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Preface

The 48th “Saas-Fee Advanced Course” of the Swiss Society for Astrophysics and
Astronomy (SSAA) was held from 28 January to 3 February 2018 in Saas-Fee, in
the Swiss Alps. It was very timely devoted to:

Black Hole Formation and Growth

and attended by 119 participants. The Saas-Fee courses are intended mainly for
postgraduate, Ph.D. students, astronomers and physicists who wish to broaden their
knowledge. The lectures were organised in the morning and late afternoon leaving
free time for informal discussions, studies and outdoor activities in the afternoons.

This advanced course provided three comprehensive and up-to-date reviews
covering the gravitational wave breakthrough, our understanding of accretion and
feedback in supermassive black hole and the relevance of black hole to the Universe
structure since the Big Bang. The lectures were given by three world experts in the
field:

Prof. Tiziana Di Matteo (Carnegie Mellon University, USA)
Tiziana Di Matteo is a Professor in the McWilliams Center for Cosmology of the
Physics Department at Carnegie Mellon University, USA. She received her Ph.D. in
1998 at Cambridge University, UK. She was a Chandra Fellow at Harvard and a
junior faculty member at the Max Planck Institute for Astrophysics in Germany.
She is a theorist with expertise in both high energy astrophysics and cosmology.
Her interests focus on state-of-the-art cosmological simulations of galaxy formation
with special emphasis on modelling the impact of black holes on structure for-
mation in the Universe.

Prof. Andrew King (University of Leicester, UK)
Andrew King is Professor of Theoretical Astrophysics at the University of Leicester
and holds visiting appointments at the Universities of Amsterdam and Leiden.
During his career, he has been awarded a PPARC Senior Fellowship, the Gauss

v



Professorship at the University of Goettingen, a Royal Society Wolfson Merit
Award, and the RAS Eddington Medal. He is an author and co-author of several
books, including Stars, a Very Short Introduction, and Accretion Power in
Astrophysics. His research interests include accretion disc structure, supermassive
black hole growth and feedback, active galactic nuclei, compact binary evolution,
and ultraluminous X-ray sources.

Prof. Neil J. Cornish (Montana State University, USA)
Neil J. Cornish is Regents Professor of Physics and Director of the eXtreme Gravity
Institute at Montana State University. He completed his Ph.D. at the University of
Toronto, followed by postdoctoral fellowships in Steven Hawking’s group at the
University of Cambridge and in David Spergel’s group at Princeton University.
He is a multiwavelength gravitational-wave astronomer, and he is a member
of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific
Collaboration, the North American Nanohertz Observatory for Gravitational Waves
(NANOGrav) Collaboration and the NASA Laser Interferometer Space Antenna
(LISA) Science Study team.

Exactly 100 years before this Saas-Fee course, on 31 January 1918, Einstein sub-
mitted his paper entitled “Gravitational waves” to be presented at the Prussian
Academy meeting held on 14 February. Actually, Einstein started to think on
gravitational waves (at least as far it is documented) in 1913 when he was still
Professor at ETH in Zürich. At the 85th Congress of the German Natural Scientists
and Physicists (9 September 1913) in Vienna, Max Born asked Einstein about the
speed of propagation of gravitation, in particular, whether it would be that of light.
Einstein replied that it is extremely simple to write down the equations for the case
in which the disturbance in the field is extremely small and this is what Einstein
then did in his 1916 paper “Approximate Integration of the Field Equations of
Gravitation”, with some mistake, and in a more correct way in 1918.

It took a century from Einstein’s papers to the actual detection of a gravitational
wave (and the ultimate proof that black holes exist). A pretty important step,
demonstrating that the content of this book is closer to reality than it would have
been just a few years ago.

We are very grateful to the lecturers for their enthusiasm in communicating their
deep knowledge, their brilliant lectures, as well as for writing the rich manuscripts
composing this book. We extend our warmest thanks to the course secretaries,
Martine Logossou and Marie-Claude Dunand, for their effective administration and
organisational help during the course. We also would like to thank our students and
collaborators helping in Saas-Fee and finalising the manuscripts, in particular,
V. Sliusar, C. Panagiotou, M. Balbo, E. Lyard, T. Bernasconi and M. Kole.

Saas-Fee provided a very pleasant environment with two metres of fresh snow
and an entirely sunny week. We enjoyed the first century birthday of gravitational
wave on 31 January 2018, with a concert of the Swiss ethno-electronic music band
“Vouipe”, who composed the track “Black Hole in Saas-Fee”1 based on the

1Available at http://vouipe.com/.
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space-time chirp of GW150914! We also enjoyed a concert from Moncef Genoud
and Ernie Odoom. These were magical evenings, and we would like to thank again
the outstanding performers for their delighting music.

Finally, this course would not have been possible without the financial support
of the Swiss Society for Astrophysics and Astronomy, the Société Académique de
Genève and the Universities of Geneva and Zürich. We are very grateful to these
organisations for their contributions, which allowed the participants to attend a very
interesting and successful course.

The course organisers

Geneva, Switzerland Roland Walter, Nicolas Produit
Zürich, Switzerland Philippe Jetzer, Lucio Mayer
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Abstract Iwas taskedwith covering awide swathof gravitationalwave astronomy—
including theory, observation, and data analysis—and to describe the detection tech-
niques used to span the gravitational wave spectrum—pulsar timing, ground based
interferometers and their future space based counterparts. For good measure, I was
also asked to include an introduction to general relativity and black holes. Distilling
all this material into nine lectures was quite a challenge. The end result is a highly
condensed set of lecture notes that can be consumed in a few hours, but may take
weeks to digest.

1 Introduction

Inwriting up these lecture notes I havemostly followed the order inwhich thematerial
was presented in Saas Fee,with the exception of the discussion of the detectors,which
have been grouped here in a single section. My goal is not to write a textbook on each
topic—many excellent texts and review articles on general relativity and gravitational
wave astronomy already exist (see e.g. [11, 16, 37, 40, 50]). Rather, I try to highlight
the key concepts and techniques that underpin each topic. I also strive to provide a
unified picture that emphasizes the similarities between pulsar timing, ground base
detectors and space based detectors, and commonalities in how the data is analyzed
across the spectrum and across source types.

2 General Relativity

The historical course that lead Einstein to develop the general theory of relativity
had many twists and turns, but as Einstein reflected in 1922, one of his primary goals
was to understand the equivalence between inertial mass and gravitational mass “It
was most unsatisfactory to me that, although the relation between inertia and energy
is so beautifully derived [in Special Relativity], there is no relation between inertia
and weight. I suspected that this relationship was inexplicable by means of Special
Relativity” [43]. Einstein found the resolution to this conundrum by adopting a
geometrical picture that generalized Minkowski’s description of special relativity to
allow for spacetime curvature.
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Fig. 1 A spacetime diagram
shown in the the rest frame
of observer O. Observer O′
is moving at velocity v with
respect to O in the x
direction

2.1 Special Relativity

Minkowski showed that phenomena such as time dilation and length contraction
followed naturally as a consequence of space and time being combined into a single
spacetime geometry with distances measured by the invariant interval

ds2 = −c2dt2 + dx2 + dy2 + dz2 . (1)

The t = const. spatial section of this geometry is ordinary three dimensional Eu-
clidean space, which is invariant under translations and rotations, and can be de-
scribed by the special Euclidean group E(3) = SO(3) × T(3). The full Minkowski
spacetime is invariant under the Poincaré group, which is made up of translations in
time and space T (1, 3), rotations in time and space SO(1, 3), otherwise known as
the Lorentz group. The Lorentz group includes regular spatial rotations SO(3), and
boosts, which can be thought of as a hyperbolic rotation in a plane that includes a
time-like direction.

The key results of special relativity can be derived by considering motion that is
restricted to the (1 + 1) dimensional sub-manifold spanned by coordinates (t, x)
with invariant interval ds2 = −c2dt2 + dx2. Rotations in this two-dimensional
Minkowski space leave fixed hyperbolae, x2 − c2t2 = ±a2, just as rotations in two
dimensional Euclidean space leave fixed circles, x2 + y2 = a2. The coordinates
(t, x) define a frame of referenceO. An observer at rest in this coordinate systemwill
follow the trajectory x = const.: in otherwords, a line parallel to the t-axis. A particle
moving at velocity v in the positive x-direction will follow the trajectory (worldline)
x = vt + const. We can perform a boost to a new reference frame O′, with coor-
dinates (t ′, x ′), where the particle is a rest: x ′ = const. This implies that the two
coordinate systems are related: x ′ = γ(x − vt), where γ is a constant. Objects at rest
in frameOwill be moving at velocity−v in the x ′ direction in frameO′, so it follows
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that x = γ(x ′ + vt ′). Solving for t ′ we find t ′ = γ(t + (1 − γ2)/(vγ2)x). Invariance
of the interval x ′2 − c2t ′2 = x2 − c2t2 fixes the constant to beγ = 1/

√
1 − β2,where

β = v/c. Thus we have derived the following coordinate transformation for a boost
with velocity v in the positive x direction:

ct ′ = γ(ct − βx)

x ′ = γ(x − vt) . (2)

The transformation can be viewed as a hyperbolic rotation with cosh η = γ and
sinh η = βγ, were the “angle” η = arctanh β is called the rapidity. Lines of simul-
taneity in O′ have t ′ = 0, and lie parallel to the line x = ct/β in frame O. Figure1
displays a spacetime diagram illustrating the relationship between the two reference
frames.

Classic results such as time dilation and length contraction follow directly from
the spacetime geometry of Minkowski space. For example, consider two events A,B
along the worldline of observerO′. The proper time elapsed as measured by a clock
carried by observer O′ is T ′ = Δt ′, while the time elapsed as measured by a clock
carried by observer O is T = Δt . The invariant interval is

ΔsAB = −(cΔt ′)2 = −(cΔt)2 + Δx2 . (3)

Since Δx = vΔt we find that
T = γT ′ , (4)

so that the time elapsed in the static frame is greater than the time elapsed in the
moving frame. Next consider a rod of proper length L ′ moving at velocity v relative
to observer O. At a given instant, the ends of the rod at at events D,F in frame O
and at events D,E in frame O′. Thus the length of the rod in frame O is L = ΔsDF,
while the length of the rod in frame O is L ′ = ΔsDE. Using the invariance of the
interval we have

Δs2DF = L2 = Δx2 = Δx ′2 − (cΔt ′)2

Δs2DF = L ′2 = Δx ′2 = (Δx + vΔt)2 − (cΔt)2 . (5)

Incorporating the time dilation found earlier, Δt = γΔt ′, we find the lengths to be
related:

L = L ′/γ , (6)

so that the rod appears shorter in the static frame. The spacetime diagram makes it
clear that this discrepancy is due to the two frames having different lines of simul-
taneity (Fig. 2).
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Fig. 2 Spacetime diagrams illustrating time dilation (left) and length contraction (right)

2.2 The Equivalence Principle

Einstein, like Newton before him, was struck by the equivalence of the inertial
mass that appears in the relation between force and acceleration F = mIa and
the gravitational charge, or mass, that appears in Newton’s gravitational force law
FG = −GmGMr/r3. He also noted that inertial frames of reference play a special
role in both Newtonian mechanics and special relativity. In Newtonian mechanics,
objects in a non-inertial frame that is uniformly accelerating and rotating experience
“pseudo-forces” of the form

FP = −mIa − 2mIω × v − mIω × (ω × x) . (7)

Since these forces are a coordinate effect, they must scale with the inertial mass. The
first term in the above expression is referred to as a rectilinear force, the second term
is called the Coriolis force, while the third term is called the centrifugal force. The
“pseudo” moniker is perhaps a little misplaced—hurricanes that get stirred up by the
Coriolis force due to the rotation of the Earth are real enough. Einstein suggested
that the rectilinear term be identified with a uniform gravitational field. “I was sitting
in a chair in the patent office in Bern when all of a sudden a thought occurred to
me: if a person falls freely he will not feel his own weight. I was startled. This
simple thought made a deep impression upon me. It impelled me towards a theory of
gravitation” [43]. In other words, the acceleration g � 9.8m s−2 that we experience
while sitting or standing on the surface of the Earth is due to us being in a non-inertial
frame of reference. Take away the ground, say by jumping into a mineshaft, and the
“force of gravity” goes away. The equivalence of inertial and gravitational mass
follows naturally from the equivalence of uniform gravitational fields and uniform
accelerations.

Einstein set out to incorporate this insight into a modification of special relativity
that could account for gravitational effects. The connection to coordinate transfor-
mations suggested a geometrical approach, which caused Einstein to pay more at-
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Fig. 3 Path of light as seen in a uniformly accelerated reference frame. In an inertial frame the light
follows the straight-line dotted path, while in the accelerated frame of the rocket the path appears
to follow a curved path shown here as a solid line

tention to Minkowski’s geometrical formulation of special relativity. Einstein began
by showing that the path of light seen by a uniformly accelerated observer could
be interpreted in terms of spacetime geometry where the speed of light depends on
position.

Consider the picture in Fig. 3 where a rocket accelerates from rest with uniform
acceleration a in the positive z direction, and a photon traveling in the positive
x direction enters a window in the rocket at time t . The photon follows the path
x = ct, z = 0, shown as a horizontal dotted line, in the inertial frame where the
rocket was originally at rest. A first the velocity of the rocket vz = at is much less
than the speed of light, and the coordinates in the two frames are related such that
t ′ = t , x ′ = x and z′ = z − 1

2at
2. Thus, in the non-inertial frame of the rocket, the

photon follows the parabola z′ = −ax ′2/(2c2). Einstein showed that this “bending
of light” could be derived from the line element for a uniformly accelerated observer,
which to leading order in a has the form [18]

ds2 = −c2
(
1 + 2az′

c2

)
dt ′2 + dx ′2 + dy′2 + dz′2 . (8)

To confirm that light paths in this geometry are indeed parabolas, we need to derive
the geodesic equation, which describes the shortest/straightest paths in spacetime.

Using the short-hand notation x → {xμ} = {ct, x, y, z} and ds2 = gμν(x)
dxμdxν , with summation implied on repeated indices, the path length between events
A, B, is given by
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S =
∫ B

A

√
−ds2 =

∫ λB

λA

(
−gμν

dxμ

dλ

dxν

dλ

)1/2

dλ ≡
∫ λB

λA

L

(
xμ,

dxμ

dλ

)
dλ. (9)

Holding the end points fixed and extremizing the path length yields the Euler–
Lagrange equations

d

dλ

(
∂L

∂(dxα/dλ)

)
= ∂L

∂xα
(10)

which evaluate to

d2xα

dλ2
= −1

2
gαβ(gβμ,ν + gβν,μ − gμν,β)

dxμ

dλ

dxν

dλ
≡ −Γ α

μν

dxν

dλ

dxν

dλ
. (11)

Here commas denote partial derivatives h,μ = ∂h/∂xμ, and the collection of metric
derivatives appearing on the right-hand side of the above equation are referred to
as the Christoffel symbol Γ α

μν . Note that g
αβ denotes the components of the inverse

metric tensor, so that gαβgακ = δα
κ . The geodesic equation can be simplified by

introducing the notation uα = dxα/dλ for the 4-velocity and ∇βuα = uα
,β + uν Γ α

βν

for the covariant derivative. With these definitions we have d/dλ = uα∇α, and the
geodesic equation takes the more compact form

uβ∇βu
α = 0 . (12)

Returning to the metric for a uniformly accelerated observer, we find Γ z
tt = a and

all others zero. For a photon with initial velocityU → (1, c, 0, 0) the geodesic equa-
tions integrate to give t ′ = λ, x ′ = ct ′ and z′ = − 1

2at
′2. This confirms that photons

do indeed follow parabolic paths in the x ′ − z′ spacetime with line element given in
Eq. (8). The result can be generalized to describe uniform acceleration in any direc-
tion and uniform rotation about any axis. The line element for this non-inertial frame
is given by (dropping the primes to simplify the notation)

ds2 = −((c + a · x)2 − (ω × x)2)dt2 + 2c(ω × x)i dxidt + dx2 + dy2 + dz2 .

(13)
The convention being used here is that Roman indices run over spatial coordinates,
while Greek indices run over time and space coordinates. To leading order in a and
ω the non-vanishing Christoffel symbols are:

Γ i
t t � −gt t,i = ai + (ω × (ω × x))i

Γ i
t j � 1

2
(gti, j − gt j,i ) = −c εi jkω

k . (14)

and the geodesic equations yield

d2x
dt2

= −a − 2ω × v − ω × (ω × x) , (15)
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which recovers the form of the acceleration attributed to pseudo forces in a non-
inertial frame. Turning this around, it is always possible to find a coordinate transfor-
mation to an inertial frame where the pseudo forces vanish. But this does not mean
that we can simply transform gravity away.

2.3 Tides and Curvature

Einstein’s trick for making gravity vanish only works in a small region of spacetime.
It is impossible to remove the tidal forces that manifest over larger regions.

Suppose we do an experiment in a laboratory on the surface of the Earth as
shown in Fig. 4. We can set up a coordinate system where the z axis points in the
outward radial direction at the center of the lab, and the x, y directions span the
floor of the lab. Now suppose that we release two masses from near the ceiling
of the lab, the first with position vector relative to the center of the Earth given by
r1 = R + x1, whereR is a vector connecting the center of the Earth to the floor of the
lab, and the second with r2 = R + x2. Initially the distance between the two masses
is L = |Δx | = |x2 − x1| = y2 − y1. To leading order in L/R⊕ Newton’s theory of
gravity predicts a constant acceleration in the −z direction:

d2x1,2
dt2

= −GM⊕
R2⊕

ẑ = −gẑ . (16)

This part of the gravitational field can be transformed away by adopting a freely
falling reference frame. Continuing the expansion of the Newtonian equations of
motion to next order we encounter tidal forces in the y direction:

Fig. 4 Tidal forces in an
Earth bound laboratory
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d2�x
dt2

= −GM⊕L
R3⊕

ŷ . (17)

These non-uniform accelerations cannot be transformed away. Similarly, if one were
to consider the motion of a single mass over an extended period of the time the local
value of the acceleration g would change with time, and this change in accelera-
tion can not be transformed away. In summary, the effects of gravity can only be
transformed away across small regions of space for a short period of time.

Looking at the geodesic equation (11), we see that transforming away local ac-
celeration terms is equivalent to setting the first derivatives of the metric equal to
zero. It turns out that we always have enough coordinate freedom to set the compo-
nents of the metric in the neighborhood of an event equal to the Minkowski metric
ημν = diag(−1, 1, 1, 1), and to set the first derivatives equal to zero. However, there
is not enough coordinate freedom to remove the second and higher derivatives. As
shown by Riemann, the second derivatives of the metric describe the curvature of
the spacetime. The components of the Riemann curvature tensor are given by

Rκ
μλν = Γ κ

μλ,ν − Γ κ
μν,λ + Γ α

μνΓ
κ
αλ − Γ α

μλΓ
κ
αν . (18)

TheChristoffel symbolsΓ α
μν , defined inEq. (11), involve first derivatives of themetric

and can be made to vanish at any point in spacetime, however their derivatives can
not. In local free fall coordinates the metric components take the form

gμν = ημν − 1

3
RμανβΔxαΔxβ + · · · (19)

This is nothing other than a Taylor series expansion about a point P , where the
coordinates have been chosen such that gμν,λ|P = 0. These are variously refers to as
free fall, locally Lorentzian or Riemann normal coordinates. These coordinates can
be extended along the worldline of a particle to yield a locally non-rotating inertial
frame defined by a set of four orthogonal basis vectors e(γ). Here γ labels the basis
vectors and should not be confused with the components of the basis vector which
are labelled by a superscript: eα

(γ). The locally non-rotating frame is carried along the
worldline of the particle by Fermi–Walker transport:

uβ∇βe
α
(k) = eα

(t)gμνe
μ
(k)u

β∇βe
ν
(t) . (20)

Fermi–walker transport keeps the basis vector e(t) tangent to the worldline, as shown
in Fig. 5.

While Fermi–Walker transport can eliminate “pseudo forces” along the worldline
of a single particle, spacetime curvature prevents us from extending this inertial co-
ordinate system globally. Spacetime curvature manifest as a tidal force that causes
initially parallel geodesics to converge, diverge or twist about one another. Consid-
ering the geodesic equation for two nearby geodesics with separation vector ξ. We
find that spacetime curvature causes a relative acceleration:


