

The Palgrave Handbook of Managing Fossil Fuels and Energy Transitions

Edited by Geoffrey Wood · Keith Baker

The Palgrave Handbook of Managing Fossil Fuels and Energy Transitions Geoffrey Wood • Keith Baker Editors The Palgrave Handbook of Managing Fossil Fuels and Energy Transitions

Editors Geoffrey Wood School of Law University of Stirling Stirling, UK

Keith Baker Built Environment Asset Management (BEAM) Centre Glasgow Caledonian University Glasgow, UK

ISBN 978-3-030-28075-8 ISBN 978-3-030-28076-5 (eBook) https://doi.org/10.1007/978-3-030-28076-5

© The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cover illustration: Bloomberg Creative Photos/gettyimages

This Palgrave Macmillan imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To Neil Taylor, for always being there and being able to help me resolve any problems with a few clear words. RIP my friend (Dr. Geoffrey Wood). To Sue Roaf, for being a friend, a colleague, and an inspiration (Dr. Keith Baker).

Foreword

When the Paris Agreement on climate change was adopted on 12 December 2015, the newspaper *The Guardian* dramatically heralded the "*end of* [the] *fossil fuel era*". It may perhaps have seemed like that at the time. After all, the agreement's goal of keeping global warming well below 2°C and it's even more ambitious aspirational goal of avoiding 1.5°C require a drastic reduction in the production and consumption of fossil fuels—the burning of which is still the single largest driver of human-induced climate change.

But while the Paris Agreement may have given a strong and clear signal that the decarbonisation of our energy systems is inevitable, a true decline of fossil fuels has yet to commence. Notwithstanding the increasing availability and rapidly falling costs of renewable energy sources, global fossil fuel consumption continues to grow, and fossil fuels have retained their high share in global electricity production. Even coal—arguably the dirtiest fossil fuel—is witnessing a resurgence due to growing demand in Asia. Fossil fuel production also shows no signs of abatement, and investment in fossil fuels continues to be stable. All over the world, governments support the production and consumption of fossil fuels, through licensing and permitting, as well as tax breaks and other subsidies. We are currently locked into fossil fuels, through existing infrastructure, institutions, and individual behaviour. Any transition away from them, therefore, will face considerable hurdles.

If we are to avert the climate crisis, however, such a transition is a must. We thus find ourselves at a critical juncture, about to embark on a very daunting journey. The good news is that, perhaps for the first time in the history of large-scale transitions, we have something of a compass. We can actually *plan* for this transition. This is why the present volume's focus on 'managing the decline' of fossil fuels is so important.

The climate imperative offers broad guidance on where our journey is headed. We know that meeting the Paris Agreement's temperature goals means we cannot afford to burn all fossil fuels, and that a major part of fossil fuels needs to be left in the ground. We also know that we need to significantly scale up the deployment of renewable energy sources, and that this requires sustained support from the public and private sectors. But we further know that not everyone can or should follow the same energy transition pathway. Countries have been unevenly endowed with resources (both fossil fuels and renewables), are not all equally responsible for causing the problem of climate change and have varying levels of economic development. So, while we may applaud countries like Costa Rica or Sweden for their ambition to become 'fossil free' nations, the challenge for countries like Angola or Indonesia will be much greater. We also see these disparities within countries. Some regions, communities, and workers dependent on fossil fuels will be disproportionately affected by the low-carbon energy transition. These international, national, and subnational equity and fairness dimensions underscore the necessity of a just transition, and more broadly the need to view energy transitions through the lens of energy justice.

Along with my colleagues at the Stockholm Environment Institute (SEI), and in collaboration with a range of think tanks, civil society organisations, and academics, I have sought in the past years to put these challenges, as well as possible responses, on the radar of climate and energy policy researchers and practitioners. Through SEI's initiative on Fossil Fuels and Climate Change, we have drawn attention to the importance of tackling fossil fuel supply alongside more traditional climate policy measures such as carbon pricing and energy efficiency standards. We have done so by organising workshops and conferences, producing academic publications, blogs, opinion pieces, and engaging with policymakers. From this work, it has become clear to me that while the evidence base for managing the decline of fossil fuels is expanding, concerted efforts are needed to diversify and consolidate the research connecting the dots between fossil fuels and climate change.

It is here where one of the present volume's main strengths lies. The book brings together perspectives from authors with a variety of disciplinary backgrounds, covering various key jurisdictions, and employing a range of approaches. Reflecting the multifarious challenge of the energy transition, insights from various disciplines—engineering, economics, political science, ethics, law, and more—are needed to better understand the underlying causes of our present carbon lock-in, and to sketch the possible ways to overcome this. With respect to jurisdictions, it is important to look both at countries where lessons on energy transitions are already emerging—as is the case, for instance, with the German *Energiewende*—as well as countries that still have a long way to go in moving away from fossil fuels, such as Australia and Russia. In terms of approaches, contributions should be looking at the drivers of continued fossil fuel supply, countervailing forces seeking to increase the share of renewables in the energy system, and interactions between them. Australian economists Fergus Green and Richard Denniss refer to this as "*cutting with both arms of the scissors*": we should not just be considering approaches that aim to reduce the demand of fossil fuels, but also determine how such approaches could work hand-in-hand with policies and actions restricting fossil fuel supply.

It remains to be seen whether the transition away from fossil fuels resemble what the editors term a 'long goodbye' or whether it will rather be more akin to falling off a cliff-edge. The latter—that is, an unmanaged decline—may lead to the stranding of assets, as well as the stranding of communities and countries dependent on the production and export of fossil fuels. The former requires, at a minimum, a recognition among governments, industries, and investors that we need to stop expanding our fossil fuel infrastructure, a shared vision of a post-carbon future, and a transparent and participatory planning process to achieve that future. The longer we fail to fully embrace the long goodbye, however, the more likely it is that the cliff-edge scenario will become a reality.

Throughout, we should also remain aware of the real possibility of a fossil fuel *renaissance*. This could happen, for instance, through the introduction of new technologies such as carbon capture and underground storage or the switching from higher-carbon to lower-carbon (but still fossil-based) fuels, such as from coal to natural gas. In addition, what German economist Hans-Werner Sinn dubbed the 'green paradox' may materialise: in such a scenario, increased production of fossil fuels takes place *because of* increasing carbon constraints.

These possibilities suggest that, unlike what *The Guardian* claimed in 2015, the era of fossil fuels is not over yet. As this book makes abundantly clear, however, its time has certainly come.

Harro van Asselt

Centre for Climate Change, Energy and Environmental Law, University of Eastern Finland Law School Joensuu, Finland

Stockholm Environment Institute Stockholm, Sweden

Acknowledgements

We would like to take this opportunity to sincerely thank all those who contributed chapters to this book, and to Rachael Ballard and Prof. Dave Elliott at Palgrave Macmillan, and to all those who gave their support in other ways, including: Dr. Ron Mould, Scott Restrick, Helen Melone, Prof. Brian Castellani, Dr. Fraser Stewart, and all our team members and friends of the Energy Poverty Research initiative; without your support, wisdom and knowledge this book would never have come to pass. Thanks also to Sarah Garden who kindly provided the indexing and to Academic Proofreading and Editing Services (https://academicproofreadingandeditingservices.com/) for the final proofreading and copyediting of the manuscript.

Contents

Part I	Introduction	1
1 F	ossil Fuels in a Carbon-Constrained World	3
G	eoffrey Wood	2
1	Aim of the Book	3
2	Rising Temperatures, Rising Risks: Accepting the Reality of	0
2		9
Э П	Outline of the book	10
K	eterences	22
2 C	arbon Capture and Renewables: Strategic Conflicts or	
T	actical Complementarities	25
D	avid Elliott	
1	Introduction	25
2	Carbon Capture Options for Power Plants and Industry	26
3	Air Capture	31
4	The Hydrogen Option	34
5	Optimal Carbon Reduction	38
6	Conclusion	45
R	eferences	48
3 T <i>Pa</i>	ne Long Goodbye to the Nuclear Monument aul Dorfman	57
1	Introduction	57

xiii

2	Nuclear Construction Trends	59
3	Nuclear Costs	62
4	Small Modular Reactors	64
5	Nuclear and Climate Change	66
6	Nuclear Liability	67
7	Nuclear Probabilistic Risk Assessment	68
8	Radiation Risk	71
	8.1 Radiation Epidemiology	72
	8.2 Radiation Biology	74
9	Conclusion	76
Re	ferences	77

4	Ca	pacity	Remuneration Mechanisms: Regulatory Tools for	
	Su	staini	ng Thermal Power Plants and the EU Energy	05
		insitio)n / ·	85
	Iar	ner Şa	hm	0.5
	1	Intro	oduction	85
	2	Ener	gy Transition, Generation Adequacy and Changing Role	00
		01 11	With the Third P	00
		2.1	What is the Energy Iransition?	88
		2.2	Changing Role of Thermal Power Plants: From Base-	
			load to Flexibility Providers	93
	3	Criti	ical Bridges of EU Energy Transition: Capacity	
		Rem	uneration Mechanisms	94
		3.1	What are Capacity Remuneration Mechanisms?	94
		3.2	The Story of Capacity Remuneration Mechanisms in	
			the EU	97
		3.3	Why are Capacity Remuneration Mechanisms Bridges	
			of the EU Energy Transition?	99
	4	Con	clusion	100
	Re	References		101
Part	II	Man	aging the Decline of Fossil Fuels	107
5	Ch Phi	i <mark>na's</mark> I ilip Ar	Efforts to Constrain its Fossil Fuel Consumption	109

	1 1	
1	Introduction	109
2	The Governance Context	112

3	The	Main Energy Policy Challenges and Responses	116
	3.1	Improving Coal Use	119
	3.2	Boosting the Share of Natural Gas	121
	3.3	Carbon Capture and Storage or Use	125
4	Pror	noting Low-Carbon Electricity	126
	4.1	Hydroelectricity and Nuclear Power	126
	4.2	Wind and Solar Energy	128
5	Con	clusions	132
References			133

6	Managing the Decline of Fossil Fuels in a Fossil Fuel Intensive				
	Economy: The Case of The Netherlands				
	Ser	m Oxe	naar and Rick Bosman		
	1	Intro	oduction	139	
	2	Sust	ainability Transitions and Managed Decline	141	
	3	Met	hodology	143	
	4	Gov	ernment—Fossil Fuel Industry Interdependencies	144	
		4.1	Government Fossil Fuel Related Income and		
			Expenditure	145	
		4.2	Exploration and Production	147	
		4.3	Transport and Storage	149	
		4.4	Ports	149	
		4.5	Gas Transport and Storage	151	
		4.6	Oil Transport and Storage	152	
		4.7	Processing and Refining	152	
		4.8	Sales and Distribution	153	
	5	Con	clusion and Discussion	157	
	References			161	

7 Fossil Fuels and Transitions: The UK Maximising Economic				
	Recovery Strategy and Low-Carbon Energy Transitions			167
	Go	kce M	ete, Wairimu Karanja, and Nduta Njenga	
	1	Intro	oduction	167
	2	The	Rise and Fall of the UKCS	169
	3	The	UK Maximum Economic Recovery (MER) Strategy	171
		3.1	Introduction to the MER Strategy	171
		3.2	Components of the MER Strategy	173
		3.3	The MER Strategy in Practice	175

	4	The Global Energy Transition, the Paris Agreement and UK	
		Energy Policies	178
		4.1 The Global Energy Transition and the Paris Agreement	178
		4.2 The UK's National Energy Transition and Climate	
		Change Policies	180
		4.3 The Role of CCUS in the UK's Future Energy	
		Transition Policies	183
		4.4 Brexit and UK/EU Energy Transition Relations	184
	5	The MER Strategy Versus The Global Energy Transition	186
		5.1 The Impact of the MER Strategy on Energy Transition	
		and Climate Change Targets	186
		5.2 The UKCS to 2050 and Beyond—Life During and	
		After MER	188
	6	Conclusion	190
	Re	ferences	191
	_		
8	Er	acted Inertia: Australian Fossil Fuel Incumbents' Strategies	105
	M	are Hudson	1))
	1	Introduction	195
	2	Political Strategies	198
	2	Facing Federal Covernments	190
	4	Facing State Covernments	202
	5	Organising and Dis-Organising Policy Contestation	202
	6	Economic Strategies	205
	7	Cultural Strategies	205
	1	7.1 Issue Minimisation and Attacking the Messenger	200
		7.2 Outright Denial	207
		7.3 Specific Policy Contestation	208
		7.4 Issue Shifting	200
	8	What Next for Australia and Decarbonisation?	211
	Ŭ	8.1 Political	212
		8.2 Economic	212
		8.3 Culturally	213
	9	Conclusion	211
	Re	ferences	216
			210
9	Bı	iffeted or Energized? India's Dynamic Energy Transition	223
	Dı	iniel Gilbert and Pooja Chatterjee	
	1	Introduction	223

2	An Incumbent Enthroned: King Coal	227		
3	The Dynamics of a Paradigm Shift: India's Energy Transition 2			
4	King Coal. Vulnerability Begins at Home	228		
-	4.1 Indian Coal Quality	228		
	4.2 Indian Coal Importation, Exploration, Transportation			
	& Production	231		
5	Indian Coal (Mis)Governance	235		
	5.1 From Crisis, Comes Change	236		
	5.2 Coal Mis-Governance Dénouement?: Coalgate and	220		
~	SHAKII	238		
6	6.1 The Salience of India's Climate Change Policy to the	241		
	Nation's Energy Transition	242		
	6.2 Climate Change Policy: Status Quo Ante	242		
	6.3 Climate Change Policy: Pre-2014 Attempts at Change	243		
	6.4 Climate Change Policy: 2014/5, Two Years of			
	Sustainable Change	244		
	6.5 Climate Change Policy: The Paris Agreement	245		
	6.6 Indian Climate Change Politics: Conclusions	247		
7	Coal Threat: Review of Domestic and International Push			
	Factors	248		
	7.1 The Emperor's New Clothes?	249		
	7.2 Paradigm Shift: From King Coal to Sun King?	250		
8	Conclusions	253		
Re	ferences	255		
Tra	unsitioning to a Low Carbon Economy: Is Africa Ready to			
Bio	Farewell to Fossil Fuels?	261		
Vie	rtoria R. Nalule			
1	Introduction	261		
2	Energy Transition: African Perspective	262		
	2.1 Understanding Energy Transition	262		
	2.2 Definition of Energy Transition	263		
	2.3 Energy Transition from an African Perspective	265		
3	African Efforts in Decarbonisation	268		
	3.1 Fossil Fuels Deployment in SSA	268		
4	Climate Change Challenges in Africa	272		
5	Decarbonisation Through the Deployment of Renewables	275		
	5.1 SSA Regional Efforts in Renewable Energy	276		

10

	5.2	Institutions	278
	5.3	Energy Efficiency in SSA	279
	5.4	Movement to Electric Vehicles	281
6	Con	clusions	282
Re	ferenc	es	283
O	n the l	New Paradigm of International Energy Development:	
Ri	sks an	d Challenges for Russia and the World on the Way to	207
the		-Carbon Future	28/
An	drey K	onoplyanik	207
1	Past	and Modern Paradigms of International Energy	28/
	1.1	Political Economy of International Energy: Concepts	200
	1.0	and Definitions	289
	1.2	Zones of Competitive Advantages of Different	
		Countries: Labour, Capital, Natural Resources	292
	1.3	Inter-Factor Replacement (of Productive Resources):	
		Lessons Learned for Decarbonisation	296
	1.4	Hubbert's Curves, Hotelling's Rule/Rent, Chevalier's	
		Turning Point	297
2	Wor	ld Energy: A Paradigm Shift?	304
	2.1	US Shale Revolution and Its Domino Effects (the	
		Supply-Side Revolution)	304
	2.2	Global Multi-Facet Effects to Rising Oil Prices (the	
		Demand-Side Evolution)	307
	2.3	COP-21 as the New Key Element of the New	
		Paradigm of Energy Development (Demand-side	
		Demand for a New Energy Revolution)	311
3	The	Shift of Paradigm: Risks and Challenges for Russia	314
	3.1	COP-21: The Goal or the Means	314
	3.2	Risks and Challenges for Russia in the Oil Sector	318
	3.3	Risks and Challenges for Russia: The Investment	
		Climate	321
	3.4	Risks and Challenges for Russia in the Gas Sector	324
Re	ferenc	es	334
	. .		
Th En	e Rol	e of German Regime Actors and Trade Unions in the Fransition: Agency and Power	341
Ste	rfan Bi	ößner	541
1	Intro	oduction and Approach	341

1 Introduction and Approach

	2	Understanding Energy Transitions: Useful Theories an	d
		Frames	342
		2.1 The Multi-Level-Perspective (MLP)	342
		2.2 The Power and Agency of Stakeholders	343
	3	The German Energiewende: Ambition, Reality and the	
		Neglected Role of Coal	344
	4	Coal in Germany: A Rich History	346
		4.1 The Socio-Cultural Perspective	346
		4.2 The Economic Perspective	348
		4.3 The Energy Sector Perspective	351
	5	German Regime Actors: Ambivalent Government, Slo	w
		Reacting Utilities	352
	6	What Role for German Unions in the Maintenance of	Coal
		Power?	355
	7	Recent Developments: <i>Klimafahrplan</i> and the 'Coal	
		Commission', a Window of Opportunity?	357
	8	Strategies for the Future	359
	Re	eferences	361
13	Fo	ossil Fuel Decline and the Rural Economy: The Case o	f
	Sc	cotland	371
	Bil	ill Slee	
	1	Introduction	371
	2	A Six-Stage Model	374
		2.1 Stage 1 Preindustrial Energy in Scotland	374
		2.2 Stage 2 Water	376
		2.3 Stage 3 Coal and Shale Oil	379
		2.4 Stage 4 The Hydro Power Boom	381
		2.5 Stage 5 Oil and Gas	382
		2.6 Stage 6 Renewables	385
	3	Contemporary Development Challenges	388
	4	The Impacts on Rural Scotland	389
		4.1 History or Historiography?	389
		4.2 An Energy Timeline	390
	5	Rural Life in the Shadow of Fossil Hydrocarbon Decli	ne:
		Opportunity and Challenge	390
		5.1 Impacts of Renewables on Employment: Contin	uing
		and Increased Delocalisation	392

		5.2 The Persistence of Public Support in the Deepest Problems in the Areas of Energy Decline	392
	6	Conclusion: A Long Goodbye of Several Different Regimes:	
		As It Has Always Been So Will It Most Likely Be	393
		6.1 Institutional Architecture and Rural Development	
		Outcomes	394
		6.2 What are the Implications for Rural Scotland of a Low	
		Carbon Future	396
	Re	ferences	397
Dom	. 111	Towards a New Acorda?	402
rar		Towards a tvew Agenda:	403
14	Th	e Long Hello: Energy Governance, Public Participation,	
	an	d 'Fracking'	405
	Jok	n Whitton and Ioan Charnley-Parry	
	1	Introduction	405
	2	Energy Governance and Shale Gas	406
	3	Participation	409
	4	Incorporating Social Justice Into Energy Infrastructure	
		Decision Making	411
	5	Social Sustainability	417
	6	Conclusion	419
	Re	ferences	420
15	Ba	n or Regulate? A Critical Juncture in New York's Fossil Fuel	
	Re	gulation	427
	Idi	a Dokk Smith	
	1	Introduction	427
	2	Background: Hydraulic Fracturing in the US—Extending the	
		Fossil Fuel Path	429
	3	Critical Junctures and Institutional Reproduction	431
	4	Method	432
	5	The Ban on Hydraulic Fracturing in New York	433
	-	5.1 2007–2008 A Near Miss for the Oil and Gas Industry	433
		5.2 2008–2010: The Start of a Movement	438
		5.3 2011–2012: New Governor, Same Process?	440
		5.4 2014–2017: Making a Ban Politically Feasible	443

	6	Discussion and Conclusion	445			
	0	6.1 Analysing a Critical Juncture	445			
		6.2 A Return to Status Quo?	447			
		6.3 Final Remarks	449			
	Re	ferences	450			
16	Regulation and Market Reform: The Essential Foundations					
	foi	r a Renewable Future	453			
	Iai	in Wright				
	1	Introduction	453			
	2	The Pre-renewables Age	454			
	3	Catalysts and Constraints on Renewable Rollout	455			
	4	Relevance of Early Renewable Experience to Current Markets	457			
	5	Non-MW Characteristics of Renewable Generation	458			
	6	Economics, Contestability, Reliability and Regulation—Key				
		Parameters for Renewables Generation System Economics	460			
		6.1 Economics	460			
		6.2 Contestability	463			
		6.3 Reliability	467			
		6.4 Regulation	468			
	7	Relevance to Renewable Investment	468			
	8	Testing the Hypothesis—Two Case Studies	470			
		8.1 US Experience	470			
		8.2 Russian Federation	474			
	9	Conclusion	479			
	Re	ferences	481			
1.7	D					
17	Pr	Prolonging Fossil Fuels or Hastening the Low-Carbon				
	Transition? The Diffusion of Biofuel Development:					
	Motivations and Strategies					
	Jale Iosun and Irevelyan S. Wing					
	1	Introduction	483			
	2	The Controversy Surrounding Biofuel Promotion	485			
	- 3	The Empirical Puzzle	486			

4 Sub-Saharan Africa: Launching First-Generation Biofuels 489 5 Asia: Innovation Versus Energy Supply Security 491

2	Asia: Innovation Versus Energy Supply Security	491
6	Europe: Innovating for Sustainable Biofuels	494
7	North America: First and Second Movers	495

	8 South America: The Nexus Between Biofuels and Biotech		
		Crops	496
	9	Interdependence, Harmonisation, and the Future of Biofuels	497
	10	Conclusion	500
	Re	ferences	501
18	Re	-making the Future: Transition Movements and	
	Di	smantling the Environment-Economy Dichotomy	505
	Ca.	ssandra Star	
	1	Introduction	505
	2	Why a Just Transition?	506
	3	What Does a Just Transition Look Like?	510
	4	Current Transition Approaches	513
		4.1 Green Technology	514
		4.2 Transition Network	515
	5	Where to Now?	517
	6	Conclusion	520
	Ret	ferences	521
19	Isl	Energy Justice in the Fossil Fuel Industry a Paradox?	529
	Tec	ld Mova Mose and Mohammad Hazrati)_)
	1	Introduction	529
	2	Is the Fossil Fuel Industry on Trial? The Tenets of Energy	/_/
	Justice and Fossil Fuels		532
		2.1 Distributional Justice and Fossil Fuels	535
		2.2 Recognition Justice	537
		2.3 Procedural Justice	538
	3	The Right to Remain Silent? Why the Fossil Fuel Industry	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	2	Needs to Speak and Act on Sustainability	539
		3.1 Oil Dominance and the Benefit of Modern Energy	
		Services	539
	4	The Energy Trilemma, the Law, and the Fossil Fuel Industry	541
	-	4.1 Energy Justice and Its Role in the Energy Transition	541
		4.2 What Does International Energy Law Have To Do	
		4.2 What Does International Energy Law Have To Do With This?	542
	5	4.2 What Does International Energy Law Have To Do With This?Conclusion	542 543

			Contents	xxiii
20	Fossil F	uel Welfare Versus the Climate		551
	Alex Lev	ıferna		
	1 Intr	oduction		551
	2 Free	e Market Fundamentalisms and Corporate I	Power	552
	3 Inte	ernational Case Studies of Fossil Fuel Welfar	ism	554
	4 Fos	sil Fuelled False Consciousness		557
	5 Boo	otstrapping up an Unlevel Playing Field		559
	5.1	Degrees of Socialism		561
	6 Cor	nclusion		563
	Referen	ces		564
21	Perspec	tives on an Energy System After a Declin	e in Fossil	
	Fuel Us	e: Welcome to the Store-Age		569
	Andrew	Fredrick Crossland		
	1 Intr	oduction		569
	2 Yog	a for the Power System		572
	3 Wel	lcome to the Store-Age: An Introduction to	Energy	
	Stor	rage		573
	4 The	Changing Energy Storage Mix		576
	5 Livi	ing on an Island: Real Life Examples of Brea	ıking Our	
	Ado	liction to Fossil Fuels		577
	6 Wil	l Storage Break the Utility Business?		580
	7 Mir	nd the Policy Gap		583
	8 Cor	nclusion		585
	Referen	ces		585
22	Decarb	onising Heat in Scotland: The Perfect Sto	rm Revisited	589
	Keith Ba	aker		
	1 Intr	oduction		589
	2 Dec	carbonising Heat in Scotland		590
	3 Risl	ks and Barriers to Decarbonising Heat		592
	4 Lea	rning from Others?		595
	5 Lea	rning From the Past?		599
	6 Ma	naging History		601
	7 Cor	nclusion—Managing the Decline?		602
	References		604	

xxiv	Contents
xxiv	Contents

Par	t IV Epilogue	609
23	Managing the Decline of Fossil Fuels: A Long Goodbye? Geoffrey Wood	611
	Reference	615
24	Our Time Is Up Keith Baker and Geoffrey Wood	617
	Reference	620
Ind	ex	621

Notes on Contributors

Philip Andrews-Speed has 38 years in the field of energy and resources, starting his career as a mineral and oil exploration geologist before moving into the field of energy and resource governance. His main research interest is the political economy of the energy transition. China has been a particular focus for his research, but in recent years he has been more deeply engaged with energy challenges in Southeast Asia. His latest book *China as a Global Clean Energy Champion: Lifting the Veil* appeared early in 2019.

Keith Baker is a Researcher at the Built Environment Asset Management (BEAM) Centre, Glasgow Caledonian University, and a Co-founder of the Energy Poverty Research initiative. He specialises in fuel poverty and energy policy, with a particular focus on the provision of renewable heat. His recent work includes the development of a complexity and risk-based assessment of fuel poverty, and a series of policy papers for Common Weal, a Scottish 'think and do' tank, covering energy performance certificates, Scotland's National Energy Company, and developing successful district heating schemes. His activities also include regular articles and appearances in the media, and he has been described by James Whale, a 'shock jock' on the UK's talkRADIO, as "the acceptable face of climate change".

Rick Bosman's work focusses on the energy transition, both in the Netherlands and abroad. He is especially interested in processes of regime destabilization, and how this creates the necessary space for transitions to occur. He combines his academic work with advisory projects, publishing for popular media, and is a frequently invited speaker and lecturer. He is currently coordinating a research program into the cooperation between bottom-up and traditional energy production and is pursuing his PhD as part of this project. He has a background in Renewable Energy Management and Environmental Sciences.

Stefan Bößner is an independent research consultant based in France, working in the fields of energy, climate and sustainability. He has worked as a researcher and a project manager for leading think tanks, research institutes and consulting companies, in France, Lebanon and the United Kingdom, most recently for the Stockholm Environment Institute's Oxford office, and he currently remains an Associate at the Stockholm Environment Institute's HQ in Stockholm. In his work he focused on sustainability transitions, international climate policies as well as on developments in the energy sectors of Germany, Indonesia and Thailand. Stefan holds a master's degree in International Relations from Sciences Po University in Paris and a master's degree in Media Studies from the University of Vienna.

Ioan Charnley-Parry is a postdoctoral energy and social science researcher in the Lancashire Institute for Citizenship, Society and Change and the Energy and Society Research Group at the University of Central Lancashire, Preston, UK. He has worked closely with energy communities, particularly young people and the agricultural community.

Pooja Chatterjee is a senior associate at Cyril Amarchand Mangaldas's Infrastructure and Project Finance Group. She has an extensive and diverse experience in energy and infrastructure projects as well as project financing transactions. She represents and advises developers, sponsors, lenders and contractors in projects and project finance transactions. She is also involved in various infrastructure sectors, including energy, transportation and mining.

Andrew Fredrick Crossland, CEng, is a developer of renewable energy projects and a specialist in the interdisciplinary analysis of whole energy systems. His PhD compared different ways of installing energy storage in low voltage electricity networks which predicted the commercial viability of domestic energy storage. After getting his PhD in 2015 and completing research on social, economic and technical impacts on microgrid design in East Africa, Crossland is now an Associate Fellow at Durham Energy Institute and a specialist in decarbonisation projects across the Pacific, New Zealand and South-East Asia at Infratec. He founded his company, Advance Further Energy Ltd, and provides specialist consultancy on energy projects and standards. In 2016, Crossland founded and continues to run the electricity and carbon tracking website MyGridGB, inadvertently becoming an advocate for good energy knowledge. As a result of this work he won the "Rising Star" Award with EnergyUK in 2017 and released his first book on renewable energy *Decarbonising Electricity Made Simple* in 2019. He continues to work on global energy projects, consumer protection for solar PV in the UK and in developing capacity for renewable energy in utilities around the world.

Paul Dorfman is Honorary Senior Research Associate, UCL Energy Institute, University College London; Nuclear Policy Research Fellow, Joseph Rowntree Charitable Trust; Founder of the Nuclear Consulting Group; Member of the Irish Govt. Environment Protection Agency Radiation Protection Advisory Committee; Executive Board member of the International Nuclear Risk Assessment Group. Paul served as Secretary to the UK Govt. scientific advisory Committee Examining Radiation Risks from Internal Emitters, led the European Environment Agency response to Fukushima, was Expert to the European Economic and Social Committee, and served as Advisor to the UK Ministry of Defence nuclear Submarine Dismantling Project.

David Elliott is Emeritus Professor of Technology Policy at the Open University. He worked initially with the UK Atomic Energy Authority at Harwell and then for the Central Electricity Generating Board in Bristol, before moving, in the early 1970s, to the Open University, where he carried out research and developed courses on technological innovation, focusing in particular on renewable energy technology development policy. Prof. Elliott has written extensively on sustainable energy policy and is co-editor of Palgrave Macmillan's Energy, Climate and Environment monograph series, and also editor the long-established journal, Renew (https://renewnatta.wordpress.com).

Daniel Gilbert is an Associate member of staff of the University of Dundee's Centre for Energy, Petroleum and Mineral Law and Policy (CEPMLP), and also a Masters-level alumnus of both CEPMLP, University of Dundee, and the Politics department of the University of Edinburgh. He is the recipient of the 2015 Energy, Petroleum, Mineral and Natural Resources Law & Policy Education Trust's £1,000 Management Prize for the best performing Masters-level Management student at CEPMLP. Daniel has undertaken commercial research consultancy globally on a range of extractive industries projects, including on India's coal sector, and also on behalf of the Scotland Malawi Partnership and Malawi. Daniel publishes on a wide range of natural resources topics, including water resources for which he is an award-winning

xxviii Notes on Contributors

author. He is a founding member of, and advisor to, the Dundee Africa Research Network, and a former member of staff of the universities of both Aberdeen and University College London.

Mohammad Hazrati is a PhD researcher at the Centre for Commercial Law Studies (CCLS) at Queen Mary University of London. He is also a Research Assistant for Energy Law and Policy at the University of Dundee. He studied oil and gas law (LLM) at Reading University. His research and expertise are particularly focused on energy justice in Canada, Iran, Malaysia and the United Kingdom.

Marc Hudson recently successfully defended his PhD at The University of Manchester. His thesis was entitled 'Enacted inertia: incumbent resistance to carbon pricing in Australia (1989–2011)'. He has had articles published in Technology in Society, Energy Research & Social Science and Environmental Politics (he is also social media editor for that journal). He is currently a Research Associate at the University of Manchester, looking at both platform capitalism's implications for urban mobility, and the networks around carbon finance advocacy. Formerly a physiotherapist, he is a long-term climate change activist in Manchester, who is intensely pessimistic about our species capacity to survive the twenty-first century.

Wairimu Karanja is the founder and lead consultant at Wairimu & Co., a legal advisory firm which provides specialist legal and policy advice, research and training in the areas of corporate law, energy and natural resources (ENR), investment and trade matters in Kenya and internationally. She has previously worked in leading Kenyan and international firms. Wairimu has over 10 years' legal experience, and has advised on ENR project contracting and finance, commercial transactions, immigration and employment, private equity, among others. She has also represented clients in international arbitration before tribunals of the ICC and FOSFA and advised on investment arbitration. Wairimu has authored in academic and industry publications and conducted research on regional and international ENR laws and treaties. She holds a master's degree in Energy Law and Policy.

Andrey Konoplyanik is the adviser to the Director General of Gazprom Export LLC (since 2013), co-chair of Work Stream 2 'Internal Markets' of the Russia-EU Gas Advisory Council (since 2011) and Professor at the Chair of International Oil and Gas Business at Gubkin Russian State University of Oil and Gas in Moscow, Russia (since 2008). An energy economist by back-

ground, Andrey specialises in energy economics, energy and investment legislation and energy financing bringing almost 40 years of experience in academia, government and industry. Andrey is also an Honorary Fellow and Associate for various academic institutions including the Universities of Aberdeen, Dundee and Athens. He has also previously worked as Deputy Minister of Fuel and Energy of the Russian Federation.

Alex Lenferna works as South African Climate Justice Campaigner for 350. org. He is a Fulbright and Mandela Rhodes Scholar and recently completed a PhD on climate ethics at the University of Washington in the US. He has written and researched widely on climate justice and his work is available at alexlenferna.wordpress.com. Alex has served in a number of climate justice advocacy roles within organised labour, student, and grassroots climate justice organisations. He is a first generation South African whose family hails from the small island nation of Mauritius.

Gokce Mete is Head of the Knowledge Centre at the International Energy Charter in Brussels, an intergovernmental organisation with over 90 signatories across the globe, whose work is dedicated to facilitating international cooperation in the energy sector. Previously, she was the Research Lead of the £3.4 million UK Government Department for International Development (DfID) funded Extractives Hub project at the University of Dundee's Centre for Energy, Petroleum and Mineral Law and Policy (CEPMLP). Her research focuses on regulation and governance of the extractives industries, including energy technologies, licensing and concessions, economic diversification policies, transparency and accountability. Dr. Mete has published several peerreviewed papers including book chapters on natural resources law and legal aspects of energy efficiency and renewable energies. Dr. Mete is a qualified lawyer with over 8 years of experience focused on climate change, energy and natural resources law and policy.

Tedd Moya Mose is a qualified lawyer and has advised on energy, environment and natural resources law, corporate and commercial law, and dispute resolution. He holds the inaugural PhD scholarship at the Energy Law Institute, Queen Mary University of London. His research interests focus on: international energy law and policy, the transition to sustainable energy systems, energy justice, and the role of technology in shaping a more sustainable energy future. He has held various visiting research positions at: the University of St. Andrews, Scotland; the University of Cape Town, South Africa; the University of Michigan (USA); and University of Dundee (Scotland). **Victoria R. Nalule** is a Research Fellow at the Extractives Hub project based at the Centre for Energy, Petroleum and Mineral Law and Policy, University of Dundee. She is a lawyer and a PhD holder in International Energy Law and Policy from CEPMLP, University of Dundee. She is also the founder and Executive Director of The African Energy and Minerals Management Initiative (AEMI), an NGO operating in Uganda with partners in South Sudan, Somalia and other African countries . Victoria offers extensive experience in the African Energy and Mining sectors having worked with different organisations/institutions including the East African Community (EAC) in Tanzania, Southern African Development Community Secretariat (SADC) in Botswana and Queen Mary University of London (EU energy project) just to mention but a few.

Nduta Njenga is an Energy Policy Advisor with the Ministry of Water, Irrigation and Energy in Ethiopia as an Oxford Policy Fellow, 2019-2021, and Senior Consultant at Wairimu & Co., a legal advisory firm which provides legal, investment and policy advice in corporate, energy and natural resources (ENR) and trade matters in Kenya and internationally. She is registered in Kenya with 7 years Post-Qualification experience working in the Public Sector (Government) and specifically in the areas of Governance, Energy and Natural Resources Management.

Sem Oxenaar works as both a researcher and advisor at DRIFT (Erasmus University Rotterdam) focusing on the energy transition and natural resource issues. He is especially interested in how different actors can influence and accelerate transitions and what tools they have at their disposal to do so. He combines academic research with advisory and applied research projects, mainly for governments, and lectures on transitions theory and sustainability transitions. He holds an MSc. in Integrated Natural Resource Management from the Humboldt University in Berlin (2017), and a Bachelor's degree in economics and environmental policy from Amsterdam University College (Honours, 2012). Currently he is involved in several national and international projects on themes as energy prosumption, the circular economy, sustainable mobility, and natural capital, and he is teaching on transitions theory.

Taner Şahin completed his PhD in Energy Law and Policy, and LLM in International Business Law and Transactions at the Centre for Energy, Petroleum and Mineral Law and Policy (CEPMLP), University of Dundee, Dundee, UK. He received his bachelor's degree in Business Administration

from Marmara University, İstanbul, Turkey. His main research areas are Electricity and Gas Market Reforms, EU Energy Law and Policy, and Commercial Law. He had full scholarship from the Republic of Turkey covering tuition fees and living expenses during his LLM and PhD studies in the UK. Taner Şahin is working as a full-time lecturer at the Law School, Ondokuz Mayıs University, Samsun, Turkey. He is currently teaching Company Law, Negotiable Instruments Law and Insurance Law.

Bill Slee is an interdisciplinary social scientist and Emeritus fellow of the James Hutton Institute, where before retirement he was Science Group Leader of the Social Economic and Geographical Sciences Group. Previously, he had been director of the Countryside and Community Research Unit in Cheltenham and a senior lecturer in the University of Aberdeen and the University of Plymouth. Throughout his career he has explored socio-economic change in rural economies, working on EU projects, for the various governments of the UK and for OECD and the World Bank.

Ida Dokk Smith is a PhD Fellow at the Department of Political Science at the University of Oslo and affiliated with the research centre Strategic Challenges in International Climate and Energy Policy (CICEP). Her research interest is how to transition towards a low carbon energy system within a timeframe aligned with international climate change commitments. She is particularly interested in the political dynamics behind such large-scale sociotechnical system change and how domestic transitions can be accelerated through policies and changing relationships between traditional energy providers and the mobilisation of end-users. Ida has a Master of International Affairs from Columbia University New York and is a Fulbright Scholar Alumni.

Cassandra Star's research centres on environmental politics and policy, with a focus on the politics of climate change and on the role, actions and influence of non-government organisations in this arena. She is particularly interested in both the political influence of the climate movement, but also the formal and informal networks and social learning that occur between groups in the non-government sector around climate change issues.

Jale Tosun is Professor of Political Science at Heidelberg University and codirector of the Heidelberg Center for the Environment. Her research interests include comparative public policy, international political economy, public administration, and European integration. She also serves as associate editor of the journals *Policy Sciences* and *International Review of Public Policy*.

John Whitton is Professor of Engineering and Social Science at the University of Central Lancaster. His research is at the interface between communities and large-scale infrastructure development, such as the industrial complex associated with energy production and consumption. John's approach is participatory and transdisciplinary, working with communities to co-produce research. He is a Director of the UCLan Centre for Energy, Sustainable Development and Resilience and the Institute for Citizenship, Society and Change at the University of Central Lancashire, Preston, UK.

Trevelyan S. Wing is a PhD researcher at the Centre for Environment, Energy and Natural Resource Governance (C-EENRG) at the University of Cambridge. A former DAAD Scholar at Heidelberg University and Fellow of the Heidelberg Center for the Environment, his work focuses on low carbon energy transitions and sustainable urban development and he is currently completing his doctoral thesis on city-level energy policy in Germany. Wing holds an MPhil from the University of Oxford and a BA from Dartmouth College.

Geoffrey Wood is a Lecturer in International Energy Law and Policy at the School of Law, University of Stirling. An energy and environmental law, policy and regulatory specialist, his work focuses on the development of legal and governance frameworks for sustainable energy transitions to optimise policy delivery in terms of environmental, social, economic, political and technological outcomes. Recent work includes exploring the impact of austerity on environmental decision making in Scotland, a critical analysis of policy risk and politics on low carbon energy deployment in the UK and Scotland, the role of definitions in renewable and low carbon energy governance, and the book 'A Critical review of Scottish Renewable and Low Carbon Energy Policy' (Palgrave Macmillan, 2017). He has published extensively on energy and environmental issues, and has published over 30 articles, books, book chapters and other publications. Geoff has previously held research, lecturing and consultancy positions for various organisations, including the Scottish Government, University of Dundee, Offshore Renewables Institute, Royal Society of Edinburgh and the joint UK Department for International development-University of Dundee led Extractives Hub project.

Iain Wright is currently an affiliate at the University of Glasgow, Adam Smith Business School. This follows a career spent in the electricity industry working in both Scotland and Ireland. With over 30 years working in the electricity industry, Iain has an uncommon insight into the impacts of ownership structures, business scale, strategic objectives and organisational cultures that have emerged during a period of significant structural and technological change. Iain's research interests include energy policy, the economics of electricity generation and supply, electricity market operation and utility regulation.