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Introduction

Surely there’s no shortage of C++ intro texts. Why write yet another?

I'm glad you asked.

Ever since moving from Pascal to C++ (back when dinosaurs roamed the Earth), I've
been underwhelmed by available resources. I wanted something quirky and fun to read,
with sufficient coverage and fun examples, like the old Oh! Pascal! text by Cooper and
Clancy.

It’s about time we had this again. Even a perfectly accurate text with broad coverage
gives you nothing if you fall asleep when you read it. Well, nothing but a sore neck.

But the other reason, of course, is to promote laziness.

We all want our projects to be done more quickly, with less wailing and gnashing of
teeth. Sometimes, it’s said, you have to put your nose to the grindstone. Maybe, but I like
my nose too well for that. I'd rather do things the easy way.

But the easy way isn’t procrastinating and dragging my feet: it’s to find something
I'love doing and do it so well that it feels relatively effortless. It’s producing something
robust enough that when it does break down, it tells me exactly what the problem is, so
I don’t have to spend a week pleading with it to explain itself. It’s writing code that I can
use again and again, adapting it to a new use in hours instead of days.

You'll benefit from this book if you're a beginning programmer or one who hasn’t yet
learned C++ or its descendants like Java or C#; if you already know a C++-like language,
you can go a little faster.

Here’s what you can expect:

e Apleasantreading experience.
e Adequate coverage.

e Games, that is, use of the SDL graphics library, which makes it easy
to get graphics programs working quickly and easily. It isn’t fair
that Python and Visual Basic should get all the eye candy.! The SDL

1”7

Eye candy”: things that look good on the screen. See The New Hacker’s Dictionary, available at
time of writing at www.catb.org/jargon/.
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library is used through Chapter 12. After that we’ll use more standard
(but less visually interesting) I/0, so we can also get practice with the
more common console programs.

e ...and an easy introduction to SDL’s graphical magic, using the SSDL
library (see below).

o Sufficient examples, and they won’t all be about actuarial tables or how
to organize an address book. (See “pleasant reading experience” earlier.)

» Antibugging sections throughout the text to point out common or
difficult-to-trace errors - and how to prevent them.

o Compatibility with g++ and Microsoft Visual Studio.

e Compliance with C++17, the latest standard, and the nice goodies it
provides.

e For g++ programmers, instructions on using g++, the ddd/gdb
debugger system, and Makefiles; for Visual Studio, use of the
debugger and project files.

e An appreciation of laziness.

e Acooltitle. Maybe I could have tried to write a “For Dummies” book,
but after seeing Bioinformatics for Dummies I'm not sure I have what
it takes.

Why SDL?

It’s surely more enjoyable to make programs with graphics and WIMP?-style interaction
than to merely type things in and print them out. There’s a variety of graphical libraries
out there. SDL, or Simple DirectMedia Layer, is popular, relatively easy to learn, portable
between platforms, and fast enough for real-world work, as evidenced by its use in actual
released games (Figure 1).

2WIMP: window, mouse, icon, pointer. What we're all used to.
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Figure 1. A game of Freeciv, which uses the SDL library.

Why SSDL?

...but although SDL is relatively simple, it’s not simple enough to start with on day 1
of programming with C++. SSDL (Simple SDL) saves you from needing to know things
we don’t get to until Chapter 14° before doing basic things like displaying images
(Chapter 2) or even printing a greeting (Chapter 1). It also hides the initialization and
cleanup code that’s pretty much the same every time you write a program, and makes
error handling less cumbersome.

You may want to keep using SSDL as is after you're done with this book, but if you
decide to go on with SDL, you'll find you know a lot of it already, with almost nothing to
unlearn: most SSDL function names are names from SDL with another “S” stuck on the
front. We'll go into greater depth on moving forward with SDL in Chapter 29.

SPointers.
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Software You Will Need

Your compiler, plus various free SDL libraries (SDL2, SDL2_Image, SDL2_TTEF, and
SDL2_Mixer), my free SSDL library, and (for Chapter 2, and whenever you need it) a
deluxe graphics editing package. I use GIMP, which is free, and at time of writing is
available from www.gimp.org.

SSDL is available at www.apress.com/9781484251867, as is my sample code.

In Unix, you may choose to install the GNU Free Fonts library, or msttcorefonts,
Microsoft Core Fonts for the Web. Look for ttf-mscore-fonts and fonts-freefont-
ttf (Debian and Ubuntu systems) and gnu-free-fonts-common and msttcore-fonts-
<something or other> (Red Hat and Fedora), remembering that systems differ,
standards change, and Unix is hard. But if you're using Unix, you knew that. T use
Microsoft Core Fonts for the Web in the example programs.

Programming with sound may not be practical over remote connections, because
of the difficulty of streaming sound. If using Unix emulation, you might check the
emulator’s sound capabilities - say, by playing a video.

If this is for a course...

C++ for Lazy Programmers covers through pointers, operator overloading, virtual
functions, templates, exceptions, STL - everything you might reasonably expect in two
semesters of C++.

The SSDL library does take a small amount of time, but the focus is firmly on writing
good C++ programs, with SSDL there just to make the programs more enjoyable. How
many labs or projects do you have in which it’s hard to stop working because it’s so much
fun? It may not happen with all these problems, but I do see it happen.

SDL also gives a gentle introduction to event-driven programming.

In the first 12 chapters, there is emphasis on algorithm development and
programming style, including early introduction of constants.

After Chapter 12, the examples are in standard I/0, though SDL is still an option for a
few exercises and is used in Chapter 21 and (briefly) Chapter 26.
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A normal two-semester sequence should cover approximately

o Semester 1: The first 12 chapters, using SDL; Chapter 13, introducing
standard I/0. With some exceptions (& parameters, stream I/0),
this looks a lot like C, and includes variables, expressions, functions,
control structures, arrays, and stream I/0.

o Semester 2: Chapters 14-22, using standard I/0O, covering pointers,
character arrays, classes, operator overloading, templates,
exceptions, virtual functions, multiple inheritance (briefly), and a
taste of the Standard Template Library using vectors and linked lists.

Subsequent chapters cover material that wouldn't easily fit in two semesters,
including more of the Standard Template Library, history of C++, C programming, and a
few more esoteric topics.

Online Help

Here are some sites to go to for more information, with URLs correct at time of writing.

SDL: www.1libsdl.org; click “Wiki.” You'll find a reference for SDL functions.

SDLs helper libraries SDL_Image, SDL_Mixer, and SDL_TTF: www.1libsdl.org/
projects/SDL_image/, www.libsdl.org/projects/SDL_mixer/, and www.libsdl.org/
projects/SDL_ttf/.In each case, click Documentation. You'll find references for their
functions. If the web sites have changed, doing a web search for the name of the library
(SDL_image, for example) should get you there.

Legal Stuff

Visual Basic, Visual Studio, Windows, Windows Vista, Excel, and Microsoft are
trademarks of the Microsoft Corporation. All other trademarks referenced herein are
property of their respective owners.

This book and its author are neither affiliated with nor authorized, sponsored, or
approved by Microsoft Corporation.

Screenshots of Microsoft products are used with permission from Microsoft.
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CHAPTER 1

Getting Started

Most programs in the first half of this book use the SDL and SSDL libraries,' on the
theory that watching colorful shapes move across the screen and shoot each other is
more interesting than printing text. Don’t worry; when you're done, you'll be able to
write programs both with and without this library - and if I have anything to say about it,
you’ll have had fun doing it. Let’s see how it goes.

A simple program

It's wise to start small. Fewer things can go wrong.
So we'll start small here with a simple program that writes “Hello, world!” on the
screen. We'll take it line by line to see what’s in it. (In the next section, we’ll compile and

run it.)

Example 1-1. “Hello, world!” is a classic program to start off a new language
with. (I think it’s a law somewhere.)

//Hello, world! program, for C++ for Lazy Programmers_
//  Your name goes here
// Then the date?

'SDL provides graphics, sound, and friendly interaction including mouse input. SSDL, standing
for Simple SDL, is a “wrapper” library that wraps SDL’s functions in easier-to-use versions. Both
libraries are described in more detail in the Introduction. Don’t worry; I don’t read introductions
either.

2From here on, I'll be putting the title of the text, rather than name and date, because that’s more
useful for textbook examples. Ordinarily name of programmer and date are better for keeping
track of what was done and who to track down if it doesn’t work.

© Will Briggs 2019
W. Briggs, C++ for Lazy Programmiers, https://doi.org/10.1007/978-1-4842-5187-4_1
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//1t prints "Hello, world!" on the screen.
// Quite an accomplishment, huh?

#include "SSDL.h"

int main (int argc, char*x argv)

{
sout << "Hello, world! (Press any key to quit.)\n";
SSDL_WaitKey (); //Wait for user to hit any key
return O;

}

The first set of lines are comments. Comments look like this - //Something on a
line after two slashes - and are there just for you or for someone who later tries to
understand your program. It’s best to be kind to yourself and your maintainers - help
them easily know what the program’s doing, without having to search and figure it out.

Next we have an include file. Some language features are built into the C++ compiler
itself, like the comment markers // and #include. Other things are in libraries; they’ll
only be loaded if needed. In this case, we need to know how to print things on the screen
using the SSDL library, so we load the include file SSDL. h.

Next we have the main program. main () is special: it’s what that tells the compiler,
“This is what we're doing in the program; start here.” The int at the start and the weird
sequence int argc, charx* argv we’ll get in Chapter 26 under “Command-line
arguments.” Same for the return 0; at the end. For now, we always put these things in. If
not, the C++ gods will punish us with incomprehensible error messages.

In this case, main () only does two things.

First, it prints "Hello, world" usingthe sout object, pronounced “S-out”

Second, it calls SSDL_WaitKey (), which waits for you to hit a key before ending the
program. Otherwise the program closes before you have a chance to see its message.

We return 0 because main () has to return something, largely for historical reasons.
In practice we almost never care what main returns.

The curly braces {} tellmain () where to start taking action and where to end: whatever
you want the computer to do when it runs the program goes between the curly braces.
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The compiler is very picky about what you type. Leave off a ; and the program won't
compile. Change capitalization on something and C++ won't recognize it.

If you're curious what this program would have looked like without SSDL, see
Chapter 29. It's not for the fainthearted beginner, but later it should make perfect sense.

Extra “Hello, world!” is often the first program a beginner writes in a new
language. Although it was originally a simple example in C — the language C++ is
descended from; more on that in Chapter 25 — the practice of writing this as the
first program has spread. Here’s “Hello, world!” in BASIC:

10 PRINT "Hello, world!"
Not bad, huh?

This is what it looks like in APL. APL (A Programming Language) has been
described as a “write-only” language because it’s said you can’t read the
programs you wrote yourself. APL requires symbols such as [, V, and p.

[]< 'Hello, world!'

Although those look easier than C++’s version, C++’s is neither the longest nor the
toughest. I'll spare you the long ones to save trees (an example for the language
Redcode took 158 lines, which may be why you’ve never heard of Redcode), but
here’s one of the tough ones, from a purposefully difficult language sometimes
called BF.

FhtHt b [ DD H > H D H > HHCCLL |
D R TR s U = DD TR LR E E = R

More “Hello, world!” examples, at time of writing, can be found at http://
helloworldcollection.de/.
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Spacing

One thing the compiler doesn’t care about is spacing. As long as you don’t put a space
inside a word, you can put it wherever you like. You can break lines or not as you choose;
itwon't care, as long as you don’t break a //comment or a "quotation”.

Example 1-2. A blatant instance of evil and rude® in programming

//Hello, world! program, for C++ for Lazy Programmers
//1t prints "Hello, world!" on the screen.

//Quite an accomplishment, huh?

// -- from C++ for Lazy Programmers

#include "SSDL.h"

int main (int argc, char** argv) {
sout <<
"Hello, world! (Press any key to quit.)\n";

SSDL_WaitKey (); //Wait for user to hit any key

return 0;

}

The compiler won'’t care about spacing - but the poor soul that has to understand
your 500-page program will! Example 1-2’s spacing would be a cruel thing to do to the
people who later maintain your code.

Readability is a Good Thing.* The programmer struggling to figure what you
meant may very well be you a few days after writing it. Most of the expense in software
development is programmer time; you won'’t want to waste yours trying to decipher your
own code. Make it clear.

3“Evil and rude” is a technical term meaning, essentially, “maliciously awful.” See
The New Hacker’s Dictionary, currently online at waw.catb.org/jargon, for other terms in
programmers’ slang.

*Good Thing: hacker slang for something that’s completely wonderful and everybody knows it
(or should).
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Tip Make your code clear as you write it, not later. Readable code helps with
development, not just future maintenance.

To help with clarity, I have things in Example 1-1, like initial comments, #include,
andmain (), separated by blank lines.It’s sort of like writing paragraphs in an English
paper: each section is its own “paragraph.” Blank lines increase readability.

I also break lines in sensible places and indent in a way that makes the program
easy to read. The default indentation is the left margin. But if something is contained
in something else - as the sout statement is contained in the main program - it gets
indented one tab, or a few spaces.

This is like outline format for a paper, or like the layout of a table of contents
(Figure 1-1). What'’s contained in something else is indented slightly. What’s in
Example 1-2 breaks the rule because #include "SSDL.h" isn’t part of the comment
above it, so it shouldn’t be indented relative to it. int main (int argc, char*x argv)
isn’t part of #include "SSDL.h", so it shouldn’t be indented either.

int main (int argc, My wonderful paper
char** argv) Part One
{
sout << "Hello, world!\n"; Part Two
. Reasons Part One is wrong
SSDL_WaitKey (); a. Why those reasons fail
b. Reassurance it's right
return O, Reasons Part Two is way better
}
Conclusion

Figure 1-1. Like an English paper outline, a C++ program is indented, with
subparts indented relative to what they're parts of

By contrast, the sout statement in Example 1-1 is contained in main, so it gets
indented a little.
You'll have plenty of examples of clear indenting as you read on.



