
Advances in Computer Vision and Pattern Recognition

Paul L. Rosin
Yu-Kun Lai
Ling Shao
Yonghuai Liu   Editors

RGB-D Image 
Analysis and 
Processing



Advances in Computer Vision and Pattern
Recognition

Founding Editor

Sameer Singh, Rail Vision, Castle Donington, UK

Series Editor

Sing Bing Kang, Zillow, Inc., Seattle, WA, USA

Advisory Editors

Horst Bischof, Graz University of Technology, Graz, Austria
Richard Bowden, University of Surrey, Guildford, Surrey, UK
Sven Dickinson, University of Toronto, Toronto, ON, Canada
Jiaya Jia, The Chinese University of Hong Kong, Shatin, New Territories,
Hong Kong
Kyoung Mu Lee, Seoul National University, Seoul, Korea (Republic of)
Yoichi Sato, University of Tokyo, Tokyo, Japan
Bernt Schiele, Max Planck Institute for Computer Science, Saarbrücken,
Saarland, Germany
Stan Sclaroff, Boston University, Boston, MA, USA



More information about this series at http://www.springer.com/series/4205

http://www.springer.com/series/4205


Paul L. Rosin • Yu-Kun Lai •

Ling Shao • Yonghuai Liu
Editors

RGB-D Image Analysis
and Processing

123



Editors
Paul L. Rosin
School of Computer Science
and Informatics
Cardiff University
Cardiff, UK

Yu-Kun Lai
School of Computer Science
and Informatics
Cardiff University
Cardiff, UK

Ling Shao
IEEE
University of East Anglia
Norwich, UK

Yonghuai Liu
Department of Computer Science
Edge Hill University
Ormskirk, UK

ISSN 2191-6586 ISSN 2191-6594 (electronic)
Advances in Computer Vision and Pattern Recognition
ISBN 978-3-030-28602-6 ISBN 978-3-030-28603-3 (eBook)
https://doi.org/10.1007/978-3-030-28603-3

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-28603-3


Preface

Colours become weaker in proportion to their distance from
the person who is looking at them.
Leonardo da Vinci, Treatise on Painting, 1651.

Leonardo da Vinci used aerial perspective, as defined above, to good effect.
Nevertheless, for thousands of years, artists have had to struggle to capture depth in
their images. It was only with the introduction of RGB-D sensors in recent years
that capturing depth along with colour has become possible. Moreover, Microsoft’s
release of the immensely successful Kinect for the mass consumer market in 2010
was literally a game changer, making real-time RGB-D cameras more affordable,
accessible, widespread, mainstream and more fun! While the Kinect was designed
for home game controller applications, researchers and practitioners quickly rea-
lised that its ability as a natural user interface could be deployed in many other
scenarios. And so today, RGB-D cameras are ubiquitous, ranging from expensive
industrial scanners to webcams and smartphones.

Recent years have continued to see technical developments on RGB-D sensors,
both in terms of hardware and software. Data capture is now relatively mature, but
understanding and analysing the data remains challenging. Not surprisingly, giving
its overwhelming success in many areas, deep learning has also been applied to
RGB-D; not only is it effective at processing RGB-D images, but is increasingly
used for the challenging task of monocular depth estimation, i.e. creating the -D
directly from a single standard (i.e. passive) RGB image. However, despite all these
advances, there remain many challenges, ensuring the continuation of active
research and development in RGB-D. At the data acquisition stages (depending on
which sensing technology is used), examples are coping with general scenes and
unconstrained conditions, reflections, transparent surfaces and background light.
Subsequent processing typically needs to be performed to remove noise, replace
missing depth values and merge sequential RGB-D scans or multiple RGB-D
camera outputs to reconstruct objects and scenes. Mid-level processing then con-
sists of tasks such as segmentation and object detection, which remain active
research topics both within the RGB-D community as well as the general computer
vision community.
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This book is structured to reflect such a breakdown into RGB-D data acquisition
and processing followed by RGB-D data analysis, which then sets the scene for the
final section on RGB-D applications. A set of chapters has been assembled to
provide a thorough introduction to the area, with sufficient technical detail to
prepare the reader for research and development with RGB-D imagery.

The future will continue to see increasing takeup of RGB-D. The wide avail-
ability of RGB-D sensors means that more data is becoming available, conse-
quently facilitating improvements to be made via machine learning. In addition,
further improvements in both the hardware and software will help extend the range
of possible applications. As RGB-D sensors become smaller and reduce their power
consumption, then emerging uses, that would have been impractical just a few years
ago, are becoming more widespread and mainstream. Some examples are wearable
RGB-D systems (e.g. providing navigation for the visually impaired), face recog-
nition on mobile phones (biometrics), online shopping (e.g. virtual try-on for
clothing), 3D mapping using drones and many more applications in health care,
gaming, industry, etc. The improved capability to capture 3D environment and
shapes also facilitates downstream applications, such as Augmented Reality and 3D
printing.

In the future, RGB-D sensing can continue to draw from developments in the
core technologies of image processing and computer vision. And just as Leonardo
da Vinci’s inventive mind was forever seeking out new ways of interpreting the
world, we believe researchers will continue to be pushing RGB-D sensing forward
to new approaches and applications in the future.

July 2019 Paul L. Rosin
Cardiff University, Cardiff, UK

Yu-Kun Lai
Cardiff University, Cardiff, UK

Ling Shao
Inception Institute of Artificial Intelligence, Abu Dhabi

United Arab Emirates

Yonghuai Liu
Edge Hill University, Ormskirk, UK
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Part I
RGB-D Data Acquisition and Processing

Part I of this book focuses on RGB-D data acquisition and processing. The two main
approaches for capturing RGB-D images are passive and active sensing. In addition,
with the rise of deep learning, monocular depth estimation has become possible,
and is becoming increasingly popular. For the first two approaches, the images often
have missing values (i.e. holes) which need to be filled, or low-resolution depth
maps which need to be upsampled. RGB-D video enables active depth capture in
which the sensor moves within a static scene, with the individual captures fused
to produce a 3D reconstruction of the scene. Multiple RGB-D cameras can also
be deployed, which facilitates reconstruction of dynamic scenes. Since low-cost
RGB-D sensors will not have top quality data, it is important to consider a metro-
logical analysis of their performance.

An RGB-D camera jointly captures colour and depth images, the latter describing
the 3Dgeometry of the scene. TheRGB-Dacquisition process is described inChap. 1.
Along with the RGB-D image, the second row of images shows the hole mask
indicating missing depth values, as described in Chap. 2. The third row shows a
multiple camera setup using Kinects to capture a performer’s motion (Chap. 7).

http://dx.doi.org/10.1007/978-3-030-28603-3_1
http://dx.doi.org/10.1007/978-3-030-28603-3_2
http://dx.doi.org/10.1007/978-3-030-28603-3_7


Chapter 1
Commodity RGB-D Sensors:
Data Acquisition

Michael Zollhöfer

Abstract Over the past 10 years, we have seen a democratization of range sensing
technology. While previously range sensors have been highly expensive and only
accessible to a few domain experts, such sensors are nowadays ubiquitous and can
even be found in the latest generation of mobile devices, e.g., current smartphones.
This democratization of range sensing technology was started with the release of the
Microsoft Kinect, and since then many different commodity range sensors followed
its lead, such as the Primesense Carmine, Asus Xtion Pro, and the Structure Sensor
fromOccipital. The availability of cheap range sensing technology led to a big leap in
research, especially in the context ofmore powerful static anddynamic reconstruction
techniques, starting from 3D scanning applications, such as KinectFusion, to highly
accurate face and body tracking approaches. In this chapter, we have a detailed look
into the different types of existing range sensors. We discuss the two fundamental
types of commodity range sensing techniques in detail, namely passive and active
sensing, and we explore the principles these technologies are based on. Our focus is
on modern active commodity range sensors based on time of flight and structured
light. We conclude by discussing the noise characteristics, working ranges, and types
of errors made by the different sensing modalities.

1.1 Introduction

Modern conventional color cameras are ubiquitous in our society and enable us to
capture precious memories in a persistent and digital manner. These recordings are
represented as millions of three channel pixels that encode the amount of red, green,
and blue light that reached the sensor at a corresponding sensor location and time.
Unfortunately, color images are an inherently flat 2D representation, since most of
the 3D scene informations is lost during the process of image formation.

M. Zollhöfer (B)
Stanford University, 353 Serra Mall, Stanford, CA 94305, USA
e-mail: zollhoefer@cs.stanford.edu

© Springer Nature Switzerland AG 2019
P. L. Rosin et al. (eds.), RGB-D Image Analysis and Processing,
Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-28603-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28603-3_1&domain=pdf
mailto:zollhoefer@cs.stanford.edu
https://doi.org/10.1007/978-3-030-28603-3_1


4 M. Zollhöfer

(a) Color (b) Depth (c) Phong

Fig. 1.1 An RGB-D camera jointly captures color (a) and depth (b) images. The depth image
encodes the distance to the scene on a per-pixel basis. Green color means that this part of the scene
is close to the camera and red means that it is far away. The Phong shaded image (c) is an alternative
visualization of the 3D geometry

Over the past 10 years, we have seen a democratization of a new class of cameras
that enables the dense measurement of the 3D geometry of the observed scene, thus
overcoming the mentioned limitation of conventional color cameras. These so-called
range or depth sensors perform a dense per-pixel measurement of scene depth, i.e.,
the distance to the observed points in the scene. These measured depth values are
normally exposed to the user in the form of a depth image, which is a 2.5-dimensional
representation of the visible parts of the scene. An RGB-D sensor is the combination
of a conventional color camera (RGB) with such a depth sensor (D). It enables the
joint capture of scene appearance and scene geometry at real-time frame rates based
on a stream of color C and depth images D . Figure1.1 shows an example of such
a color (a) and depth image pair (b). The phong-shaded image (c) is an alternative
visualization of the captured 3D geometry that better illustrates the accuracy of the
obtained depth measurements. Current RGB-D sensors provide a live stream of color
and depth at over 30Hz.

Starting with the Microsoft Kinect, over the past 10 years a large number of
commodity RGB-D sensors have been developed, such as the Primesense Carmine,
Asus Xtion Pro, Creative Senz3D, Microsoft Kinect One, Intel Realsense, and the
Structure Sensor. While previous range sensors [8, 9, 19] were highly expensive and
only accessible to a few domain experts, range sensors are nowadays ubiquitous and
can even be found in the latest generation of mobile devices. Current sensors have a
small form factor, are affordable, and accessible for everyday use to a broad audience.
The availability of cheap range sensing technology led to a big leap in research
[10], especially in the context of more powerful static and dynamic reconstruction
techniques, starting from 3D scanning applications, such as KinectFusion, to highly
accurate face and body tracking approaches. One very recent example is the current
Apple iPhoneX that employs the range data captured by an off-the-shelf depth sensor
as part of its face identification system.

In the following, we review the technical foundations of such camera systems.
We will start by reviewing the Pinhole Camera model and perspective projections.
Afterward, we will introduce the ideas behind both passive as well as active depth
sensing approaches and explain their fundamental working principles. More specifi-



1 Commodity RGB-D Sensors: Data Acquisition 5

cally, we will discuss how commodity RGB-D sensors based on Stereo Vision (SV),
Structured Light (SL), and Time of Flight (ToF) technology work. We conclude by
comparing the different depth sensing modalities and discussing their advantages
and disadvantages.

1.2 Projective Camera Geometry

We start by reviewing thePinhole Cameramodel, which is a simplified version of the
projective geometry of real-world cameras, since it is a basic building block for many
types of depth sensors. An illustration of the perspective projection defined by the
PinholeCameramodel can be found in Fig. 1.2.A3Dpoint v = (vx , vy, vz)T ∈ R

3 in
camera space is mapped to the sensor plane (green) based on a perspective projection
[6]. The resulting point p = (px ,py)

T ∈ R
2 on the sensor depends on the intrinsic

properties of the camera, i.e., its focal length f and the principal point c = (cx , cy)T .
Let us first assume that the principal point is at the center of the sensor plane, i.e.,
c = (0, 0)T . In the following, we show how to compute the 2D position p on the
image plane given a 3D point x and the intrinsic camera parameters. By applying
the geometric rule of equal triangles, the following relation can be obtained, see also
Fig. 1.2 for an illustration:

px

f
= vx

vz
. (1.1)

With the same reasoning, a similar relation also holds for the y-component. Reorder-
ing and solving for p leads to the fundamental equations of perspective projection
that describe how a 3D point v is projected to the sensor plane:

px = f · vx
vz

, (1.2)

py = f · vy
vz

. (1.3)

The same mapping can be more concisely represented in matrix-vector notation by
using homogeneous coordinates. Let K be the intrinsic camera matrix:

K =
⎡
⎣
f s cx
0 f cy
0 0 1

⎤
⎦ . (1.4)

Here, s is an additional skew parameter [7] and c specifies the principal point, which
we assumed to be zero so far. Given the definition of K, the perspective projection
can be represented as p̂ = Kv, where p̂ ∈ R

3 are the homogeneous coordinates of
the 2D point p. The intrinsic camera parameters can be obtained based on camera
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(a) 3D View (b) Side View

Fig. 1.2 Perspective camera geometry. The image sensor is shown in green. The Pinhole Camera
model describes how a point v ∈ R

3 is mapped to a location p ∈ R
2 on the sensor. The z-axis is the

cameras viewing direction and the x-axis is the up-vector. The perspective projection is defined by
the camera’s focal length f and the principal point c. The focal length f is the distance between
the sensor plane and the origin o of the camera coordinate system

calibration routines [3, 18]. The Pinhole Camera model is one of the basic building
blocks of range sensing approaches. It makes a few simplifying assumptions, such
as that the lens is perfect, i.e., that there are no lens distortions. Lens distortion [16]
can be tackled in a preprocessing step by calibrating the camera.

1.3 Passive Range Sensing

Similar to human 3D vision, passive range sensing is implemented based on the input
of two or multiple [15] conventional monochrome or color cameras. Here, the term
“passive” refers to the fact that passive sensors do not modify the scene to obtain the
scene depth. The special case of obtaining depth measurements based on only two
cameras [17] is known as stereo or binocular reconstruction. These systems are quite
cheap and have a low-power consumption, since they are based on two normal color
cameras. The basic setup of such a stereo camera system is illustrated in Fig. 1.3.

Scene depth can be estimated based on a computational process called triangu-
lation. The first step in the estimation of scene depth is finding correspondences
between the two camera views, i.e., pixels in the two images that observe the same
3D position in the scene. From these two corresponding points, the 3D position of
the point that gave rise to these two observations can be computed via triangula-
tion, i.e., by intersecting two rays cast through the detected point correspondences.
Finding corresponding points between two different camera views is, in general, a
highly challenging problem. Normally, the search is based on local color descriptor
matching or on solving an optimization problem. One way to simplify this search
is by exploiting the epipolar geometry between the two camera views. This reduces
the 2D search problem to a 1D search along a line. Still, solving the correspondence
problem requires sufficient local intensity and color variation in the recorded images,



1 Commodity RGB-D Sensors: Data Acquisition 7

Fig. 1.3 Stereo reconstruction. Similar to human vision, stereo approaches employ two cameras
to obtain observations of the scene from two slightly different viewpoints. In the first step of stereo
reconstruction, the corresponding points in both images are computed, i.e., pixels of the images that
observe the same 3D point in the scene. Based on these matches, the 3D position can be found via
triangulation, i.e., by intersecting two rays cast through the detected point correspondences

i.e., enough features. Therefore, passive stereo reconstruction techniques work well
in highly textured regions of the scene, but the search for correspondences might fail
in featureless regions, which can result in missing depth information. Active depth
sensing approaches aim at alleviating this problem.

1.4 Active Range Sensing

Besides passive range sensing approaches, such as the stereo cameras discussed in
the last section, there are also active techniques for range sensing. Here, the term
“active” refers to the fact that these sensors actively modify the scene to simplify
the reconstruction problem. There are two classes of active approaches [13], which
are based on different working principles, the so-called Time of Flight (ToF) and
Structured Light (SL) cameras. Structured Light cameras project a unique pattern
into the scene to add additional features for matching and thus simplify feature
matching and depth computation. Therefore, they address the challenges passive
reconstruction approaches face with featureless regions in the scene. On the other
hand, Time of Flight cameras emit a (potentially modulated) light pulse and measure
its round trip time or phase shift. Since Time-of-Flight cameras do not rely on color
or texture to measure distance, they also do not struggle with texture-less scenes. In
both of the cases, modern commodity sensors normally work in the infrared (IR)
domain to not interfere with human vision and enable the simultaneous capture of
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scene appearance. In the following, we discuss both of these technologies in more
detail and highlight their advantages and disadvantages.

1.4.1 Time-of-Flight Sensors

Besides passive binocular vision, many animals have implemented active range sens-
ing approaches, e.g., the sonar used by whales is based on measuring the round trip
time of a sound wave. As the name already suggests, the basic working principle
of a Time-of-Flight camera is based on measuring the time of flight of an emitted
light pulse [5]. More specifically, a light pulse is sent out from an emitter, it then
traverses the scene until it hits an object and is reflected back to the Time-of-Flight
camera, where a sensor records its arrival. In general, there are two different types
of Time-of-Flight cameras.

The first class, Pulsed Time-of-Flight cameras, measures the round trip time of a
light pulse based on rapid shutters and a clock. For Pulsed Time-of-Flight cameras,
due to the constant known speed of light, the round trip distance can be computed by
measuring the delay between sending and receiving the light pulse. The scene depth
can then be computed as half of the measured round trip distance:

Depth = Speed of Light × Round Trip Time

2
. (1.5)

There are two types of pulsed Time-of-Flight cameras. Point-wise Time-of-Flight
sensors use a pan-tilt mechanism to obtain a time sequence of point measurements.
This technique is also known as Light Detection And Ranging (LiDAR). Matrix-
based Time-of-Flight cameras estimate a complete depth image for every time step
based on a CMOS or CCD image sensor. They employ light pulses generated by a
laser that are a few nanoseconds apart. Current commodity sensors belong to the sec-
ond category, while Light Detection And Ranging is more employed for long-range
outdoor sensing, e.g., in the context of self-driving cars. Due to the immensely high
speed of light of approximately 300,000km per second, the used clock for measur-
ing the travel time has to be highly accurate, otherwise the depth measurements are
imprecise.

The second type of Time-of-Flight camera uses a time-modulated light pulse and
measures the phase shift between the emitted and returning pulse. For Modulated
Time-of-Flight cameras, the light pulse is normally modulated by a continuous wave.
A phase detector is used to estimate the phase of the returning light pulse. Afterward,
the scene depth is obtained by the correlation between phase shift and scene depth.
Multi-frequency techniques can be employed to further improve the accuracy of
the obtained depth measurements and the effective sensing range of the cameras.
Examples of current commodity Time-of-Flight cameras that are based onmodulated
time of flight include the Microsoft Kinect One and the Creative Senz3D.
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1.4.2 Structured Light Sensors

Structured light sensing, similar to stereo reconstruction, is based on triangulation.
The key idea is to replace one of the two cameras in a stereo system by a projector.
The projector can be interpreted as an inverse camera. By projecting a known unique
structured pattern [14] into the scene, additional artificial features are introduced into
the scene. This drastically simplifies correspondencematching, thus the quality of the
reconstruction does not depend on the amount of natural color features in the scene.
Some sensors, such as the Microsoft Kinect, project a unique dot pattern [4], others
project a temporal sequence of black and white stripes. Structured Light cameras
are widespread and often used in research. The commodity sensors of this category
normally work in the infrared domain to not interfere with human vision and enable
the simultaneous capture of an additional color image. Examples of commodity
sensors based on this technology are the Microsoft Kinect, Primesense Carmine,
Asus Xtion Pro, and Intel Realsense. Actually, the Intel Realsense is a hybrid of a
passive and active sensing approach. One problem of structured light cameras is that
the sun’s infrared radiation can saturate the sensor, making the pattern indiscernible.
This results inmissing depth information. The Intel Realsense alleviates this problem
by combining active and passive vision. To this end, it combines two infrared cameras
with one infrared projector that is used to add additional features to the scene. If
the projector is overpowered by the ambient scene illumination the Intel Realsense
defaults to standard stereo matching between two captured infrared images. Normal
working ranges for such commodity sensors are between 0.5 and 12m. Similar to
stereo systems, the accuracy of such sensors directly depends on the distance to the
scene, i.e., the accuracy degrades with increasing distance. The captured depth and
color images of RGB-D sensors are not aligned, since the infrared and the color
sensor are at different spatial locations, but the depth map can be mapped to the color
image if the position and orientation of the two sensors is known.

1.5 Comparison of the Sensing Technologies

So far, we have discussed the most prevalent technologies for obtaining depth mea-
surements.More specifically,wehad a look at passive stereo reconstruction and active
structured light as well as time-of-flight sensing. These three types of approaches
are based on different physical and computational principles and thus have different
advantages and disadvantages. For example, they have differing working ranges and
noise characteristics. It is important to understand the advantages and disadvantages
of the different technologies to be able to pick the right sensor for the application
one wants to build. In the following, we compare the discussed three technologies in
detail.
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1.5.1 Passive Stereo Sensing

Stereo reconstruction is based on finding correspondences between points observed
in both camera views and triangulation to obtain the depth measurements. Thus, the
quality and density of the depth map directly depends on the amount of color and
texture features in the scene. More specifically, the quality and density of the depth
measurements degrades with a decreasing amount of available features. One extreme
case, that is often found in indoor scenes, are walls of uniform color, which can not
be reconstructed, since no reliable matches between the left and right camera can
be found. Similar to uniformly colored objects, also low light, e.g., scanning in a
dark room, can heavily impact the ability to compute reliable matches. Repeated
structures and symmetries in the scene can lead to wrong feature associations. In this
case, multiple equally good matches exist and sophisticated pruning strategies and
local smoothness assumptions are required to select the correct match. Passive stereo
is a triangulation-based technique. Therefore, it requires a baseline between the two
cameras, which leads to a larger form factor of the device. Similar to all approaches
based on triangulation, the quality of the depth measurements degrades with increas-
ing distance to the scene and improves for larger baselines. The noise characteristics
of stereo vision systems have been extensively studied [2]. One significant advantage
of passive stereo systems is that multiple devices do not interfere with each other.
This is in contrast to most active sensing technologies. In addition, stereo sensing
can have a large working range if a sufficiently large baseline between the two cam-
eras is used. Since stereo systems are built from off-the-shelf monochrome or color
cameras, they are cheap to build and are quite energy efficient. One great use case
for passive stereo sensing is outdoor 3D scene reconstruction.

1.5.2 Structured Light Sensing

Active range sensing techniques, such as structured light sensing, remove one of
the fundamental problems of passive approaches, i.e., the assumption that the scene
naturally contains a large amount of color or texture features. This is made possible,
since the projected pattern introduces additional features into the scene which can be
used for feature matching. For example, this allows to reconstruct even completely
uniformly colored objects, but comes at the price of a higher energy consumption
of the sensor, since the scene has to be actively illuminated. In addition, structured
light sensors do not work under strong sunlight, since the sensor will be oversatu-
rated by the sun’s strong IR radiation and thus the projected pattern is not visible.
Due to the projection of a structured pattern, a few problems might occur: If the
projected pattern is partially occluded from the sensor’s viewpoint, which is espe-
cially a problem at depth discontinuities in the scene, the depth cannot be reliably
computed. Normally, this leads to missing depth estimates around the object silhou-
ette, which leads to a slightly “shrunken” reconstruction. This also complicates the
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reconstruction of thin objects. The projected pattern might also be absorbed by dark
objects, reflected by specular objects, or refracted by transparent objects, all of these
situations might lead to wrong or missing depth estimates. Active structured light
depth sensing technology has a limited working range, normally up to 15m, since
otherwise too much energy would be required to consistently illuminate the scene.
The noise characteristics of structured light sensors have been extensively studied
[11, 12]. Using multiple sensors at the same timemight result in a loss of depth accu-
racy due to interference of multiple overlapping patterns, since the correspondences
can not be reliably computed. Geometric structures that are smaller than the distance
between the projected points are lost. One great use case for structured light sensing
is the face identification system of the current Apple iPhone X.

1.5.3 Time-of-Flight Sensing

In contrast to stereo vision and structured light, Time-of-Flight cameras are based
on a different physical measurement principle, i.e., measuring time of flight/phase
shift of a light pulse instead of triangulation. This leads to a different set of failure
modes and drastically different noise characteristics. One of the biggest artifacts in
time-of-flight depth images are the so-called “flying pixels” at depth discontinuities.
Flying pixels have depth values between the fore- and background values that exist
in reality. They appear if the light pulse is reflected back by multiple parts of the
scene and then measured at the same sensor location. This is related to the much
wider class of multi-path interference effects ToF cameras suffer from, i.e, multiple
indirect light paths being captured by the sensor. Examples of this are multi-path
effects caused by materials that exhibit reflections or refractions, e.g., mirrors or
glass. Even in relatively diffuse scenes, indirect bounces of the light pulse might
influence the reconstruction quality. Dark materials do not reflect light. Therefore,
no returning light pulse can be measured which leads to holes in the depth map.
Similar to other active sensing modalities, Time of Flight suffers from interference
between multiple sensors if they use the same phase shift. This can be alleviated by
using different modulation frequencies for each sensor. Similar to active Structured
Light, Time-of-Flight depth sensing struggles under strong sunlight. Since Time-of-
Flight cameras require a certain integration time to obtain a good signal-to-noise
ratio, fast motions lead to motion-blurred depth estimates. The noise characteristics
of Time-of-Flight cameras have been extensively studied [1]. One great use case
for time-of-flight sensors is body tracking in the living room to enable immersive
gaming experiences.
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1.6 Conclusion and Outlook

We had a detailed look into the different types of existing range sensors. All depth
sensing techniques have their own advantages and disadvantages and it is important
to pick the right sensor for the application one wants to build. In the future, higher
resolution sensors and projectors will further help to increase the achievable quality
of depth measurements. On the software side, deep learning techniques have the
potential to further improve the captured depth data by learning depth denoising,
upsampling, and super-resolution. This will lead to an even wider democratization
of range sensing technology and many more compelling new use cases.
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Chapter 2
Dealing with Missing Depth: Recent
Advances in Depth Image Completion
and Estimation

Amir Atapour-Abarghouei and Toby P. Breckon

Abstract Even though obtaining 3D information has received significant attention
in scene capture systems in recent years, there are currently numerous challenges
within scene depth estimation which is one of the fundamental parts of any 3D
vision system focusing on RGB-D images. This has lead to the creation of an area of
research where the goal is to complete the missing 3D information post capture. In
many downstream applications, incomplete scene depth is of limited value, and thus,
techniques are required to fill the holes that exist in terms of both missing depth and
colour scene information. An analogous problem exists within the scope of scene
filling post object removal in the same context. Although considerable research has
resulted in notable progress in the synthetic expansion or reconstruction of missing
colour scene information in both statistical and structural forms, work on the plausi-
ble completion of missing scene depth is contrastingly limited. Furthermore, recent
advances in machine learning using deep neural networks have enabled complete
depth estimation in a monocular or stereo framework circumnavigating the need for
any completion post-processing, hence increasing both efficiency and functionality.
In this chapter, a brief overview of the advances in the state-of-the-art approaches
within RGB-D completion is presented while noting related solutions in the space
of traditional texture synthesis and colour image completion for hole filling. Recent
advances in employing learning-based techniques for this and related depth estima-
tion tasks are also explored and presented.
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2.1 Introduction

Three-dimensional scene understanding has received increasing attention within
the research community in recent years due to its ever-growing applicability and
widespread use in real-world scenarios such as security systems, manufacturing and
future vehicle autonomy. As mentioned in Chap.1, a number of limitations pertain-
ing to environmental conditions, inter-object occlusion and sensor capabilities still
remain despite the extensive recent work and many promising accomplishments of
3D sensing technologies [33, 134, 149, 158]. It is due to these challenges that a novel
area of research has emerged mostly focusing on refining and completing missing
scene depth to increase the quality of the depth information for better downstream
applicability.

Although traditional RGB image inpainting and texture synthesis approaches have
been previously utilized to address scene depth completion [7, 39, 64], challenges
regarding efficiency, depth continuity, surface relief and local feature preservation
have hindered flawless operation against high expectations of plausibility and accu-
racy in 3D images [4]. In this vein, this chapter provides a brief overview of the recent
advances in scene depth completion, covering commonly used approaches designed
to refine depth images acquired through imperfect means.

Moreover, recent progress in the area of monocular depth estimation [6, 44,
55, 152] has lead to a cheap and innovative alternative to completely replace other
more expensive and performance-limited depth-sensing approaches such as stereo
correspondence [129], structure from motion [27, 41] and depth from shading and
light diffusion [1, 132] among others. Apart from computationally intensive demands
and careful calibration requirements, these conventional depth-sensing techniques
suffer from a variety of quality issues including depth inhomogeneity, missing or
invalid values and alike, which is why the need for depth completion and refinement
in post-processing arises in the first place.

As a result, generating complete scene depth from a single image using a learning-
based approach can be of significant value. Consequently, a small portion of this
chapter is dedicated to covering the state-of-the-art monocular depth estimation tech-
niques capable of producing complete depth which would eliminate any need for
depth completion or refinement.

2.2 Missing Depth

As explained in the previous chapter, different depth-sensing approaches can lead to
various issues within the acquired scene depth, which in turn make depth completion
and refinement an important post-processing step.

Passive scene-sensing approaches such as stereo correspondence [129] have long
been established as a reliable method of dense depth acquisition. Although stereo
imaging is well equipped to estimate depth where highly granular texture is present,
even the smallest of issues in calibration and synchronization can lead to noisy, invalid

http://dx.doi.org/10.1007/978-3-030-28603-3_1
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Fig. 2.1 Examples of depth acquired via stereo correspondence (top), structured light device (bot-
tom left) and time-of-flight camera (bottom right). RGB: colour image; D: depth image; H: hole
mask indication missing depth values

or missing depth values. Additionally, missing values are prevalent in sections of the
scene that contain occluded regions (i.e. groups of pixels that are seen in one image
but not the other), featureless surfaces, sparse information for a scene object such as
shrubbery, unclear object boundaries, very distant objects and alike. Such issues can
be seen in Fig. 2.1 (top), wherein the binary mask marks where the missing depth
values are in a disparity image calculated via a stereo correspondence algorithm [65].

On the other hand, consumer devices such as structured light and time-of-flight
cameras are active range sensors that aremorewidely utilized for a variety of purposes
due to their low cost and wide availability in the commercial market with factory
calibration settings [14, 23, 46].

However, due to a number of shortcomings such as external illumination inter-
ference [23], ambient light saturation [46], inaccurate light pattern detection in the
presence of motion [125] and active light path error caused by reflective surfaces
or occlusion [126], consumer structured light devices can result in missing depth
or noisy values that are best handled by removal and subsequent filling. An exam-
ple of such a depth image and its missing values can be seen in Fig. 2.1 (bottom
left). Time-of-flight cameras can also suffer from complications detrimental to out-
put deployment due to issues such as external illumination interference [123], light
scattering caused by semi-transparent surfaces [59, 72] and depth offset for non-
reflective objects [96]. Such issues are exemplified in Fig. 2.1 (bottom right).

Completing depth images, captured through these active or passive depth-sensing
technologies, can lead to significant performance boost in any 3D vision application
even though many current systems simply cope with challenges created by noisy and
incomplete depth images without any post-processing. In the next section, we will
focus on various approaches to the problem of image completion in the context of
RGB-D imagery.

2.3 RGB-D Completion

While object removal, inpainting and surface completion [2, 15, 17–20, 36, 43,
133] has been a long-standing problem addressed within the literature in the past few
decades, depth completion is a relatively new area of researchwith its own challenges
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and limitations. However, scene depth is still represented and processed in the form
of images, and some researchers still directly apply classical RGB image inpainting
methods to depth images or use depth completion approaches heavily inspired by
RGB completion techniques. Consequently, an overview of image inpainting within
the context of scene colour image (RGB) can be beneficial for a better understanding
of the multi-facet subject of depth filling. In the following section, relevant image
inpaintingmethods are briefly discussed beforemoving on to amore detailed descrip-
tion of the depth completion literature.

2.3.1 RGB Image Inpainting

Inpainting deals with the issue of a plausibly completing a target region within the
image often created as a result of removing a certain portion of the scene. Early
image inpainting approaches attempted to smoothly propagate the isophotes (lines
within the image with similar intensity values) into this target area. However, most
of these approaches [15, 133] tend to ignore an important aspect significant to an
observer’s sense of plausibility, which is the high-frequency spatial component of
the image or texture. Consequently, later inpainting techniques began to incorporate
ideas from the field of texture synthesis (in which the objective is to generate a large
texture region given a smaller sample of texture without visible artefacts of repetition
within the larger region [42, 43, 118]) into the inpainting process to compensate for
the lack of texture commonly found in the target region post completion [2, 36, 79]
(exemplar-based inpainting).

In one of the most seminal works on image inpainting [15], the problem is
addressed using higher order partial differential equations and anisotropic diffusion
to propagate pixel values along isophote directions (Fig. 2.2). The approach demon-
strated remarkable progress in the area at the time but more importantly, it contained
a set of guidelines for image inpainting created after extensive consultations with
scene composition experts, which have now standardized the functionalities of an
inpainting algorithm. These remain highly relevant even in depth completion:

• 1:Upon completion of the inpainting process, the target region must be consistent
with the known region of the image to preserve global continuity.

• 2: The structures present within the known region must be propagated and linked
into the target region.

Fig. 2.2 Left: results of [15]. The foreground microphone has been removed and inpainted, but
the texture is not accurate, leading to a perception of blurring. Right: an example of the results and
process of exemplar-based inpainting [36]
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• 3: The structures formed within the target region must be filled with colours con-
sistent with the known region.

• 4: Texture must be added into the target region after or during the inpainting
process.

Improved inpainting approaches were subsequently proposed employing a variety
of solutions including the fast marching method [133], total variational (TV) models
[28, 121], and exemplar-based techniques [16, 36]. In one such approach, the authors
of [36] follow traditional exemplar-based texture synthesis methods [43] by priori-
tizing the order of filling based on the strength of the gradient along the target region
boundary. Although the authors of [36] are not the first to carry out inpainting via
exemplar-based synthesis [16], previous approaches are all lacking in either structure
propagation or defining a suitable filling order that could prevent the introduction of
blurring or distortion in shapes and structures. This exemplar-based method [36] is
not only capable of handling two-dimensional texture but can plausibly propagate
linear structures within the image. An example of the results of this method can be
seen in Fig. 2.2 (right), in which water texture has been plausibly synthesized after
the person is removed from the image. However, this approach cannot cope with
curved structures and is heavily dependent on the existence of similar pixel neigh-
bourhoods in the known region for plausible completion. Even though the approach
relies on fine reflectance texture within the image to prioritize patches and can fail
when dealing with large objects in more smooth depth images (Fig. 2.3—left), it has
been a great step towards focusing on granular texture within the image completion
literature.

Other image completion techniques have also been proposed that would address
different challenges in the inpainting process. For instance, certain methods use
schemes such as reformulating the problem as metric labelling [85], energy mini-
mization [12, 140],Markov randomfieldmodelswith labels assigned to patches [83],
models represented as an optimal graph labelling problem, where the shift-map (the
relative shift of every pixel in the output from its source in the input) represents the
selected label and is solved by graph cuts [119], and the use of Laplacian pyramids
[91] instead of the gradient operator in a patch correspondence search framework
due to the advantageous qualities of Laplacian pyramids, such as isotropy, rota-
tion invariance and lighter computation. There have also been attempts to complete
images in an exemplar-based framework using external databases of semantically
similar images [60, 141] (Fig. 2.3—right).

Deep neural networks have recently revolutionized the state of the art in many
computer vision tasks such as image stylization [52, 54, 76, 80], super-resolution
[111, 138] and colourization [156]. Image completion has also seen its fair share of
progress using such techniques. In [113], an approach is proposed that is capable of
predicting missing regions in an RGB image via adversarial training of a generative
model [56]. In a related work, the authors of [150] utilize an analogous framework
with similar loss functions to map the input image with missing or corrupted regions
to a latent vector,which in turn is passed through their generator network that recovers
the target content. The approach in [146] proposes a joint optimization framework
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Fig. 2.3 Left: results of exemplar-based inpainting [36] applied to RGB and depth images. Note
that the objective is to remove the object (baby) from both the RGB and depth images and to fill the
already existing holes (pre-removal) in the depth image. The approach is significantly more effec-
tive when applied to colour images. Right: result of exemplar-based inpainting using an external
database [60]

composed of two separate networks, a content encoder, based on [113], which is
tasked to preserve contextual structures within the image, and a texture network,
which enforces similarity of the fine texture within and without the target region
using neural patches [95]. The model is capable of completing higher resolution
images than [113, 150] but at the cost of greater inference time since the final output
is not achievable via a single forward pass through the network.

More recently, significantly better results have been achieved using [73], which
improves on the model in [113] by introducing global and local discriminators as
adversarial loss components. The global discriminator assesses whether the com-
pleted image is coherent as a whole, while the local discriminator concentrates on
small areaswithin the target region to enforce local consistency. Similarly, the authors
of [151] train a fully convolutional neural network capable of not only synthesizing
geometric image structures but also explicitly using image features surrounding the
target region as reference during training to make better predictions.

While these learning approaches are highly capable of generating perceptually
plausible outputs despite the significant corruption applied to the input, when it
comes to depth, they are incapable of producing high-quality outputs due in part to
the significantly higher number of target regions (holes) both large and small over the
smoother surfaces in depth images. Examples of these novel approaches applied to
depth images can be seen in Fig. 2.4, which indicates how ineffective learning-based
RGB image inpainting approaches can be within the depth modality [4].

While RGB completion techniques in various forms have previously been used
with or without modifications [100, 144, 154] to complete depth images, significant
differences between RGB and depth images prevent a successful deployment of
RGB inpainting techniques to perform depth completion. For instance, the lack of

Fig. 2.4 Results of global and local completion (GLC) [73] compared to inpainting with contextual
attention (ICA) ([151]) applied to depth images


