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Foreword

At the dawn of the century’s third decade, robotics is reaching an elevated level of
maturity and continues to benefit from the advances and innovations in its enabling
technologies. These all are contributing to an unprecedented effort to bringing
robots to human environment in hospitals, homes, factories, and schools; in the field
for robots fighting fires, making goods and products, picking fruits and watering the
farmland, and saving time and lives. Robots today hold the promise for making a
considerable impact on a wide range of real-world applications from industrial
manufacturing to healthcare, transportation, and exploration of the deep space and
sea. Tomorrow, robots will become pervasive and touch upon many aspects of
modern life.

The Springer Tracts in Advanced Robotics (STAR) was launched in 2002 with
the goal of bringing to the research community the latest advances in the robotics
field based on their significance and quality. During the latest 15 years, the STAR
series has featured publication of both monographs and edited collections. Among
the latter, the proceedings of thematic symposia devoted to excellence in robotics
research, such as ISRR, ISER, FSR, and WAFR, have been regularly included in
STAR.

The expansion of our field as well as the emergence of new research areas has
motivated us to enlarge the pool of proceedings in the STAR series in the past few
years. This has ultimately led to launching a sister series in parallel to STAR. The
Springer Proceedings in Advanced Robotics (SPAR) is dedicated to the timely
dissemination of the latest research results presented in selected symposia and
workshops.

This volume of the SPAR series brings the proceedings of the 18th edition of the
International Symposium of Robotics Research (ISRR). This symposium took place
in Puerto Varas, Chile from December 11th to December 14th, 2017. The
seven-part volume edited by Nancy M. Amato, Greg Hager, Shawna Thomas, and
Miguel Torres-Torriti is a collection of a broad range of topics in robotics ranging
from control to human‒robot interaction, from mobility to manipulation, from
perception to planning, along with Blue Sky articles describing new early-stage
ideas that inspired discussion and debate. The content of these contributions
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provides a wide coverage of the current state of robotics research: the advances and
challenges in its theoretical foundation and technology basis, and the developments
in its traditional and new emerging areas of applications. The diversity, novelty, and
span of the work unfolding in these areas reveal the field’s increased pace of
development and expanded scope.

From its beautiful venue to its excellent program, the 13th edition of ISRR
culminates with this important reference on the current developments and new
directions in the field of robotics—a true tribute to its contributors and organizers!

Naples, Italy Bruno Siciliano
Stanford, CA, USA Oussama Khatib
July 2019 SPAR Editors
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Preface

The 2017 International Symposium on Robotics Research (ISRR) took place in
beautiful Puerto Varas, Chile from December 11–14, 2017. Consistent with the
history of ISRR, our goal was to design a meeting in an out-of-the-ordinary setting
which would be a forum for debate and discussion with an emphasis on future
visions for robotics research.

In a change from the past, the program featured papers of two different formats:
full-length papers of up to sixteen pages reporting on recent results, and a new Blue
Sky format that were six pages in length. The latter were introduced to describe new
early-stage ideas that would inspire discussion and debate. A prize for the best
paper was supported by the CRA Computing Community Consortium. The final
program featured 53 full-length papers organized into ten sessions, and 16 blue sky
papers organized into three sessions. As is usual for ISRR, all papers were pre-
sented in a single-track format to enhance interaction, debate, and discussion. The
papers were presented in panel format, with each panel including a short intro-
duction, three 15-minute oral presentations, 3-minute spotlight talks for authors
presenting posters, and a substantial discussion period including authors from all
papers in the session.

In addition, the program featured four invited talks by leading researchers in the
field. These included a perspective on manipulation by Matthew Mason, a per-
spective on interaction and medical robotics by Marcia O’Malley, a perspective on
biomechanics in the light of robotics computation by Yoshihiko Nakamura, and a
perspective on service robotics by Henrik Christensen. The program also included
an industry panel which discussed current and future trends for robotics from the
industry perspective. We also organized a doctoral consortium for students from
around the world with support from the National Science Foundation and several
companies.

The final program provided some interesting perspectives on the topics and
themes that are receiving the highest interest in the field. Planning was the topic
which had the most submissions; it was allocated three sessions in the final pro-
gram. The topics discussed ranged from motion planning for hopping rovers to
trajectory optimization with contacts to planning for muscle-actuated bodies. It also
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included discussions on planning for soft robots, multi-robot coordination, and
improved methods for mapping and motion planning.

Learning and perception were also popular topics, with two sessions devoted to
each. In learning, topics ranged from adaptive policy transfer for stochastic
dynamical systems to topometric localization and reinforcement learning for
visual–inertial calibration. The perception session addressed a wide range of topics
including exploration and mapping, perception for grasping, object pose estimation,
and sparse point registration.

Three topics were addressed with a single session: human–robot interaction,
manipulation, and control. Human–robot interaction addressed topics such as
viewing navigation as a cooperative activity, learning groundings for natural lan-
guage interaction, and communicating robot arm motion intent with head-mounted
displays. Manipulation included presentations on sampling-based planning of
in-hand manipulation, a deterministic sampling-based verification algorithm for
path non-existence, and trajectory planning and stabilization for pushing. Control
presentations included multi-objective optimal control with temporal logic models,
reactive control of transitional legged robot maneuvers, and control of quadrotors
using the Hopf fibration.

As noted above, the program included the three blue sky sessions. The first
session focused on cognitive topics—how to align values between a human and a
robot, a computational theory of pain, an axiomatic theory of risk, human-assisted
robot control, and human interaction challenges for autonomous agents in the wild.
The second panel discussed planning and learning, touching on task representations
for coupling perception to action in dynamic scenes, data-driven motion synthesis,
self-directed lifelong learning for robot vision, deep multimodal learning, and
Bayesian active learning for adaptive motion planning. The final session included
several papers on multi-robot systems—covering the value of diversity in robot
teams, controlling microrobot swarms using rotating magnetic dipole fields, and
large sensors with adaptive shape using micro-aerial vehicles. The session also
included a paper on smart materials for robotics and the economics of cloud-based
robot motion planning.

The final awards for the blue sky papers were as follows:

First Place: Materials that Make Robots Smart by Nikolaus Correll and Christoffer
Heckman, University of Colorado Boulder
Second Place: Pragmatic-Pedagogic Value Alignment by Jaime F. Fisac, Monica
Gates, Jessica Hamrick, Chang Liu, Dylan Hadfield-Menell, Malayandi Palaniappan,
Dhruv Malik, Shankar Sastry, Tom Griffiths, and Anca Dragan, University of
California Berkeley
Third Place: DART: Diversity-enhanced Autonomy in Robot Teams by Nora
Ayanian, University of Southern California Autonomous Agents in the Wild:
Human Interaction Challenges by Laura Major and Caroline E Harriott, Draper
Labs

x Preface



After the symposium, a one-day workshop was organized in Santiago on the
campus of the Pontificia Universidad Cat�olica de Chile for all researchers, graduate,
and undergraduate students of the local universities. The day was divided into four
blocks of talks by leading experts and two blocks of spotlight presentations made
on recent developments followed by interactive sessions. The first block of talks
covered topics related to human–robot collaboration and interaction including the
talks on interaction control by Sami Haddadin, engagement of patients in therapy
with wearable technologies by Marcie O’Malley, a comparative overview of robot
and human manipulation by Matthew Mason, and a look at the evolution and
ongoing developments on human–robot collaboration by Oussama Khatib. The
second group of talks revolved around robot design and application challenges with
a presentation on unified digital human and humanoid motion synthesis for product
design and evaluation, ongoing humanoid and aerial robot development and
applications by Masayuki Inaba, and recent developments and trends in agricultural
robotics by George Kantor. The third group of talks focused on perception and
sensing topics. It included a talk by Gregory Hager on teaching robots using
computer vision techniques, a presentation on face recognition in challenging
low-quality images by Domingo Mery, and a talk on recent advances in random
finite sets applied to robotic navigation and tracking by Martin Adams. The fourth
block of talks was concerned with dynamics and planning. The talks covered topics
on non-Cartesian task representation in dynamic environments by Darius Burschka,
motion planning for many arms and objects by Kostas Bekris, mobile manipulator
challenges in agriculture and mining by Miguel Torres and applications of
sampling-based motion planning by Nancy Amato. The spotlights covered topics
ranging from medical applications and learning to manipulation and control. With a
participation of more than 100 undergraduate students from the different local
universities, and 20% of the talks given by the Chilean researchers, the workshop
was an intense day that covered current challenges and a diversity of existing ideas.

In closing, we would like to acknowledge the help and support of everyone who
contributed to the organization of ISRR. We would like to especially acknowledge
our sponsors which included: Siemens, Honda Research Institute, Franka Emika,
Automatica, Godelius, the National Science Foundation, the Computing Community
Consortium, and the International Federation of Robotics Research.

Urbana, USA Nancy M. Amato
General Chair

Baltimore, USA Greg Hager
General Chair

College Station, USA Shawna Thomas
Review Chair

Santiago, Chile Miguel Torres-Torriti
May 2019 Local Arrangements Chair
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Controlling Homogeneous Microrobot
Swarms In Vivo Using Rotating Magnetic
Dipole Fields

Jake J. Abbott and Henry C. Fu

Biomedical “microrobots”, which are typically conceived as simple microstructures
with no actual computational intelligence on board, can be functionalized to perform
targeted therapy in the body such as chemotherapy or hyperthermia [10, 14]. The
majority of the work on biomedical microrobots has focused on magnetic swimmers
and screws that use a chiral structure (e.g., a helix) to convert magnetic torque gen-
erated by a rotating magnetic field into forward propulsion, although we have shown
that achiral structures can also be propelled in the same fashion [3]. This method of
propulsion compares favorably to other methods of magnetic propulsion [1].

Biomedical applications will likely require the control of a large number of micro-
robots (i.e., a swarm) to accomplish a therapeutic task. However, this is difficult for
two reasons. First, the entire swarmwill be subject to some globally appliedmagnetic
field, and the distances between individual microrobots will be small compared to
their distances from the field-generation source, resulting in them experiencing very
similar magnetic fields to each other. Second, for clinical use it may be unrealistic to
assume that each microrobot can be individually localized; rather, a medical image
will show a swarm of microrobots as a blob in the image [13].

To date, research on the control of multiple magnetic microrobots has either con-
sidered a small set that are individually localized [5, 6], or a swarm that is controlled
as an aggregate unit with no ability to differentiate microrobots [13], or a swarm in
which microrobot heterogeneity is required for differentiation [2, 15]. No prior work
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has proposed a solution for the comprehensive control of a swarm of batch-fabricated
homogeneous microrobots, a likely scenario for practical realization.

In this paper, we propose two ways to think about controlling a swarm of homo-
geneous microrobots in vivo. We can treat the swarm as an object to be manipulated,
and perform basicmanipulation primitives on the swarm such as “move the aggregate
swarm to a new location,” “spread out the swarm,” “gather the swarm together,” or
“split the swarm into smaller swarms and move them to separate locations.” Alterna-
tively, we can directly control the concentration field of the microrobots throughout a
volume of interest. We will describe how the unique properties of rotating magnetic
dipole fields can be utilized to make both of these strategies possible.

Our group has put significant effort into characterizing and utilizing magnetic
dipole fields due to their numerous desirable properties, first and foremost being
that they have a simple analytic representation that lends itself to analysis and real-
time computation. Dipole fields are generated by spherical permanent magnets,1 and
the fields generated by certain other permanent-magnet geometries2 and specialized
electromagnetic sources3 can be accurately approximated by the dipole model at
clinically realistic distances. It is easy to conceive of a clinical scenario in which
the patient is surrounded by one or more relatively small dipole sources in close
proximity to the location of interest, as opposed to designing a large one-size-fits-all
system into which the patient is placed (which is typical in prior work).

A magnetic dipole moment m generates a field h at each point p (with respect to
the dipole), which is described by the point-dipole equation:

h = 1

4π‖ p‖3
[
3 p̂ p̂T − I

]
m = 1

4π‖ p‖3 Hm (1)

We see that the magnetic field is nonlinear with respect to position, with a strength
that decays rapidly from the source as ∼‖ p‖−3, but the field is linear with respect
to the dipole itself. We can use H to capture the shape of the dipole field, which is
invariant to distance from the source.4

We showed in [8] that if a dipolemoment is rotated about, and orthogonal to, some
axis ω̂m , then the field at any given point in space will rotate about, and orthogonal to,
some axis ω̂h , with the same period. The inverse problem was also solved (i.e., How
should we rotate the dipole to achieve some desired ω̂h at some desired location?):

1We have developed a spherical-permanent-magnet robotic end-effector capable of continuous
singularity-free rotation of the spherical magnet about any axis [17].
2We show in [11] that the fields of cubic and certain cylindrical permanentmagnets—which are easy
to fabricate (and purchase in variety of sizes), fixture, andmanipulate—are accurately approximated
by the dipole model not far outside of their minimum bounding sphere.
3We developed an electromagnetic source called the Omnimagnet, comprising three mutually or-
thogonal coils with a common soft-magnetic spherical core, all in a cubic package [12]. The Omni-
magnet was optimized such that its field is accurately approximated by the dipole model just outside
of its minimum bounding sphere.
4We use the “hat” notation to describe unit-normalized vectors (e.g., p̂ ≡ p/‖ p‖), as well as
pointing-direction vectors that are inherently unit length (e.g., ω̂).
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Fig. 1 A magnetic dipole moment m, with instantaneous field lines shown, is rotated about axis
ω̂m , with swarms of microrobots shown at different locations. The microrobots are shown simply as
rotating magnets without any chiral structure, with their respective ω̂h vectors shown. At locations
along the axis of ω̂m , swarms are driven straight while either a gathering or b spreading the swarm.
At a location that is orthogonal to ω̂m such as (c), the swarm does not gather/spread, but it is steered.
At general locations, such as shown in (d), the swarm will experience both gathering/spreading and
steering

ω̂h = ̂H−1ω̂m ⇐⇒ ω̂m = ̂H ω̂h (2)

where H−1 = (H − I )/2 is always well conditioned. The body of a microrobot
located at p will tend to align with ω̂h as its magnetic element synchronously rotates
with h, and ω̂h will become the microrobot’s “forward” direction.

If we consider a swarm ofmicrorobots at some nominal position (e.g., the centroid
of the swarm), we observe that each microrobot will be at a different p and will thus
experience a different ω̂h . As shown in Fig. 1, there will be locations in the rotating
dipole field inwhichwe can conceive of basic swarmmanipulation primitives, such as
spreading out or gathering together while moving forward, or steering while moving
forward. If the patient is surrounded by multiple sources, or a single moving source,
such motions will be possible in arbitrary directions.

The phenomena that we have discussed become less pronounced as we consider
locations with increasing distance from the dipole source. It is likely that we will
need to utilize nonholonomic control techniques to amplify the phenomena. For
example, consider the scenario depicted in Fig. 2 in which two dipole sources are
on opposite sides of the swarm. By alternating between each source performing the
manipulation primitive of Fig. 1b, the swarm can be made to effectively spread out in
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Fig. 2 As the rotating dipole source is alternated (images going from left to right), the swarm can
be made to spread out without significant net motion of the centroid
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Fig. 3 In [9] we showed how the step-out regime can be exploited to differentiate heterogeneous
microrobots in a rotating uniform field. The same concepts can be applied to the homogeneous
microrobots in a nonuniform dipole field of interest here. Note: the step-out frequencies are not
shown to scale with the microrobot locations depicted

place, without a net movement of the centroid. An analogous gathering of the swarm
can be visualized by considering the microrobots in Fig. 1a.

Until this point, we have been assuming that all of the microrobots are rotating
synchronously with the applied field. However, that need not be the case. Consider
the two microrobots swimming along the ω̂m axis in Fig. 1b. If they are both close
enough to the dipole source that the magnetic field is sufficiently strong to keep
them both rotating synchronously with the field, then they will move forward at the
same average velocity. However, the farther microrobot will be the first to reach the
“step-out” regime in which the field is too weak to generate synchronous rotation,
at which point the microrobot’s average forward velocity will decrease. As shown
in Fig. 3, this yields a forward velocity v in the ω̂h direction that transitions between
linear and nonlinear dependence on the field rotation frequency ‖ωm‖ (in general, the
forward velocity is a function of both ‖ωm‖ and p). Consider the inset in Fig. 3: this
phenomenonwill enable the closermicrorobot to catch upwith the farther, effectively
creating another means to gather the swarm. An analogous spreading of the swarm
can be visualized by considering the microrobots in Fig. 1a.

A general description of the behavior of a population of microrobots can be con-
structed as follows. Consider a concentration (density) field of microrobots ρ at some
time. Then, since at each position p, microrobots move with velocity magnitude v in
direction ω̂h , we can interpret vω̂h as the standard velocity field for microrobots used
in continuum fluid mechanics [7]. Therefore, for example, by number conservation
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the density profile evolves in time as

∂ρ

∂t
= −∇ · (ρvω̂h). (3)

This formalism can be directly related to the primitives in Fig. 1. To determine
if a local population of microrobots is spreading or gathering, one would examine
the rate of change in density moving with that local population, i.e., the material
derivative of the density:

Dρ

Dt
≡ ∂ρ

∂t
+ (vω̂h · ∇)ρ = −ρ∇ · (vω̂h). (4)

A positive/negative value of Dρ

Dt indicates an increasing/decreasing population con-
centration and corresponds to gathering/spreading of microrobots. Steering of mi-
crorobots is determined by the rate of change of their orientation (ω̂h) moving with
the local population:

Dω̂h

Dt
≡ ∂ω̂h

∂t
+ (

vω̂h · ∇)
ω̂h . (5)

Themeasures in Eqs. 4 and 5 can be combined to describe all of the scenarios depicted
in Fig. 1.

Alternatively, time integration of Eq.3 suffices to solve the forward problem of
how a swarm described by an initial density ρ would behave for a given time-
sequence of dipole strengths and rotation rates, which also enables motion planners
that do not rely on primitives.We can conceptualize such amotion planner as follows:
(1) Voxelize the given volume, with each of the voxels having a desired concentration
of microrobots. From these values, compute the desired centroid and variance of the
swarm. (2) Using medical images, estimate the current concentration in each voxel,
as well as the current centroid and variance. (3) Construct an objective function that
penalizes a combination of the errors in the quantities found in Step 2. This objective
function would likely work by driving the centroid and variance of the swarm in the
correct direction initially, and then fine-tuning the individual voxel concentrations.
(4) For each of the dipole sources, determine the value of ω̂m that would minimize
the objective function locally. (5) From the set of ω̂m vectors found in Step 4, choose
the one that minimizes the objective function and implement it for a short period of
time. (6) Go back to Step 2 and iterate until convergence.

In this paper we have described kinematic models for how rotating dipole fields
can be utilized in the control of in vivo microrobot swarms. However, we did not
model the transient as a microrobot aligns itself with a rapid change in ω̂h , nor did
we model other magnetic and fluidic interactions that will certainly exist [4, 16,
18]. In light of this fact, the swarm-manipulation techniques that we have described
should be thought of as feedforward models for the purpose of control, and as pro-
cess models for the purpose of estimation, but with the knowledge that closed-loop
feedback of the swarm via medical imaging will be required to ensure the swarm
keeps evolving as desired. As we learn more about the unmodeled effects, it may be
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possible to incorporate them into improved kinematicmodels.Assumingmicrorobots
are not deployed in a flowing environment (e.g., the bloodstream),we anticipate inter-
microrobot magnetic interactions to be themost significant disturbance to our model.
When might these magnetic interactions ruin our model of control by a dipole field?
In typical cases we estimate that a microrobot’s magnetic field is comparable to the
external field at∼2magnetic-element lengths, i.e., for a quite dense swarm.Although
even small magnetic attraction can lead to (irreversible) aggregation, for less dense
swarms our methods might be used to prevent such aggregation.
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DART: Diversity-Enhanced Autonomy in
Robot Teams

Nora Ayanian

1 Introduction

The field of multi-robot systems (MRS) is growing at a rapid pace. Research in MRS
spans many different areas, including automated delivery [1–3], surveillance [4],
and disaster response [5, 6]. There have also been many successful demonstra-
tions of increasing numbers of robots [7–12]. MRS have also been successfully
deployed in the field including in warehousing [13], manufacturing [14], and enter-
tainment [15]. While these outcomes show the promise of MRS, the environments
in which MRS have been successful are highly controlled, and some are highly
instrumented, enabling precise tuning of controllers and nearly perfect knowledge
of environmental conditions.

Many environments where MRS could be beneficial are not highly controlled or
equipped with the extensive infrastructure often necessary to coordinate large teams
of robots with state-of-the-art algorithms. For example, containing wildfires, search-
ing collapsed buildings, patrolling borders, monitoring infrastructure, and containing
oil spills all occur in highly dynamic and unique environments (no two collapsed
buildings are the same), with high uncertainty and little control over other non-robot
agents in the environment. One of the most desirable benefits of MRS is robustness,
wherein robots can compensate for loss of capabilities by relying on other robots in
the team. However, the uncertainty of many real-world environments renders current
algorithms, even those designed for robustness, ineffectual. The reason for this is not
due to limitations in robot hardware, but in how multi-robot problems are solved.
Many controllers are so specialized and optimized for specific capabilities and con-
ditions that they cannot cope with uncertainty. Thus, the true benefits of robustness
in teams of robots have yet to be achieved.
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2 Motivation

In disaster response alone, the potential impact of autonomous MRS is substantial:
60,000 people die each year in natural disasters [16]. The company DJI announced
that one properly equipped drone can find a missing person more than five times
faster than traditional search methods [17]. This makes robots an ideal tool for
disaster response.

However,most robots used in search and rescue today are teleoperated [18], requir-
ing trained operators whichmay not be nearby. Disaster response that is autonomous,
without the need for an expert operator, can reduce response time and savemore lives,
especially when a trained operator may be hours away.

The potential applications of autonomousMRS go well beyond disaster response,
including military, agriculture, transportation, manufacturing, and fulfillment appli-
cations. However, current solutions for MRS have not successfully transitioned from
controlled environments such as laboratories or warehouse facilities to the inher-
ently high uncertainty in these complex environments. Without infrastructure that
provides communication and localization, and without knowledge of or control over
the environment, current state-of-the-art methods fail.

While the field of MRS has advanced significantly, the same problem-solving
paradigm has remained. First, the problem is defined. Next, complexity is reduced
by making several assumptions to simplify the problem, such as terrain and commu-
nication range. Finally, an optimal solution to that specific problem is designed and
applied to all the robots in the team. This paradigm (Fig. 1a) limits the capability of
MRS to cope with real-world environments. The solutions are brittle, as the assump-
tions made are easily invalidated and the optimized controller is not designed for real
environments. In the best case, the controller is able to overcome these challenges,
but it is not a good solution to the problem. In the worst case, the controller cannot
cope, causing mission failure, loss of high-value assets, and casualties; after all, if
the same failed controller is applied to all robots, all of them will fail.

Problem

Solution

Assumptions

(a) Curent MRS Paradigm

Problem

Solution 
3

Solution 
1

Solution 
2

Solution 
4

Solution 
5

Different 
Assumptions

(b) Proposed MRS Paradigm

Fig. 1 a The current MRS problem-solving paradigm is linear, applying the same solution to all
robots. b The proposed novel paradigm takes advantage of diversity in controllers to handle various
scenarios


