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Introduction

Surely there’s no shortage of C++ intro texts. Why write yet another?

I’m glad you asked.

Ever since moving from Pascal to C++ (back when dinosaurs roamed the Earth), I’ve 

been underwhelmed by available resources. I wanted something quirky and fun to read, 

with sufficient coverage and fun examples, like the old Oh! Pascal! text by Cooper and 

Clancy.

It’s about time we had this again. Even a perfectly accurate text with broad coverage 

gives you nothing if you fall asleep when you read it. Well, nothing but a sore neck.

But the other reason, of course, is to promote laziness.

We all want our projects to be done more quickly, with less wailing and gnashing of 

teeth. Sometimes, it’s said, you have to put your nose to the grindstone. Maybe, but I like 

my nose too well for that. I’d rather do things the easy way.

But the easy way isn’t procrastinating and dragging my feet: it’s to find something 

I love doing and do it so well that it feels relatively effortless. It’s producing something 

robust enough that when it does break down, it tells me exactly what the problem is, so 

I don’t have to spend a week pleading with it to explain itself. It’s writing code that I can 

use again and again, adapting it to a new use in hours instead of days.

You’ll benefit from this book if you’re a beginning programmer or one who hasn’t yet 

learned C++ or its descendants like Java or C#; if you already know a C++-like language, 

you can go a little faster.

Here’s what you can expect:

•	 A pleasant reading experience.

•	 Adequate coverage.

•	 Games, that is, use of the SDL graphics library, which makes it easy 

to get graphics programs working quickly and easily. It isn’t fair 

that Python and Visual Basic should get all the eye candy.1 The SDL 

1�”Eye candy”: things that look good on the screen. See The New Hacker’s Dictionary, available at 
time of writing at www.catb.org/jargon/.

http://www.catb.org/jargon/
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library is used through Chapter 12. After that we’ll use more standard 

(but less visually interesting) I/O, so we can also get practice with the 

more common console programs.

•	 …and an easy introduction to SDL’s graphical magic, using the SSDL 

library (see below).

•	 Sufficient examples, and they won’t all be about actuarial tables or how 

to organize an address book. (See “pleasant reading experience” earlier.)

•	 Antibugging sections throughout the text to point out common or 

difficult-to-trace errors – and how to prevent them.

•	 Compatibility with g++ and Microsoft Visual Studio.

•	 Compliance with C++17, the latest standard, and the nice goodies it 

provides.

•	 For g++ programmers, instructions on using g++, the ddd/gdb 

debugger system, and Makefiles; for Visual Studio, use of the 

debugger and project files.

•	 An appreciation of laziness.

•	 A cool title. Maybe I could have tried to write a “For Dummies” book, 

but after seeing Bioinformatics for Dummies I’m not sure I have what 

it takes.

�Why SDL?
It’s surely more enjoyable to make programs with graphics and WIMP2-style interaction 

than to merely type things in and print them out. There’s a variety of graphical libraries 

out there. SDL, or Simple DirectMedia Layer, is popular, relatively easy to learn, portable 

between platforms, and fast enough for real-world work, as evidenced by its use in actual 

released games (Figure 1).

2�WIMP: window, mouse, icon, pointer. What we’re all used to.

Introduction
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�Why SSDL?
…but although SDL is relatively simple, it’s not simple enough to start with on day 1  

of programming with C++. SSDL (Simple SDL) saves you from needing to know things  

we don’t get to until Chapter 143 before doing basic things like displaying images 

(Chapter 2) or even printing a greeting (Chapter 1). It also hides the initialization and 

cleanup code that’s pretty much the same every time you write a program, and makes 

error handling less cumbersome.

You may want to keep using SSDL as is after you’re done with this book, but if you 

decide to go on with SDL, you’ll find you know a lot of it already, with almost nothing to 

unlearn: most SSDL function names are names from SDL with another “S” stuck on the 

front. We’ll go into greater depth on moving forward with SDL in Chapter 29.

3�Pointers.

Figure 1.  A game of Freeciv, which uses the SDL library.
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�Software You Will Need
Your compiler, plus various free SDL libraries (SDL2, SDL2_Image, SDL2_TTF, and 

SDL2_Mixer), my free SSDL library, and (for Chapter 2, and whenever you need it) a 

deluxe graphics editing package. I use GIMP, which is free, and at time of writing is 

available from www.gimp.org.

SSDL is available at www.apress.com/9781484251867, as is my sample code.

In Unix, you may choose to install the GNU Free Fonts library, or msttcorefonts, 

Microsoft Core Fonts for the Web. Look for ttf-mscore-fonts and fonts-freefont-

ttf (Debian and Ubuntu systems) and gnu-free-fonts-common and msttcore-fonts-

<something or other> (Red Hat and Fedora), remembering that systems differ, 

standards change, and Unix is hard. But if you’re using Unix, you knew that. I use 

Microsoft Core Fonts for the Web in the example programs.

Programming with sound may not be practical over remote connections, because 

of the difficulty of streaming sound. If using Unix emulation, you might check the 

emulator’s sound capabilities – say, by playing a video.

�If this is for a course…
C++ for Lazy Programmers covers through pointers, operator overloading, virtual 

functions, templates, exceptions, STL – everything you might reasonably expect in two 

semesters of C++.

The SSDL library does take a small amount of time, but the focus is firmly on writing 

good C++ programs, with SSDL there just to make the programs more enjoyable. How 

many labs or projects do you have in which it’s hard to stop working because it’s so much 

fun? It may not happen with all these problems, but I do see it happen.

SDL also gives a gentle introduction to event-driven programming.

In the first 12 chapters, there is emphasis on algorithm development and 

programming style, including early introduction of constants.

After Chapter 12, the examples are in standard I/O, though SDL is still an option for a 

few exercises and is used in Chapter 21 and (briefly) Chapter 26.

Introduction
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A normal two-semester sequence should cover approximately

•	 Semester 1: The first 12 chapters, using SDL; Chapter 13, introducing 

standard I/O. With some exceptions (& parameters, stream I/O), 

this looks a lot like C, and includes variables, expressions, functions, 

control structures, arrays, and stream I/O.

•	 Semester 2: Chapters 14–22, using standard I/O, covering pointers, 

character arrays, classes, operator overloading, templates, 

exceptions, virtual functions, multiple inheritance (briefly), and a 

taste of the Standard Template Library using vectors and linked lists.

Subsequent chapters cover material that wouldn’t easily fit in two semesters, 

including more of the Standard Template Library, history of C++, C programming, and a 

few more esoteric topics.

�Online Help
Here are some sites to go to for more information, with URLs correct at time of writing.

SDL: www.libsdl.org; click “Wiki.” You’ll find a reference for SDL functions.

SDL’s helper libraries SDL_Image, SDL_Mixer, and SDL_TTF: www.libsdl.org/

projects/SDL_image/, www.libsdl.org/projects/SDL_mixer/, and www.libsdl.org/

projects/SDL_ttf/. In each case, click Documentation. You’ll find references for their 

functions. If the web sites have changed, doing a web search for the name of the library 

(SDL_image, for example) should get you there.

�Legal Stuff
Visual Basic, Visual Studio, Windows, Windows Vista, Excel, and Microsoft are 

trademarks of the Microsoft Corporation. All other trademarks referenced herein are 

property of their respective owners.

This book and its author are neither affiliated with nor authorized, sponsored, or 

approved by Microsoft Corporation.

Screenshots of Microsoft products are used with permission from Microsoft.
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CHAPTER 1

Getting Started
Most programs in the first half of this book use the SDL and SSDL libraries,1 on the 

theory that watching colorful shapes move across the screen and shoot each other is 

more interesting than printing text. Don’t worry; when you’re done, you’ll be able to 

write programs both with and without this library – and if I have anything to say about it, 

you’ll have had fun doing it. Let’s see how it goes.

�A simple program
It’s wise to start small. Fewer things can go wrong.

So we’ll start small here with a simple program that writes “Hello, world!” on the 

screen. We’ll take it line by line to see what’s in it. (In the next section, we’ll compile and 

run it.)

Example 1-1.  “Hello, world!” is a classic program to start off a new language 

with. (I think it’s a law somewhere.)

//Hello, world! program, for _C++ for Lazy Programmers_

//  Your name goes here

//  Then the date2

1�SDL provides graphics, sound, and friendly interaction including mouse input. SSDL, standing 
for Simple SDL, is a “wrapper” library that wraps SDL’s functions in easier-to-use versions. Both 
libraries are described in more detail in the Introduction. Don’t worry; I don’t read introductions 
either.

2�From here on, I’ll be putting the title of the text, rather than name and date, because that’s more 
useful for textbook examples. Ordinarily name of programmer and date are better for keeping 
track of what was done and who to track down if it doesn’t work.
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//It prints "Hello, world!" on the screen.

//    Quite an accomplishment, huh?

#include "SSDL.h"

int main (int argc, char** argv)

{

      sout << "Hello, world!  (Press any key to quit.)\n";

      SSDL_WaitKey ();      //Wait for user to hit any key

      return 0;

}

The first set of lines are comments. Comments look like this – //Something on a 

line after two slashes – and are there just for you or for someone who later tries to 

understand your program. It’s best to be kind to yourself and your maintainers – help 

them easily know what the program’s doing, without having to search and figure it out.

Next we have an include file. Some language features are built into the C++ compiler 

itself, like the comment markers // and #include. Other things are in libraries; they’ll 

only be loaded if needed. In this case, we need to know how to print things on the screen 

using the SSDL library, so we load the include file SSDL.h.

Next we have the main program. main () is special: it’s what that tells the compiler, 

“This is what we’re doing in the program; start here.” The int at the start and the weird 

sequence int argc, char** argv we’ll get in Chapter 26 under “Command-line 

arguments.” Same for the return 0; at the end. For now, we always put these things in. If 

not, the C++ gods will punish us with incomprehensible error messages.

In this case, main () only does two things.

First, it prints "Hello, world" using the sout object, pronounced “S-out.”

Second, it calls SSDL_WaitKey (), which waits for you to hit a key before ending the 

program. Otherwise the program closes before you have a chance to see its message.

We return 0 because main () has to return something, largely for historical reasons. 

In practice we almost never care what main returns.

The curly braces {} tell main () where to start taking action and where to end: whatever 

you want the computer to do when it runs the program goes between the curly braces.

Chapter 1  Getting Started
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The compiler is very picky about what you type. Leave off a ; and the program won’t 

compile. Change capitalization on something and C++ won’t recognize it.

If you’re curious what this program would have looked like without SSDL, see 

Chapter 29. It’s not for the fainthearted beginner, but later it should make perfect sense.

Extra  “Hello, world!” is often the first program a beginner writes in a new 
language. Although it was originally a simple example in C – the language C++ is 
descended from; more on that in Chapter 25 – the practice of writing this as the 
first program has spread. Here’s “Hello, world!” in BASIC:

10 PRINT "Hello, world!"

Not bad, huh?

This is what it looks like in APL. APL (A Programming Language) has been 
described as a “write-only” language because it’s said you can’t read the 
programs you wrote yourself. APL requires symbols such as □, ∇, and ρ.

□←'Hello, world!'

Although those look easier than C++’s version, C++’s is neither the longest nor the 
toughest. I’ll spare you the long ones to save trees (an example for the language 
Redcode took 158 lines, which may be why you’ve never heard of Redcode), but 
here’s one of the tough ones, from a purposefully difficult language sometimes 
called BF.

++++++++++++++++[>++++>++++++>+++++++>+++>++<<<<<-]> 
++++++++.>+++++.+++++++..+++.>>----.>.<<+++++++.<.> 
-----.<---.--------.>>>+.

More “Hello, world!” examples, at time of writing, can be found at http://
helloworldcollection.de/.

Chapter 1  Getting Started
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�Spacing
One thing the compiler doesn’t care about is spacing. As long as you don’t put a space 

inside a word, you can put it wherever you like. You can break lines or not as you choose; 

it won’t care, as long as you don’t break a //comment or a "quotation".

Example 1-2.  A blatant instance of evil and rude3 in programming

//Hello, world! program, for _C++ for Lazy Programmers_

//It prints "Hello, world!" on the screen.

//Quite an accomplishment, huh?

//            -- from _C++ for Lazy Programmers_

              #include "SSDL.h"

                  int main (int argc, char** argv) {

      sout <<

"Hello, world!  (Press any key to quit.)\n";

                  SSDL_WaitKey ();      //Wait for user to hit any key

return 0;

      }

The compiler won’t care about spacing – but the poor soul that has to understand 

your 500-page program will! Example 1-2’s spacing would be a cruel thing to do to the 

people who later maintain your code.

Readability is a Good Thing.4 The programmer struggling to figure what you 

meant may very well be you a few days after writing it. Most of the expense in software 

development is programmer time; you won’t want to waste yours trying to decipher your 

own code. Make it clear.

3�“Evil and rude” is a technical term meaning, essentially, “maliciously awful.” See  
The New Hacker’s Dictionary, currently online at www.catb.org/jargon, for other terms in 
programmers’ slang.

4�Good Thing: hacker slang for something that’s completely wonderful and everybody knows it  
(or should).

Chapter 1  Getting Started
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Tip  Make your code clear as you write it, not later. Readable code helps with 
development, not just future maintenance.

To help with clarity, I have things in Example 1-1, like initial comments, #include, 

and main (), separated by blank lines. It’s sort of like writing paragraphs in an English 

paper: each section is its own “paragraph.” Blank lines increase readability.

I also break lines in sensible places and indent in a way that makes the program 

easy to read. The default indentation is the left margin. But if something is contained 

in something else – as the sout statement is contained in the main program – it gets 

indented one tab, or a few spaces.

This is like outline format for a paper, or like the layout of a table of contents  

(Figure 1-1). What’s contained in something else is indented slightly. What’s in  

Example 1-2 breaks the rule because #include "SSDL.h" isn’t part of the comment 

above it, so it shouldn’t be indented relative to it. int main (int argc, char** argv) 

isn’t part of #include "SSDL.h", so it shouldn’t be indented either.

By contrast, the sout statement in Example 1-1 is contained in main, so it gets 

indented a little.

You’ll have plenty of examples of clear indenting as you read on.

int main (int argc, 
char** argv)

{
sout << "Hello, world!\n";

SSDL_WaitKey ();

return 0;
}

Figure 1-1.  Like an English paper outline, a C++ program is indented, with 
subparts indented relative to what they’re parts of
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