
C++ for Lazy
Programmers

Quick, Easy, and Fun C++ for Beginners
—
Will Briggs

C++ for Lazy
Programmers

Quick, Easy, and Fun C++ for
Beginners

Will Briggs

C++ for Lazy Programmers: Quick, Easy, and Fun C++ for Beginners

ISBN-13 (pbk): 978-1-4842-5186-7			 ISBN-13 (electronic): 978-1-4842-5187-4
https://doi.org/10.1007/978-1-4842-5187-4

Copyright © 2019 by Will Briggs

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Raw Pixel (www.rawpixel.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484251867. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Will Briggs
Lynchburg, VA, USA

https://doi.org/10.1007/978-1-4842-5187-4

To my favorite C++ programmer and the love of my life;

To the little one who first inspired her to study at home so
she wouldn’t go mommy-crazy;

And to the boy who’s already programming.

v

About the Author��xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Introduction���xxiii

Table of Contents

Chapter 1: Getting Started��� 1

A simple program��� 1

Spacing��� 4

Creating an SSDL project��� 6

…in Visual Studio��� 6

…with g++�� 17

How not to be miserable�� 19

Shapes and the functions that draw them��� 21

Antibugging�� 30

consts and colors��� 31

Text�� 35

sout, escape sequences, and fonts�� 35

SSDL_RenderText, SSDL_RenderTextCentered�� 39

Chapter 2: Images and Sound��� 43

Images and changing window characteristics�� 43

Antibugging�� 49

Multiple images together��� 51

Adding transparency with GIMP��� 52

Sound��� 57

Antibugging�� 60

vi

Chapter 3: Numbers��� 61

Variables�� 61

Constants��� 63

When to use constants, not literal values��� 64

Math operators��� 65

Integer division��� 65

Assignment (=) operators��� 66

A diving board example�� 67

The no-worries list for math operators��� 70

Built-in functions and casting�� 71

Antibugging�� 76

Chapter 4: Mouse, and if�� 79

Mouse functions�� 79

Antibugging�� 82

if��� 83

Coercion and if conditions (int’s dirty little secret)��� 86

Combining conditions with &&, ||, and !��� 86

Antibugging�� 87

Boolean values and variables�� 90

A hidden object game�� 92

Chapter 5: Loops, Input, and char�� 101

Keyboard input��� 101

Antibugging�� 103

while and do-while�� 105

Loops with SSDL�� 107

break and continue��� 108

Antibugging�� 109

for loops��� 112

Increment operators��� 113

An example: averaging numbers�� 114

Antibugging�� 116

Table of Contents

vii

chars and cctype�� 118

switch�� 123

Antibugging�� 124

Chapter 6: Algorithms and the Development Process��� 127

Adventures in robotic cooking��� 127

Writing a program, from start to finish�� 131

Requirements: What do we want to do?��� 131

Algorithm: How do we do it?�� 132

Walkthrough: Will it do it?��� 134

Coding: putting it all into C++ (plus: commenting the lazy way)�� 134

Chapter 7: Functions��� 141

Functions that return values�� 141

Functions that return nothing�� 148

Global variables��� 152

Antibugging�� 153

How to write a function in four easy steps (and call it in one)��� 156

Why have functions, anyway?�� 160

Chapter 8: Functions (Continued)�� 171

Random numbers��� 171

Making a random number generator�� 171

Using the built-in random number generator��� 174

Antibugging�� 177

Boolean functions�� 179

& parameters��� 180

Antibugging�� 185

Identifier scope�� 186

A final note on algorithms�� 189

Table of Contents

viii

Chapter 9: Using the Debugger�� 191

A flawed program�� 191

Breakpoints and watched variables��� 196

Visual Studio��� 196

ddd��� 198

gdb��� 199

Fixing the stripes��� 199

Going into functions��� 199

Visual Studio��� 199

ddd��� 201

gdb��� 202

Fixing the stars�� 202

Wrap-up��� 203

Antibugging�� 203

Bottom-up testing�� 204

More on antibugging�� 205

Chapter 10: Arrays and enum�� 207

Arrays��� 207

Arrays’ dirty little secret: using memory addresses��� 210

Antibugging�� 211

Arrays as function parameters��� 212

Array parameters that change, or don’t�� 213

Array parameters and reusability��� 213

Antibugging�� 214

Enumeration types��� 215

enum class��� 217

Antibugging�� 218

Multidimensional arrays�� 219

Displaying the board��� 220

Arrays of more than two dimensions��� 223

Antibugging�� 224

Table of Contents

ix

Chapter 11: Animation with structs and Sprites��� 227

structs�� 227

Cool struct tricks�� 231

Making a movie with struct and while��� 232

Sprites�� 239

Antibugging�� 244

Chapter 12: Making an Arcade Game: Input, Collisions, and Putting
It All Together�� 245

Determining input states��� 245

Mouse��� 245

Keyboard�� 246

Antibugging�� 248

Events�� 248

Cooldowns and lifetimes�� 251

Collisions�� 254

The big game��� 255

Antibugging�� 269

Chapter 13: Standard I/O and File Operations��� 273

Standard I/O programs��� 273

Compiling in Microsoft Visual Studio�� 274

Compiling with g++��� 278

File I/O (optional)�� 280

cin and cout as files��� 280

Using file names��� 287

Table of Contents

x

Chapter 14: Character Arrays and Dynamic Memory��� 293

Character arrays�� 293

Antibugging�� 296

Dynamic allocation of arrays��� 299

Antibugging�� 302

Using the * notation��� 303

Antibugging�� 307

Chapter 15: Classes��� 309

Writing classes��� 309

Constructors��� 312

Antibugging�� 316

const objects, const member functions…��� 318

Antibugging�� 319

…and const parameters�� 319

Multiple constructors��� 320

Copy constructors��� 320

Default constructors��� 321

Conversion constructors��� 322

Summary�� 323

Antibugging�� 323

Default parameters for code reuse�� 324

Date program (so far)��� 325

Chapter 16: Classes (Continued)��� 329

inline functions for efficiency��� 329

Access functions�� 331

Separate compilation and include files�� 332

What happens in separate compilation�� 333

Writing your .h file�� 334

Backing up a multi-file project��� 337

Antibugging�� 337

Table of Contents

xi

Multiple-file projects in Microsoft Visual Studio�� 339

Multiple-file projects in g++�� 340

Command line: more typing, less thinking��� 340

Makefiles: more thinking, less typing��� 340

Antibugging�� 344

Final Date program�� 344

static members (optional)�� 350

Chapter 17: Operators��� 353

The basic string class�� 353

Destructors�� 355

Binary and unary operators��� 356

Assignment operators and *this�� 358

Antibugging�� 360

Arithmetic operators�� 361

[ ] and ( )��� 364

>> and <<: operators that aren’t class members��� 365

++ and --��� 368

Explicit call to constructor��� 369

Final String program�� 370

#include <string>�� 376

Chapter 18: Exceptions, Move Constructors, Recursion, and O Notation�������������� 377

Exceptions�� 377

Move constructors and move = (optional)��� 382

Recursion (optional; used in the next section) �� 384

Antibugging�� 388

Algorithm analysis and O notation (optional)��� 389

Chapter 19: Inheritance��� 393

The basics of inheritance��� 393

Constructors and destructors�� 398

Inheritance as a concept�� 400

Table of Contents

xii

Classes for card games��� 401

An inheritance hierarchy�� 404

private inheritance��� 408

Hiding an inherited member function��� 410

A game of Montana�� 411

Chapter 20: Templates��� 423

Function templates�� 423

Antibugging�� 425

The Vector class��� 426

Efficiency (optional)��� 431

Making Vector a template�� 432

Antibugging�� 436

Unusual class templates�� 437

#include <vector>��� 439

Chapter 21: Virtual Functions and Multiple Inheritance�� 441

Virtual functions��� 441

Behind the scenes�� 446

Pure virtual functions and abstract base classes��� 447

Why virtual functions often mean using pointers��� 447

Virtual destructors�� 452

Inheritance and move ctor/move = (optional)�� 454

Antibugging�� 455

Multiple inheritance��� 457

Antibugging�� 459

Chapter 22: Linked Lists�� 463

What lists are and why have them��� 463

List<T>::List ()��� 467

void List<T>::push_front (const T& newElement);�� 468

void List<T>::pop_front()��� 469

List<T>::~List()�� 472

Table of Contents

xiii

->: a bit of syntactic sugar��� 472

More friendly syntax: pointers as conditions��� 472

The linked list template��� 473

Antibugging�� 477

#include <list>�� 478

Chapter 23: The Standard Template Library�� 479

Iterators��� 479

…with vector, too��� 483

const and reverse iterators�� 484

Antibugging�� 485

Getting really lazy: ranges and auto��� 486

initializer_lists (optional)�� 487

algorithm (optional)�� 489

The erase-remove idiom�� 490

Antibugging�� 490

Chapter 24: Building Bigger Projects�� 493

Namespaces�� 493

Conditional compilation��� 494

Libraries��� 495

g++�� 496

Microsoft Visual Studio��� 498

Chapter 25: History�� 509

Simula 67��� 509

Smalltalk�� 509

What “object-oriented” is�� 510

C��� 511

C++�� 511

Standards��� 512

Table of Contents

xiv

Chapter 26: Esoterica (Recommended)��� 513

sstream: using strings like cin/cout��� 513

iomanip: formatted output��� 516

Command-line arguments��� 522

Debugging with command-line arguments in Visual Studio�� 525

Debugging with command-line arguments in Unix�� 525

static_cast et al��� 527

Defaulted constructors and =�� 528

constexpr and static_assert: moving work to compile time�� 529

User-defined literals: automatic conversion between systems of measurement���������������������� 533

Lambda functions for one-time use��� 536

Lambda captures�� 537

Structured bindings and tuples: returning multiple values at once��� 542

Smart pointers��� 546

unique_ptr�� 546

shared_ptr�� 552

Antibugging�� 553

Bit twiddling: &, |, ~, and�� 553

Antibugging�� 559

Chapter 27: Esoterica (Not So Recommended)�� 561

protected sections, protected inheritance��� 561

Template specialization��� 565

friends, and why you shouldn’t have any��� 566

User-defined conversions�� 571

Chapter 28: C��� 573

Compiling C�� 574

I/O�� 575

printf��� 575

scanf, and the address-of (&) operator��� 575

fprintf and fscanf; fopen and fclose��� 578

sprintf and sscanf; fputs and fgets��� 580

Table of Contents

xv

Summary�� 583

Antibugging�� 584

Parameter passing with *�� 584

Antibugging�� 588

Dynamic memory��� 588

Chapter 29: Moving On with SDL��� 591

Writing code��� 593

Compiling��� 597

Further resources�� 598

Appendix A: SDL/SSDL Setup Issues��� 599

Unix�� 599

g++�� 599

SDL��� 599

SSDL�� 600

�Making your own Makefiles��� 600

�Antibugging�� 600

�MinGW�� 601

g++�� 601

�SDL and SSDL�� 601

�Making your own Makefiles��� 601

�Antibugging�� 601

�Microsoft Visual Studio�� 602

�SDL/SSDL��� 602

�Making your own project files��� 602

�Antibugging�� 603

Sound��� 604

Appendix B: Operators��� 605

Associativity��� 605

Precedence�� 605

Overloading�� 606

Table of Contents

xvi

Appendix C: ASCII Codes��� 607

Appendix D: Fundamental Types�� 609

Appendix E: Escape Sequences��� 611

Appendix F: Basic C Standard Library��� 613

cmath��� 613

cctype�� 614

cstdlib�� 615

Appendix G: Common Debugger Commands��� 617

Microsoft Visual Studio�� 617

gdb/ddd�� 618

Appendix H: SSDL Reference��� 619

Updating the screen��� 619

Added types��� 619

Clearing the screen�� 620

Colors��� 620

Drawing�� 620

Images��� 621

Mouse, keyboard, and events�� 622

Music��� 623

Quit messages��� 624

Sounds��� 625

Sprites�� 626

Text�� 628

Time and synchronization�� 629

Window�� 630

References��� 631

Index�� 633

Table of Contents

xvii

About the Author

Will Briggs, PhD, is a professor of computer science at the University of Lynchburg

in Virginia. He has over 20 years of experience teaching C++, 12 of them using earlier

drafts of this textbook, and more than that teaching other languages including C, LISP,

Pascal, PHP, PROLOG, and Python. His primary focus is teaching of late while also doing

research in artificial intelligence.

xix

About the Technical Reviewer

Michael Thomas has worked in software development for over 20 years as an individual

contributor, team lead, program manager, and vice president of engineering. He has over

10 years of experience working with mobile devices. His current focus is in the medical

sector using mobile devices to accelerate information transfer between patients and

health-care providers.

xxi

Acknowledgments

Special thanks to

•	 Dr. Kim McCabe, for advice on publishing

•	 Dr. Zakaria Kurdi, for advice on publishing

•	 Apress

•	 Microsoft

•	 The makers of GIMP (the GNU Image Manipulation Program)

•	 Pixabay.com and contributors, especially David Mark/12019

(Chapter 2, beach), Free-Photos (Chapter 2, pug), Andi Caswell/

andicaz (Chapter 6, scones), joakant (Chapter 11, tropical fish),

Gerhard Janson/Janson_G (Ch12, ufo), 13smok (Chapter 12, alien

sign), Prawny (Chapter 12, splat), Elliekha (Chapter 12, haunted

house), pencil parker (Chapter 12, candy), and Robert Davis/

rescueram3 (Chapter 12, pumpkin photos)

•	 Wikimedia Commons

•	 OpenClipArt.org and contributors, especially Firkin (Chapter 2,

flamingo)

•	 Flickr, especially Speedy McZoom (Chapter 12, jack-o-lantern art)

•	 FreeSounds.org and contributors, especially Razor5 (Chapter 2,

techno music), robbo799 (Chapter 2, church bells), alqutis

(Chapter 12, hovercar), Berviceps (Chapter 12, splat), mistersherlock

(Chapter 12, Hallowe’en graveyard), matypresidente (Chapter 12,

water drop), Osiruswaltz (Chapter 12, bump), mrose6 (Chapter 12,

echoed scream), and robcro6010 (Chapter 12, circus theme)

xxii

•	 Chad Savage of Sinister Fonts for Werewolf Moon (Chapter 12)

•	 Lazy Foo’ Productions

•	 StackOverflow.com

•	 Einar Egilsson of cardgames.io for images of card games, Nicu

Buculei (http://nicubunu.ro/cards) for card images, and “Nanami

Kamimura” for Montana image

Acknowledgments

http://nicubunu.ro/cards

xxiii

Introduction

Surely there’s no shortage of C++ intro texts. Why write yet another?

I’m glad you asked.

Ever since moving from Pascal to C++ (back when dinosaurs roamed the Earth), I’ve

been underwhelmed by available resources. I wanted something quirky and fun to read,

with sufficient coverage and fun examples, like the old Oh! Pascal! text by Cooper and

Clancy.

It’s about time we had this again. Even a perfectly accurate text with broad coverage

gives you nothing if you fall asleep when you read it. Well, nothing but a sore neck.

But the other reason, of course, is to promote laziness.

We all want our projects to be done more quickly, with less wailing and gnashing of

teeth. Sometimes, it’s said, you have to put your nose to the grindstone. Maybe, but I like

my nose too well for that. I’d rather do things the easy way.

But the easy way isn’t procrastinating and dragging my feet: it’s to find something

I love doing and do it so well that it feels relatively effortless. It’s producing something

robust enough that when it does break down, it tells me exactly what the problem is, so

I don’t have to spend a week pleading with it to explain itself. It’s writing code that I can

use again and again, adapting it to a new use in hours instead of days.

You’ll benefit from this book if you’re a beginning programmer or one who hasn’t yet

learned C++ or its descendants like Java or C#; if you already know a C++-like language,

you can go a little faster.

Here’s what you can expect:

•	 A pleasant reading experience.

•	 Adequate coverage.

•	 Games, that is, use of the SDL graphics library, which makes it easy

to get graphics programs working quickly and easily. It isn’t fair

that Python and Visual Basic should get all the eye candy.1 The SDL

1�”Eye candy”: things that look good on the screen. See The New Hacker’s Dictionary, available at
time of writing at www.catb.org/jargon/.

http://www.catb.org/jargon/

xxiv

library is used through Chapter 12. After that we’ll use more standard

(but less visually interesting) I/O, so we can also get practice with the

more common console programs.

•	 …and an easy introduction to SDL’s graphical magic, using the SSDL

library (see below).

•	 Sufficient examples, and they won’t all be about actuarial tables or how

to organize an address book. (See “pleasant reading experience” earlier.)

•	 Antibugging sections throughout the text to point out common or

difficult-to-trace errors – and how to prevent them.

•	 Compatibility with g++ and Microsoft Visual Studio.

•	 Compliance with C++17, the latest standard, and the nice goodies it

provides.

•	 For g++ programmers, instructions on using g++, the ddd/gdb

debugger system, and Makefiles; for Visual Studio, use of the

debugger and project files.

•	 An appreciation of laziness.

•	 A cool title. Maybe I could have tried to write a “For Dummies” book,

but after seeing Bioinformatics for Dummies I’m not sure I have what

it takes.

�Why SDL?
It’s surely more enjoyable to make programs with graphics and WIMP2-style interaction

than to merely type things in and print them out. There’s a variety of graphical libraries

out there. SDL, or Simple DirectMedia Layer, is popular, relatively easy to learn, portable

between platforms, and fast enough for real-world work, as evidenced by its use in actual

released games (Figure 1).

2�WIMP: window, mouse, icon, pointer. What we’re all used to.

Introduction

xxv

�Why SSDL?
…but although SDL is relatively simple, it’s not simple enough to start with on day 1

of programming with C++. SSDL (Simple SDL) saves you from needing to know things

we don’t get to until Chapter 143 before doing basic things like displaying images

(Chapter 2) or even printing a greeting (Chapter 1). It also hides the initialization and

cleanup code that’s pretty much the same every time you write a program, and makes

error handling less cumbersome.

You may want to keep using SSDL as is after you’re done with this book, but if you

decide to go on with SDL, you’ll find you know a lot of it already, with almost nothing to

unlearn: most SSDL function names are names from SDL with another “S” stuck on the

front. We’ll go into greater depth on moving forward with SDL in Chapter 29.

3�Pointers.

Figure 1.  A game of Freeciv, which uses the SDL library.

Introduction

xxvi

�Software You Will Need
Your compiler, plus various free SDL libraries (SDL2, SDL2_Image, SDL2_TTF, and

SDL2_Mixer), my free SSDL library, and (for Chapter 2, and whenever you need it) a

deluxe graphics editing package. I use GIMP, which is free, and at time of writing is

available from www.gimp.org.

SSDL is available at www.apress.com/9781484251867, as is my sample code.

In Unix, you may choose to install the GNU Free Fonts library, or msttcorefonts,

Microsoft Core Fonts for the Web. Look for ttf-mscore-fonts and fonts-freefont-

ttf (Debian and Ubuntu systems) and gnu-free-fonts-common and msttcore-fonts-

<something or other> (Red Hat and Fedora), remembering that systems differ,

standards change, and Unix is hard. But if you’re using Unix, you knew that. I use

Microsoft Core Fonts for the Web in the example programs.

Programming with sound may not be practical over remote connections, because

of the difficulty of streaming sound. If using Unix emulation, you might check the

emulator’s sound capabilities – say, by playing a video.

�If this is for a course…
C++ for Lazy Programmers covers through pointers, operator overloading, virtual

functions, templates, exceptions, STL – everything you might reasonably expect in two

semesters of C++.

The SSDL library does take a small amount of time, but the focus is firmly on writing

good C++ programs, with SSDL there just to make the programs more enjoyable. How

many labs or projects do you have in which it’s hard to stop working because it’s so much

fun? It may not happen with all these problems, but I do see it happen.

SDL also gives a gentle introduction to event-driven programming.

In the first 12 chapters, there is emphasis on algorithm development and

programming style, including early introduction of constants.

After Chapter 12, the examples are in standard I/O, though SDL is still an option for a

few exercises and is used in Chapter 21 and (briefly) Chapter 26.

Introduction

http://www.gimp.org/
http://www.apress.com/9781484251867

xxvii

A normal two-semester sequence should cover approximately

•	 Semester 1: The first 12 chapters, using SDL; Chapter 13, introducing

standard I/O. With some exceptions (& parameters, stream I/O),

this looks a lot like C, and includes variables, expressions, functions,

control structures, arrays, and stream I/O.

•	 Semester 2: Chapters 14–22, using standard I/O, covering pointers,

character arrays, classes, operator overloading, templates,

exceptions, virtual functions, multiple inheritance (briefly), and a

taste of the Standard Template Library using vectors and linked lists.

Subsequent chapters cover material that wouldn’t easily fit in two semesters,

including more of the Standard Template Library, history of C++, C programming, and a

few more esoteric topics.

�Online Help
Here are some sites to go to for more information, with URLs correct at time of writing.

SDL: www.libsdl.org; click “Wiki.” You’ll find a reference for SDL functions.

SDL’s helper libraries SDL_Image, SDL_Mixer, and SDL_TTF: www.libsdl.org/

projects/SDL_image/, www.libsdl.org/projects/SDL_mixer/, and www.libsdl.org/

projects/SDL_ttf/. In each case, click Documentation. You’ll find references for their

functions. If the web sites have changed, doing a web search for the name of the library

(SDL_image, for example) should get you there.

�Legal Stuff
Visual Basic, Visual Studio, Windows, Windows Vista, Excel, and Microsoft are

trademarks of the Microsoft Corporation. All other trademarks referenced herein are

property of their respective owners.

This book and its author are neither affiliated with nor authorized, sponsored, or

approved by Microsoft Corporation.

Screenshots of Microsoft products are used with permission from Microsoft.

Introduction

http://www.libsdl.org/
http://www.libsdl.org/projects/SDL_image/
http://www.libsdl.org/projects/SDL_image/
http://www.libsdl.org/projects/SDL_mixer/
http://www.libsdl.org/projects/SDL_ttf/
http://www.libsdl.org/projects/SDL_ttf/

1
© Will Briggs 2019
W. Briggs, C++ for Lazy Programmers, https://doi.org/10.1007/978-1-4842-5187-4_1

CHAPTER 1

Getting Started
Most programs in the first half of this book use the SDL and SSDL libraries,1 on the

theory that watching colorful shapes move across the screen and shoot each other is

more interesting than printing text. Don’t worry; when you’re done, you’ll be able to

write programs both with and without this library – and if I have anything to say about it,

you’ll have had fun doing it. Let’s see how it goes.

�A simple program
It’s wise to start small. Fewer things can go wrong.

So we’ll start small here with a simple program that writes “Hello, world!” on the

screen. We’ll take it line by line to see what’s in it. (In the next section, we’ll compile and

run it.)

Example 1-1.  “Hello, world!” is a classic program to start off a new language

with. (I think it’s a law somewhere.)

//Hello, world! program, for _C++ for Lazy Programmers_

// Your name goes here

// Then the date2

1�SDL provides graphics, sound, and friendly interaction including mouse input. SSDL, standing
for Simple SDL, is a “wrapper” library that wraps SDL’s functions in easier-to-use versions. Both
libraries are described in more detail in the Introduction. Don’t worry; I don’t read introductions
either.

2�From here on, I’ll be putting the title of the text, rather than name and date, because that’s more
useful for textbook examples. Ordinarily name of programmer and date are better for keeping
track of what was done and who to track down if it doesn’t work.

2

//It prints "Hello, world!" on the screen.

// Quite an accomplishment, huh?

#include "SSDL.h"

int main (int argc, char** argv)

{

 sout << "Hello, world! (Press any key to quit.)\n";

 SSDL_WaitKey (); //Wait for user to hit any key

 return 0;

}

The first set of lines are comments. Comments look like this – //Something on a

line after two slashes – and are there just for you or for someone who later tries to

understand your program. It’s best to be kind to yourself and your maintainers – help

them easily know what the program’s doing, without having to search and figure it out.

Next we have an include file. Some language features are built into the C++ compiler

itself, like the comment markers // and #include. Other things are in libraries; they’ll

only be loaded if needed. In this case, we need to know how to print things on the screen

using the SSDL library, so we load the include file SSDL.h.

Next we have the main program. main () is special: it’s what that tells the compiler,

“This is what we’re doing in the program; start here.” The int at the start and the weird

sequence int argc, char** argv we’ll get in Chapter 26 under “Command-line

arguments.” Same for the return 0; at the end. For now, we always put these things in. If

not, the C++ gods will punish us with incomprehensible error messages.

In this case, main () only does two things.

First, it prints "Hello, world" using the sout object, pronounced “S-out.”

Second, it calls SSDL_WaitKey (), which waits for you to hit a key before ending the

program. Otherwise the program closes before you have a chance to see its message.

We return 0 because main () has to return something, largely for historical reasons.

In practice we almost never care what main returns.

The curly braces {} tell main () where to start taking action and where to end: whatever

you want the computer to do when it runs the program goes between the curly braces.

Chapter 1 Getting Started

3

The compiler is very picky about what you type. Leave off a ; and the program won’t

compile. Change capitalization on something and C++ won’t recognize it.

If you’re curious what this program would have looked like without SSDL, see

Chapter 29. It’s not for the fainthearted beginner, but later it should make perfect sense.

Extra  “Hello, world!” is often the first program a beginner writes in a new
language. Although it was originally a simple example in C – the language C++ is
descended from; more on that in Chapter 25 – the practice of writing this as the
first program has spread. Here’s “Hello, world!” in BASIC:

10 PRINT "Hello, world!"

Not bad, huh?

This is what it looks like in APL. APL (A Programming Language) has been
described as a “write-only” language because it’s said you can’t read the
programs you wrote yourself. APL requires symbols such as □, ∇, and ρ.

□←'Hello, world!'

Although those look easier than C++’s version, C++’s is neither the longest nor the
toughest. I’ll spare you the long ones to save trees (an example for the language
Redcode took 158 lines, which may be why you’ve never heard of Redcode), but
here’s one of the tough ones, from a purposefully difficult language sometimes
called BF.

++++++++++++++++[>++++>++++++>+++++++>+++>++<<<<<-]>
++++++++.>+++++.+++++++..+++.>>----.>.<<+++++++.<.>
-----.<---.--------.>>>+.

More “Hello, world!” examples, at time of writing, can be found at http://
helloworldcollection.de/.

Chapter 1 Getting Started

http://helloworldcollection.de/
http://helloworldcollection.de/

4

�Spacing
One thing the compiler doesn’t care about is spacing. As long as you don’t put a space

inside a word, you can put it wherever you like. You can break lines or not as you choose;

it won’t care, as long as you don’t break a //comment or a "quotation".

Example 1-2.  A blatant instance of evil and rude3 in programming

//Hello, world! program, for _C++ for Lazy Programmers_

//It prints "Hello, world!" on the screen.

//Quite an accomplishment, huh?

// -- from _C++ for Lazy Programmers_

 #include "SSDL.h"

 int main (int argc, char** argv) {

 sout <<

"Hello, world! (Press any key to quit.)\n";

 SSDL_WaitKey (); //Wait for user to hit any key

return 0;

 }

The compiler won’t care about spacing – but the poor soul that has to understand

your 500-page program will! Example 1-2’s spacing would be a cruel thing to do to the

people who later maintain your code.

Readability is a Good Thing.4 The programmer struggling to figure what you

meant may very well be you a few days after writing it. Most of the expense in software

development is programmer time; you won’t want to waste yours trying to decipher your

own code. Make it clear.

3�“Evil and rude” is a technical term meaning, essentially, “maliciously awful.” See
The New Hacker’s Dictionary, currently online at www.catb.org/jargon, for other terms in
programmers’ slang.

4�Good Thing: hacker slang for something that’s completely wonderful and everybody knows it
(or should).

Chapter 1 Getting Started

http://www.catb.org/jargon

5

Tip  Make your code clear as you write it, not later. Readable code helps with
development, not just future maintenance.

To help with clarity, I have things in Example 1-1, like initial comments, #include,

and main (), separated by blank lines. It’s sort of like writing paragraphs in an English

paper: each section is its own “paragraph.” Blank lines increase readability.

I also break lines in sensible places and indent in a way that makes the program

easy to read. The default indentation is the left margin. But if something is contained

in something else – as the sout statement is contained in the main program – it gets

indented one tab, or a few spaces.

This is like outline format for a paper, or like the layout of a table of contents

(Figure 1-1). What’s contained in something else is indented slightly. What’s in

Example 1-2 breaks the rule because #include "SSDL.h" isn’t part of the comment

above it, so it shouldn’t be indented relative to it. int main (int argc, char** argv)

isn’t part of #include "SSDL.h", so it shouldn’t be indented either.

By contrast, the sout statement in Example 1-1 is contained in main, so it gets

indented a little.

You’ll have plenty of examples of clear indenting as you read on.

int main (int argc,
char** argv)

{
sout << "Hello, world!\n";

SSDL_WaitKey ();

return 0;
}

Figure 1-1.  Like an English paper outline, a C++ program is indented, with
subparts indented relative to what they’re parts of

Chapter 1 Getting Started

