (<i>colored lines</i> , units: g kg ²) and lines of constant potential
	285 K isontropic surface top and 275 K isontropic surface bottom for
	10 May 2000 00 UT. Figure is adapted from Gorodetskave at al. (2011)
Fig. 4.51	(a) The 23 March 2015 mean sea level pressure (hPa; <i>shaded</i>) and 500 hPa
	geopotential heights (m; contour lines at 100-m intervals) from ERA-Interim <i>top</i> . Also shown is 23 March 2015 integrated water vapor (IWV) (cm; <i>shaded</i>) and
	850 hPa wind vectors from ERA-Interim <i>bottom</i> . (b) Moderate Resolution
	Imaging Spectroradiometer (MODIS) images of Larsen B and Larsen A
	embayments before (22 March 2015) (top) and after (27 March 2015)
	(bottom) the record high-temperature event. Orange arrows indicate areas
	of sea ice disintegration and offshore advection. Red and blue circles contain
	melt ponds and ice-tree hills, respectively. Figure adapted from
	Bozkurt et al. (2018)

	:	:
XXX	I	L

Fig. 5.1	<i>Left</i> Base map of north-central California showing the locations of a Doppler wind profiler in the northern Central Valley at Chico (CCO) and the American River basin studied during Sierra Cooperative Pilot Project (SCPP). <i>Right</i> (a) Cross-section of barrier-parallel isotachs (m s ⁻¹ ; directed toward 340°) observed by the Wyoming King Air (<i>dashed line</i>) over the American River basin along the western slope of the Sierra Nevada on 13 Feb 1979 (from Parish <i>1982</i>), (b) Time–height section of hourly averaged wind profiles (<i>every other range gate shown</i>) and barrier-parallel isotachs (m s ⁻¹ ; directed toward 340°) at CCO on 25 Feb 2004 (<i>wind flags</i> = 25 m s ⁻¹ , <i>barbs</i> = 5 m s ⁻¹ , <i>half barbs</i> = 2.5 m s ⁻¹) (Neiman et al. <i>2010</i>)
Fig. 5.2	Climatology of precipitation observed in the western US for the 30-year period between 1961 and 1990. Courtesy of the Western Regional Climate Center using the Parameter-elevation Relationships on Independent Slopes Model (PRISM) data set generated by the Oregon Climate Service (Daly et al. 1994) 145
Fig. 5.3	<i>Left</i> Terrain base map (m) of California and inset showing the Bodega Bay (BBY)–Cazadero (CZD) orographic processes subdomain. Site elevations mean sea level (MSL) are labeled, and the <i>arrow</i> shows the flow direction approximately perpendicular to the mountain barrier. <i>Right</i> Scatterplot analyses of hourly GPS-derived integrated water vapor (IWV) (cm) plotted against hourly upslope flow (m s ⁻¹) measured in the layer between 850 and 1150 m MSL at BBY and as a function of hourly rain rate (mm h ⁻¹) measured at CZD (scale in the unnar laft) (After Naiman et al. 2000) 146
Fig. 5.4	Terrain base map of California that shows the locations of five 915-MHz wind profilers (<i>blue circles</i>) and four surface meteorological stations
Fig. 5.5	(<i>purple triangles</i>). (Neiman et al. 2013a)
Fig. 5.6	Conceptual representation of key Sierra Barrier Jet (SBJ) and AR characteristics based on the 13-case composite analysis. (a) A 3-D plan-view perspective of the SBJ over the Central Valley (<i>blue/purple airstream</i>) and the AR making landfall (<i>red airstream</i>). (b , c) AR- and Sierra-parallel cross-sectional perspectives of the SBJ and AR, respectively (<i>color coding as in</i> a). A schematic representation of the orographically-enhanced clouds (<i>medium gray shade, dark outline</i>) and precipitation over the Sierra Nevada, the Shasta–Trinity Alps, and the Coast Ranges; and the synoptic cloud field (<i>light gray shade</i>). The SBJ deepens poleward of the SFB gap as the low-level portion of the AR contributes to the SBJ airstream there. (Neiman et al. 2013a)
Fig. 5.7	Composite, 13-case, 24-h-duration orographic precipitation analysis from the wind profiler–precipitation gauge couplets at SHS–BLU (<i>red curves</i> ; upslope direction from 250°), CCO–FOR (<i>blue curves</i> ; upslope direction from 250°), and CCO–STD (<i>green curves</i> ; upslope direction from 160°). (a) Vertical profiles of linear correlation coefficient, based on hourly averaged profiles of upslope integrated water vapor (IWV) flux vs. hourly precipitation rate. (b) Scatterplot analyses and linear regression fits in the layer of maximum correlation coefficient