julia Quick
Syntax

A Pocket Guide for Data Science
Programming

Antonello Lobianco

APress’

Julia Quick Syntax
Reference

A Pocket Guide for Data
Science Programming

Antonello Lobianco

Apress’

Julia Quick Syntax Reference: A Pocket Guide for Data Science
Programming

Antonello Lobianco
Nancy, France

ISBN-13 (pbk): 978-1-4842-5189-8 ISBN-13 (electronic): 978-1-4842-5190-4
https://doi.org/10.1007/978-1-4842-5190-4

Copyright © 2019 by Antonello Lobianco

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint,
paperback, or audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484251898. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5190-4

Table of Contents

About the Author ... —————— ix
About the Technical REVIEWETccusessssmsssmsssmsssmsssssssssssssssssssssssssssans xi
Acknowledgments.......cccccrmssssssnnsnmnmesssssssssssnsnssssssssssssssnnnsssesssssssnnnnns Xiii
Introduction........cccvemnmmmmmmis s ———————— Xv

Part I: Language COrecucemmmmsssennnmmssssssnssssssssnsssssssnnsnsssnns |

Chapter 1: Getting Started.........ccccorcmrirsmmnssmrmssmnmsssssssss s 3
LI LY 3
1.2 InSTAlliNG JUI@......coveeirceecer s 5
1.3 RUNNING JUNA ..o 8
1.4 Miscellaneous Syntax EIEMENtSccccecvivvnvnieniennsensesenssessesessessssessessens 10
I 5 o 16 1o [S 11

1.5.1 Using the Package Manager...........ccocvirvrrnneniensensensnesensessesssessesenns 12
1.5.2 USING PACKAQGESceerreririrnieriritris s s s s s s sse s snesae s 13
1.6 Help SYSIEM ... e 15
Chapter 2: Data Types and Structures..........c.cccussmssssssssssnssssnsssassnsnss 17
2.1 Simple Types (NON-CONtaINErS).........ccoreeerrenerrenerensesesesessssesessesessesesesesenns 18
2.1.1 Basic Mathematic Operationsccccccvvniennnnsninn s 19
P B 4 T 19
2.2 Arrays (LISES) .vvuveerrereresseresssssssssesessenns 21
2.2.1 Multidimensional and Nested Arrays.........c.cuouernnrensenesesesensesessesensnns 25
2.3 TUPIES ..ottt e s r e e nr e 30

iii

TABLE OF CONTENTS

2.4 NAMEU TUPIES ...oveeeeriererrir s s s e r e s s r e sae e 31
2.5 DICHIONAIIESeceeecrerereree e 32
p T S 34
2.7 Memory and COPY ISSUESccorererenerenseresesessesessssesessssessssesessesessesessssesenns 34
2.8 Various Notes 0n Data TYPEScccvermrnsernsesnsese s sessesssssessssesens 38
2.8.1 Random NUMDEIS.........cvereecrerereee s 39
2.8.2 Missing, Nothing, and NaNccccoverninninnnnsssesese s 39
Chapter 3: Control Flow and Functionscccucccummmnsssennmnsssssnsssssssnnns 41
3.1 Code Block Structure and Variable SCOPE........ccocevvvervrierernsnsenesesesserenens 4
3.2 Repeated Iteration: for and while Loops, List Comprehension, Maps............ 43
3.3 Conditional Statements: if Blocks, Ternary Operator...........cccooveeerrencrenccnnn 44
3.4 FUNCLIONS ...t 45
341 ArQUMENTS ... e re e e nre s 47
342 REIUMM VAIUE ... 49
3.4.3 Multiple-Dispatch (aka Polymorphism)ccccvvninnincnnennsnseniennens 49
3.4.4 Templates (Type Parameterization)..........ccccoevvnvniniennsnsnnennsnsensennens 50
3.4.5 FUNctions as ODJECTSccccevrervreriesnsne s snens 51
3.4.6 Call by Reference/Call by Value...........ccccrevvnienereccrnccrnesereseres e 51
3.4.7 Anonymous Functions (aka “Lambda” Functions)..........cccceevverercennen. 52
3.4.8 Broadcasting FUNCLIONS..........cccoeriinnninienn s 53
3.5 D0 BIOCKScoveueereeerererereesse e resese e e s s nenns 54
3.6 EXItING JUlI@......coereerrrerercse e 54
Chapter 4: Custom TYPEeS ...cuureemrrmsssnnnnmsssssnnssssssssnnssssssnnnssssssnnssssssnnnnss 57
4.1 Primitive Type Definitionc.ccocvivvrvnininnnsniere e sese e sessesae e 58
4.2 Structure Definition..........cocorrniencnmnnn s 59
4.3 Object Initialization and USAQE.........ccccrrrerrirneresernsenenesere e ses e sesesenns 60

iv

TABLE OF CONTENTS

4.4 Abstract Types and INheritance..........ccocvvvverninin s 61
4.4.1 Implementation of the Object-Oriented Paradigm in Julia...........c.cc..... 63
4.5 Some Useful Functions Related t0 TYPeSccccvvvrnvnnennnscrnsesene s 66
Chapter 5: Input/Qutput.........cccccrvirmmmismmmssnsmsssnsessssesssssssssssssssnnsnssns 67
5.1 Reading (INPUL)......cceercereee e 68
5.1.1 Reading from the Terminal ..o 68
5.1.2 Reading from @ Filecccoovvnvrininrnsne s 69
5.1.3 Importing Data from EXCEel.........cccevvvrinirininrsr e senennens 71
5.1.4 Importing Data from JSON.........cccooiiininininrnrr e 72
5.1.5 Accessing Web Resources (HTTP)ccccvvvnvnsniniennsnsese e ssssensennens 74
5.2 Writing (OUIPUL) ..cveeeeccee s 75
5.2.1 Writing to the Terminal ..o 75
5.22Writing 10 @ File ...ceoveceereeeceee e 76
5.2.3 EXPOrting 10 CSV ... 77
5.2.4 Exporting Data to EXCelccovevreerreneresererese e 78
5.2.5 Exporting Data to JSONccoeerriermrererereres e 79
5.3 Other Specialized 10.........ccucvvrernnnine s 80
Chapter 6: Metaprogramming and Macros........cccsrussssennmsssssssssssssnnnns 81
ST)7 1] 0] O 82
6.2 EXPIESSIONS....cc.erieieerieriirsis e s s see s s e s e e s s sae s e s e e b s s e g e snesaenanan 83
6.2.1 Creating EXPreSSiONS.....ccuvvererrereressnsessersesssssssessessesssssssessessessssessessens 84
6.2.2 Evaluating Symbols and EXPressions........ccoevverrervereressensesessessssessensens 85
6.3 MIACTOS ..o e 87
6.3.1 Macro Definitioncccoerenernnrnesree s 87
6.3.2 MACIO0 INVOCALION........covieereceriee e 88

Lo T B 11 T o 0 89

TABLE OF CONTENTS

Chapter 7: Interfacing Julia with Other Languages........ccuuseeressssnnnnes 91
0 Y1 = 92
7.2 JUlIA 2 G e 94

7.2.1 Interactive C++ Prompt........ccociriniininn s senennens 94
7.2.2 Embed C++ Code in @ Julia Program.........ccccvcvivienninsenienesnnsensennens 95
7.2.3L0ad @ C++ LIDrary ..o sssssssessessens 98
7.3 JUlid 2 PYINON ... 100
7.3.1 Embed Python Code in a Julia Programcoccevveennenerencrenscnens 101
7.3.2 Use Python LiDraries........covevrenerenerssesessesesssessssesessesessssessssesensesenns 102
7.3.3 Pydulia: Using Julia in Python..........ccovevrenrenennnc e 103
TAJUA 2 R e 106
7.4.1 Interactive R Prompt........coocrvnininnsnn e 107
7.4.2 Embed R Code in @ Julia Program.........ccccovrenernsmsnsesesesessenesensenenns 107
7.4.3 USE R LIDIariEscceeeerreererereseeresesesse s sesse e sessesenns 108
7.4.4 JuliaCall: Using Julia in R ..o 109

Chapter 8: Effectively Write Efficient Codecccccmmrrrrrsssssnnnnnnnnnnnas 113

8.1 PErfOrmManCecocvvienineririrse s 114
8.1.1 BeNChMArKiNGcccecervererererrerseressesessessessesessessessessesessessessessssessesnees 114
T I o () 71 1T O 116
8.1.3Type StaDIlityccoceerererircre e 120
8.1.4 Other Tips to Improve Performance.........c.ccocvvvveriernsensensessessssessessenns 122

8.2 Code Parallelizationccoouverererennsnsseseressssssse s 124
8.2.1 Adding and RemOoVing PrOCESSESccvvereerrerenrersersessessssessessessssessessees 124
8.2.2 Running Heavy Computations on a List of ltems..........ccecvvvvvieriennene 126
8.2.3 Aggregate RESUILScccvrerverieriensinne s sne e 127

TABLE OF CONTENTS

8.3 DEDUGGING...cuirerte e ————————— 128
8.3.1 Introspection TOOIS.........c.ccvverveererinsnne e 129
8.3.2 Debugging TOOISc.cceverierierier e sre e 130

8.4 Managing Runtime Errors (EXCEPLIONS).......cccvverervinsesiennsnnsessesesessensennens 133

Part II: Packages Ecosystemssssseennccennsnnnnnnnnnnnnns 139

Chapter 9: Working with Datacccccmmmmmmmmmmmsssssssnnnmsmmsssssssssnns 137
9.1 Using the DataFrames Package............ccvvrmnnnsnnennsssssss s 138
9.1.1 Installing and Importing the Libraryccccuvvervrrnsesnenenesenensennnne 138
9.1.2 Creating a DataFrame or Loading Dataccoeveevnsennnesennenessnennns 139
9.1.3 Getting Insights About the Data.............ccueerrrerrnsrnsesseserese e 141
9.1.4 Filtering Data (Selecting or Querying Data)...........ccoovverrnesernserrnsenens 142
9.1.5 Editing DAtccoveeerrererncrrseser e 145
9.1.6 Editing STrUCTIUNE.......ccereereercre e 146
9.1.7 Managing MisSing ValUES..........ccccvrvrernserensesesesessssesessssessesessssesessesenns 148
9.1.8 The Split-Apply-Combine Strategycccerrermresernsesessesesesesensenenns 149
9.1.9 Pivoting Datacccevveererernerrrese s s 153
9.1.10 Dataframe EXPOrt.......cccoovvnvnininnninsne s 159
9.2 Using INdeXedTabIesccouvererinmrnsesrnesnese s sessesenns 161
9.2.1 Creating an IndexedTable (NDSPArSE)ccocvererrererrnsesessenessenersnsenenns 162
9.2.2 ROW FilteriNgccccovvreeerreserrnesssesess s sesssesssse s e srssesenns 163
9.2.3 Editing/Adding VaIUES.........cccevermrenernsesinesessse e sessssessssesenns 164
9.3 Using the Pipe OPerator........cccuevvvnieniennsensessessesessessessessssessessesssssssessessens 164
9.4 PIOtHING.....ceeeererrererrerserersesesseresessssessessessesesessessessssessessesaesessesnesaesssnennessens 166
9.4.1 Installation and Backendscccovrrinnnennnnnsnssesesssesesese s 166
9.4.2 The Plot FUNCLION........ccceicrirssce s 169
9.4.3 Plotting from DataFrames.........ccoevvvrrnerennnensense s sessessesessssessesse s 172
LB 1 o O 175

vii

TABLE OF CONTENTS

Chapter 10: Mathematical LIbraries.........ccccusssssnnsmsssssnnsssssssnssssssnnns 177
10.1 JuMP, an Optimization FrameworkK...........ccocvveererernrenenesenesesessesessesessenes 178
10.1.1 The Transport Problem: A Linear Problem..........ccccovvvvnierenenseniennens 180
10.1.2 Choosing Between Pizzas and Sandwiches, a Non-Linear
ProOBIBM ... s 188
10.2 SymPy, @ CAS SyStem ... s 191
10.2.1 Loading the Library and Declaring Symbols...........ccccoccverierniniennens 191
10.2.2 Creating and Manipulating EXpressions.........c.ccccvvvvnnnneniennsensennens 192
10.2.3 Solving a System of EQUAtions............cccvirnincninnsnsnsenessssessennens 193
10.2.4 Retrieving Numerical Values...........cccccvcrinisnsnenennsnesesss s 193
10.3 LsqFit, @ Data Fit LIDrarycccvoevenrnnennnesesese s sessesesseseseenes 194
10.3.1 Loading the Libraries and Defining the Model.........c.cccooeernerernnens 195
10.3.2 PArAMELErScceeecereeereeeresee e se e 195
10.3.3 Fitting the Modelccoceririririnerncr e 196
10.3.4 Retrieving the Parameters and Comparing them with the
ODSErVALIONS......cceceeeecrerce e 196
Chapter 11: UtilitieScccivnsssmmmmmmssnnmmmsssssssnmsssssssnmsssssssssssssssssssssnnns 199
11.1 Weave for Dynamic DOCUMENTScccevverneneresesnsesenesesssesesesessesessenes 199
112 ZIP FIlES...ceeeeececeeesss e 203
11.2.1 Writing a Zip ArChiVe.....ccccevevercere ettt ses e ssennens 203
11.2.2 Reading from a Zipped Archivecccccvevnvnrniennsensensenesessessensens 204
11.3 Interact and Mux: Expose Interacting Models on the Web............cccveenee. 206
11.3.1 Importing the LiDrariescocvvvverevennenveriesssessesesesessesessessssessessens 206
11.3.2 Defining the Logic of the Model...........ccccvvvnrnverieninnnsnsenenessensensens 206
11.3.3 Defining Controls and Layoutccccvverrernnensenienenensensesesessessensens 207
11.3.4 Providing Widgets t0 WED USEIS........ccvververnnerrereresessessessessssessensens 208
1T = 211

viii

About the Author

Antonello Lobianco, PhD is a research engineer employed by a French
Grande école (Polytechnic University). He works on biophysical and
economic modeling of the forest sector and is responsible for the

Lab Models portfolio. He uses C++, Perl, PHP, Python, and Julia. He
teaches environmental and forest economics at the undergraduate and
graduate levels and modeling at the PhD level. He has been following
the development of Julia as it fits his modeling needs, and he is the

author of several Julia packages (search for sylvaticus on GitHub for more

information).

ix

About the Technical Reviewer

German Gonzalez-Morris is a polyglot software architect/engineer with
20+ years in the field. He has knowledge of Java (EE), Spring, Haskell, C,
Python, and JavaScript, among others. He works with web distributed
applications. Germdn loves math puzzles (including reading Knuth) and
swimming. He has tech reviewed several books, including an application
container book (Weblogic), as well as titles covering various programming
languages (Haskell, TypeScript, WebAssembly, Math for Coders, and
RegExp, for example). You can find more information on his blog
(https://devwebcl.blogspot.com/) or Twitter account (@devwebcl).

https://devwebcl.blogspot.com/

Acknowledgments

This work has been supported by the French National Research Agency
through the Laboratory of Excellence, ARBRE, part of the “Investissements
d’Avenir” program (ANR 11 - LABX-0002-01).

I want to thank Germdan Gonzdlez-Morris for his valuable help in
finding errors in the code and improving the description of the language.
I'want to also thank Mark Powers, the Apress coordinating editor, for his
numerous “check ins” that pushed me to continue and finish the book.

This has been possible thanks to the understanding and support of
my family.

xiii

Introduction

This Julia quick syntax reference book covers the main syntax elements of
the Julia language as well as some of its more important packages.

The first chapter explains the basic skills needed to set up the software
you need to run and develop Julia programs, including managing Julia
packages.

Chapter 2 presents the many predefined types (integers, strings, arrays,
etc.) and the methods to work with them. Memory and copy issues are also
presented in this chapter, together with an important discussion about the
implementation of the various concepts of missingness.

After the basic data types have been introduced, Chapter 3 deals with
how to organize them in a sequence of logical statements to compose your
program. Control flow, functions, blocks, and scope are all discussed in
this chapter.

In Chapter 4, we extend our discussion to custom types—in Julia,
both primitive and composite types can be custom-defined—and to their
organization in the program, either using inheritance or composition. This
chapter will be of particular use to readers accustomed to other object-
oriented programs, in order to see how to apply object-oriented concepts
in Julia.

Chapter 5 explains how to retrieve the inputs needed by your program
from a given source (the terminal, a text/CSV/Excel/JSON file, or a remote
resource) and conversely, to export the outputs of your program.

In Chapter 6, we discuss a peculiar feature of Julia, that is, the
possibility to manipulate the code itself after it has been parsed, but
before it is compiled and run. This paves the way to powerful macro
programming. We discuss it and present the concepts of symbols and
expressions in Chapter 6.

INTRODUCTION

Julia is a relatively new language, and while the package ecosystem is
developing extremely rapidly (as most packages can be written directly in
the Julia language alone), it is highly likely that you will still need libraries
for which a direct port to Julia is not yet available. Conversely, your main
workflow may be in another, slower, high-level language and you may want
to use Julia to implement some performant-critical tasks. Chapter 7 shows
how to use C, C++, Python, and R code and their relative libraries in Julia
and, conversely, embed Julia code in Python or R programs.

The following chapter (Chapter 8) gives a few recommendations for
writing efficient code, with runtime performances comparable to compiled
languages. We also deal here with programmer’s efficiency, discussing
profiling and debugging tools and with a short introduction to runtime
exceptions.

This completes the discussion of the core of the language. Julia,
however, has been designed as a thin language where most features are
provided by external packages, either shipped with Julia itself (a sort of
Julia Standard Library) or provided by third parties.

Therefore, the second part of the book deals with this Julia package
ecosystem. Chapter 9 introduces the main packages for working with
numerical data: storage with data structure packages like DataFrames and
IndexedTables; munging with DataFramesMeta, Query, and Pipe; and
visualization with the Plot package.

If Chapter 9 deals with processing numerical data, Chapter 10
deals with mathematical libraries for more theoretical work. JuMP is an
acclaimed “algebraic modeling language” for numerical optimization (and
can be in itself the primary reason to learn about Julia). We present two
complete examples with linear and non-linear models. The second model
is then rewritten to be analytically resolved with SymPy, which is a library
for symbolic computation, e.g. the analytical resolution of derivatives,
integrals, and equations (and systems of equations). Chapter 10 ends
with a presentation of LsqFit, a powerful and versatile library to fit data.
Finally, Chapter 11 concludes the book with a series of tools that are of

INTRODUCTION

more general use, like composing dynamic documents with Wave, dealing
with ZIP files with ZipFile, and exposing a given Julia model on the web
with Interact and Mux. Examples given in the text are intentionally trivial.
They are minimal working examples of the syntax for the concepts they
explain. If you are looking for recipes directly applicable to your domain, a
“cookbook” kind of book may be more convenient.

While each package has been tested specifically with Julia 1.2 and
1.3-rc4, thanks to the Julia developers’ commitment to a stable API, they
should remain relevant for the entire 1.x series. Concerning third-party
packages, we report the exact version we tested our code with. The section
entitled “Using the Package Manager” in Chapter 1 explains how to update
a package to a given version if subsequent versions of the package break
the APIL.

Is such cases, please report the problem to us using the form at
https://julia-book.com. We will regularly publish updates and errata on
this site, where a discussion forum focused on the book is also available.

xvii

https://julia-book.com

PART |

Language Core

CHAPTER 1

Getting Started

1.1 Why Julia?

With so many programming languages available, why create yet another
one? Why invest the time to learn Julia? Is it worth it?

One of the main arguments in favor of using Julia is that it contributes
to improving a trade-off that has long existed in programming—fast coding
versus fast execution.

On the one side, Julia allows the developer to code in a dynamic, high-
level language similar to Python, R, or MATLAB, interacting with the code
and having powerful expressivity (see Chapter 6, for example).

On the other side, with minimum effort, developers can write
programs in Julia that run (almost) as fast as programs written in C or
FORTRAN.

Wouldn't it be better, though, to optimize existing languages, with their
large number of libraries and established ecosystems, rather than create a
new language from scratch?

Well, yes and no. Attempts to improve runtime execution of dynamic
languages are numerous. PyPy (https://pypy.org), Cython (https://
cython.org), and Numba (https://numba.pydata.org) are three notable
examples for the Python programming language. They all clash with one
fact: Python (and, in general, all the current dynamic languages) was
designed before the recent development of just-in-time (JIT) compilers,
and hence it offers features that are not easy to optimize. The optimization
tools either fail or require complex workarounds in order to work.

© Antonello Lobianco 2019
A. Lobianco, Julia Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5190-4_1

https://pypy.org
https://cython.org
https://cython.org
https://numba.pydata.org

CHAPTER 1 GETTING STARTED

Conversely, Julia has been designed from the ground up to work
with JIT compilers, and the language features—and their internal
implementations—have been carefully considered in order to provide
the programmer with the expected productivity of a modern language, all
while respecting the constraints of the compiler. The result is that Julia-
compliant code is guaranteed to work with the underlying JIT compiler,
producing in the end highly optimized compiled code.

0 The Shadow Costs of Using a New Language

If it is true that the main “costs” of using a new language relate
to learning the language and having to abandon useful libraries
and comfortable, feature-rich development editors that you are
accustomed to, it is also true that in the Julia case these costs are
mitigated by several factors:

e The language has been designed to syntactically
resemble mainstream languages (you’ll see it in this
book!). If you already know a programming language,
chances are you will be at ease with the Julia syntax.

e Julia allows you to easily interface your code with all
the major programming languages (see Chapter 7,
“Interfacing Julia with Other Languages”), hence
reusing their huge sets of libraries (when these are not
already ported to Julia).

CHAPTER 1 GETTING STARTED

¢ The development environments that are available—
e.g., Juno (https://junolab.oxrg), |Julia Jupiter
kernel (https://github.com/Julialang/
IJulia.jl), and VSCode Julia plugin (https://
github.com/JuliakditorSupport/julia-
vscode)—are frankly quite cool, with many common
features already implemented. They allow you to be
productive in Julia from the first time you code with it.

Apart from the breakout in runtime performances from traditional
high-level dynamic languages, the fact that Julia was created from scratch
means it uses the best, most modern technologies, without concerns over
maintaining compatibility with existing code or internal architectures.
Some of the features of Julia that you will likely appreciate include built-in
Git-based package manager, full code introspection, multiple dispatches,
in-core high-level methods for parallel computing, and Unicode
characters in variable names (e.g., Greek letters).

Thanks to its computational advantages, Julia has its natural roots
in the domain of scientific, high-performance programming, but it is
becoming more and more mature as a general purpose programming
language. This is why this book does not focus specifically on the
mathematical domain, but instead develops a broad set of simple,
elementary examples that are accessible even to beginner programmers.

1.2 Installing Julia

Julia code can be run by installing the Julia binaries for your system
available in the download section (http://julialang.org/downloads/) of
the Julia Project website (https://julialang.org).

https://junolab.org
https://github.com/JuliaLang/IJulia.jl
https://github.com/JuliaLang/IJulia.jl
https://github.com/JuliaEditorSupport/julia-vscode
https://github.com/JuliaEditorSupport/julia-vscode
https://github.com/JuliaEditorSupport/julia-vscode
http://julialang.org/downloads/
https://julialang.org

CHAPTER 1

The binaries ship with a Julia interpreter console (aka, the “REPL"—
Read, Eval, Print, Loop), where you can run Julia code in a command-line

fashion.

GETTING STARTED

For a better experience, check out an Integrated Development

Environment, for example, Juno (http://junolab.org/) an IDE based on

the Atom (https://atom.io) text editor, or IJulia (https://github.com/

Julialang/IJulia.jl), the Julia Jupiter (http://jupyter.org/) backend.
Detailed setup instructions can be found on their respective sites, but

in a nutshell, the steps are pretty straightforward.

¢ For Juno:

Install the main Julia binaries first.

Download, install, and open the Atom text editor
(https://atom.io).

From within Atom, go to the Settings » Install
panel.

Type uber-juno into the search box and press
Enter. Click the Install button on the package with
the same name.

o For IJulia:

Install the main Julia binaries first.

Install the Python-based Jupyter Notebook server
using the favorite tools of your OS (e.g., the Package
Manager in Linux, the Python spip package
manager, or the Anaconda distribution).

From a Julia console, type using Pkg; Pkg.

update();Pkg.add("IJulia");Pkg.
build("IJulia").

http://junolab.org/
https://atom.io
https://github.com/JuliaLang/IJulia.jl
https://github.com/JuliaLang/IJulia.jl
http://jupyter.org/
https://atom.io

CHAPTER 1 GETTING STARTED

e TheIJulia kernel is now installed. Just start the
notebook server and access it using a browser.

You can also choose, at least to start with, not to install Julia at all,
and try instead one of the online computing environments that support
Julia. For example, JuliaBox (https://juliabox.com/), CoCalc (https://
cocalc.com/doc/software-julia.html), Nextjournal (https://
nextjournal.com), and Binder (https://mybinder.org).

Q Some tricks for Juno and lJulia
e Juno can:
e Enable block selection mode with ALT + SHIFT

e Run a selection of code by selecting it and either
selecting Run Block or typing SHIFT + Enter qn

Windows and Linux or < + Enter on Mac.

e Comment/uncomment a block of code with
cTRL + / (Windows and Linux) or awo + / (Mac).

e |Julia:

e (Check out the many keyboard shortcuts available
from Help » Keyboard Shortcuts.

e Need to run Julia in a computational environment
for a team or a class? Use JupyterHub (https://
github.com/jupyterhub/jupyterhub), the
multi-user solution based on Jupyter.

https://juliabox.com/
https://cocalc.com/doc/software-julia.html
https://cocalc.com/doc/software-julia.html
https://nextjournal.com
https://nextjournal.com
https://mybinder.org
https://github.com/jupyterhub/jupyterhub
https://github.com/jupyterhub/jupyterhub

CHAPTER 1 GETTING STARTED

1.3 Running Julia

There are many ways to run Julia code, depending on your needs:

1. Julia can run interactively in a console. Start julia
to obtain the REPL console, and then type the
commands there (type exit() or use CTRL+D when
you are finished).

2. Create a script, i.e. a text file ending in . j1, and
let Julia parse and run it with julia myscript.jl
[argl, arg2,..].

Script files can also be run from within the Julia
console. Just type include("myscript.j1").

3. InLinux or on MacOS, you can instead add at the
top of the script the location of the Julia interpreter
on your system, preceded by #! and followed by
an empty row, e.g. #! /usr/bin/julia (You can
find the full path of the Julia interpreter by typing
which juliain aconsole.). Be sure that the file is
executable (e.g., chmod +x myscript.jl).

You can then run the script with . /myscript.jl.

4. Use an Integrated Development Environment (such
as those mentioned), open a Julia script, and use the
run command specific to the editor.

You can define a global (for all users of the computer) and local (for a
single user) Julia file that will be executed at any startup, where you can for
example define functions or variables that should always be available. The
location of these two files is as follows:

CHAPTER 1 GETTING STARTED

o Global Julia startup file: [JULIA_INSTALL FOLDER]\
etc\julia\startup.jl (where JULIA INSTALL_ FOLDER
is where Julia is installed)

o Local Julia startup file: [USER_HOME_FOLDER]\.julia\
config\startup.jl (where USER_HOME_FOLDER is
the home folder of the local user, e.g. #HOMEPATH% in
Windows and ~ in Linux)

Remember to use the path with forward slashes (/) with Linux. Note
that the local config folder may not exist. In that case, just create the
config folder as a . julia subfolder and start the new startup.jl file
there.

Q Julia keeps all the objects created within the same work session

in memory. You may sometimes want to free memory or “clean up”
your session by deleting no longer needed objects. If you want to do
this, just restart the Julia session (you may want to use the trick
mentioned at the end of Chapter 3) or use the Revise. jl
(https://github.com/timholy/Revise.jl) package for finer
control.

You can determine which version of Julia you are using with the
versioninfo() option (within a Julia session).

https://github.com/timholy/Revise.jl

