(++ for Lazy
Programmers

Quick, Easy, and Fun C++ for Beginners

Will Briggs

ApPress:

C++ for Lazy
Programmers

Quick, Easy, and Fun C++ for
Beginners

Will Briggs

Apress®

C++ for Lazy Programmers: Quick, Easy, and Fun C++ for Beginners

Will Briggs
Lynchburg, VA, USA

ISBN-13 (pbk): 978-1-4842-5186-7 ISBN-13 (electronic): 978-1-4842-5187-4
https://doi.org/10.1007/978-1-4842-5187-4

Copyright © 2019 by Will Briggs

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Raw Pixel (www.rawpixel.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484251867. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5187-4

To my favorite C++ programmer and the love of my life;

To the little one who first inspired her to study at home so
she wouldn’t go mommy-crazy;

And to the boy who’s already programming.

Table of Contents

About the AULROKccvimriemmsnmsesmsenss s sann s n e nnnnnns xvii
About the Technical REVIEWETccsssusssassssassssnsssansssssssssssssssssassssnssssssssassssasssansssans Xix
AcKkNOWIEdgmMEeNTSccuuuiissmmmmmmsssnnnmmssssssnnesssssnnsesssssnnsesssssnnsessssnnnnsssssnnnnsssssnnnnssssnnns XXi
11T LT 1 Xxiii
Chapter 1: Getting Started........c.cccusmmmminsennmmnssssnnmmmsssnmmssss s ————————— 1
A SIMPIE PrOGIAM....ccviceeccciee st e s e e n e e R e R e p e e 1
B3] 0 Lo 1o SRS TSSOSO 4
Creating an SSDL PrOJECT.......cccvcvieriererirrerie st a e e s ae s aesa e e nne s 6

e AN VISUAL STUGIO. ... 6
B 13 0 OO 17

How not 10 be MISErabIecccoriiennnr s 19
Shapes and the functions that draw them...........cccceevvvrinine s 21
31110107 o T O 30
CONSES AN COIOTS......ceeeecerereeree e sr e ne e 3
XL e E e R e r e e e e nre e 35
sout, escape Sequences, ANd FONTScccceverirrrrerererrer e s s e e e s naeens 35
SSDL_RenderText, SSDL_RenderTeXtCenteredcocvveeiiiiiimnsnsisisssssesessnssssssesesnens 39
Chapter 2: Images and SOUNdccccrusssmmnmmssssnnnmmssssssnmsssssssnmsssssnnnssssssnnnsssssnnnnsnsss 43
Images and changing wWindow CharacteriStiCsc.cuuvvrrnneserinnernsessesrse s 43
LN 41 010 T To T o PSRRI 49
Multiple images 10gether ... ——————— 51
Adding transparency With GIMP............cccuiririernininene e ssesessessessessssessessens 52

£ 0111 o 57
ANLIDUGGING ... e 60

TABLE OF CONTENTS

Chapter 3: NUMDEIS....ccccurinisennnisssssnnsmssssssssessssnsssesssssssssssssnnsesssssnnssssssnnnnsssssnnnnssnss 61
L 2T T 0] T3S 61
{0 3 72 TSR 63

When to use constants, not literal ValUes............coveereerererernrrrese e 64
Math OPEIALOrS.....ccciieiicir e e e 65
110 T 1T 0] o SR 65
ASSIGNMENT (=) OPEIALOLS......ccovecereee s e e e ne s e nnenens 66
A diving board EXAMPIE.........cccoreererererrerererere e 67
The no-worries list for math 0perators............cccvireinrni s —————— 70
Built-in functions @and CaStiNG.........ccourerrrenmrinmrsesrsese s 71
L1 010 T To T o SRS 76
Chapter 4: Mouse, and if........ccccusmmmsmmssnmmssmmsssmmssmssmmsssss s s sssas s sssnsssansas 79
MOUSE FUNCLIONScvviciire s 79
L1010 o o S 82
) OSSPSR 83
Coercion and if conditions (int’s dirty little SECIEt).....cccvvvvvrrrrierievr s 86
Combining conditions With &&, I, aNd L..........cceeerierririnrrrrrre e 86
31110107 o T O 87
Boolean values and VariabIes ... s 90
A hidden ODJECE JAMEcoceiieirsre e s e e s e e nne 92

Chapter 5: Loops, Input, and char..........ccccmmmmismmsmmsmms s s s s s e 101

KeYDOoard iNPUL.......ccoeeeercc s e 101
L1 o]0 To 1T o PSR STR 103
WHhile and dO-WHIIEcoerricerrerircsir e 105
LOOPS WIth SSDL......cciieiiiicirsere sttt 107
break and CONTINUE.........ccvverererirn s nr s 108
L1 o1 To 1T o TSRS 109
{0 00 LR 112
INCIEMENT OPEIALOISc.veeeerer e s 113
An example: averaging NUMDEISc.cuueerirernsesssesesesessssessssesssssessssessssessssssessssessssessssenens 114
LN 41 o1 To 1T o RSOSSN 116

TABLE OF CONTENTS

Chars AN COIYPE.....evie et e a e s e s e e s ae e e e s 118

3 1171 (o 3 123
1Y o] o [1 TS 124
Chapter 6: Algorithms and the Development Processc.ucccurrmsssssnssssssssssssssssnnnss 127
Adventures in roDOIC COOKINGcoveeeereeereerererererese e 127
Writing a program, from start 10 fiNiShcoccovecnncnncs s 131
Requirements: What do we want {0 d0?........ccoververnncnnnensnsse s sennes 131
Algorithm: HOW do WE A0 it?ccoveeeereerererreserese e 132
Walkthrough: Will it d0 it?......ccoveeeeeecere e 134
Coding: putting it all into C++ (plus: commenting the lazy way).........ccocveerrerrnsesereserennes 134
Chapter 7: FUNCHIONScccceeeeemmninnmsisssssssssnnsnssssssssssssssssssssssssssssssnsnsssssssssssnnnnnnnnnnnss 141
Functions that return ValUEScccvvcerniennesrcsc s s 141
Functions that return NOthING ..o s 148
GIODAI VaArTDIES.........ceereriirecce s 152
1Y] o [0 1 T S 153

How to write a function in four easy steps (and call it in 0Ne)........cccocvvrvrienieininsniesnsniennens 156
Why have functions, anYWay?..........cciiininns e s ens 160
Chapter 8: Functions (Continued)cccccumrrrrmmsssssssmssnnsmmmssssssssssssnsssessssssssssssnnssnnss 171
Random NUMDEIS.......ccccreerrererese s nr s 171
Making a random NUMDBEr gENEIALOr..........cucceerererreserrsesesese e s s e s e ssssessnnes 171
Using the built-in random number generator ..o 174
L1 010 o 1T o TSRS 177
BO00IEaN TUNCLIONScceveeriecrrresire e e 179

QU PAFAMEBLEIS ...t e R e R e e n e a e e e s 180
01110100 o 1 o O 185

10 L2 0 LT o] o OO 186

A final note on algorithms.........cccvcr e e s 189

vii

TABLE OF CONTENTS

Chapter 9: Using the DebUgger........ccciummmmmmmmssssnnnmmssssnnnessssssssesssssssssssssssssssssssnnnss 191
A FlAWEU PrOGIraAMccveiieiicircre e s s e e e s r e e e nne s 191
Breakpoints and watched variables............cccovvnvnininnnr s 196

LT LIS (1o PP RTR 196
A e nan 198
GOD e —————————————————————— 199
FiXing the SIMPES ..ccoveeeerecreresere s e 199
GOING INTO FUNCHIONS ...t 199
LT LIS (110 SRS 199
A e ———————————————— 201
GOD e ——————————————————— 202
FiXing the STArScccciecrccr e e e 202
L o S PR 203
01110100 o 1 o O 203
BOttOM-UP TESHING e ———————— 204
More 0n antibuggingccccceiiirnnirnr e 205
Chapter 10: Arrays and eNUM.....cccuuseememmmmmmmmmmsssssssnssmmessssssssssssssseeessssssssnnnnnnsness 207
4 S 207
Arrays’ dirty little secret: using memory addreSSeS........cuuverererererenseressesesesessesesessesessenens 210
LN 41 010 o 1T o TSR 211
Arrays as fuNCtion PArameters..........ccuveerisrnsesne s 212
Array parameters that change, or don’f...........coovoirrnenrrrrer s 213
Array parameters and reusabilityccooecrnennesns s ———————— 213
L4101 To 1T o SRS 214
ENUMEration tYPEScccuecerieeriresinrese e s np s 215
BIUM ClASS ...ueeeveeeesessesresesse s re e s e s e e e e s e sse e s e s ae s e e e e s aesr e e e e e ae s Re e e e e senae s e e e e nnenes 217
LN 41 o1 To T o TSSOSO 218
MUItIdIMENSIONAI AITAYScovevreverierererer s s s e se s sa e e s s s ae e s e saesae s e e e naenaens 219
Displaying the DOAIM...........cccveerierieriniriere e s s sae e nnes 220
Arrays of more than two dimeNSIONS........c.ccucevevrrriri s 223
4111010 o 1 o O 224

viii

TABLE OF CONTENTS

Chapter 11: Animation with structs and Spritesccccinsremmnrnssssnnnnnsssssnnesssssnnns 227
11 227
COOI STPUCT TFICKS ..evevereresreeeseressssese e s 231
Making a movie with struct and While...........ccocvvnninnrni s 232
B3] 0] (TSRS 239
L1 010 o 1T o PR TRR 244
Chapter 12: Making an Arcade Game: Input, Collisions, and Putting
It All TOgetherccuuismnmmmmmmmmmmmsssssssnnnnnnnmmesssssssssnnnnnnnesssssssssnnnnnnnnssssssssnnnnnnnnnnsssssnnn 245
Determining inPUL STALESccoveiiriiie e ———— 245
0T N 245
G5 01 L o ST 246
41110107 o 1 o O 248
Y= 1T 248
Cooldowns and lIfEtIMES.........cceeerrerree e 251
{0 1o T 254
THE DI JAME ... e e e e ne e p e e e nrnne e 255
LN 41 o1 To 1T o TSRS 269
Chapter 13: Standard 1/0 and File Operations........c.ccccnrnssssnnnmnssssnnnsssssssnssssssnnnnss 273
Standard 1/0 PrOgrams........coecrvreresensersesiesse s s s s s ssesssses e ssesaesessessssaessesessesaesaesessessesses 273
Compiling in Microsoft Visual StUdi0...........ccvvrierenninininnr e sss e sae s 274
ComMPIliNG WIth g..eeeeerr e s a e e e 278
Lo LN I (0010 1)OO 280
Cin and COUL @S FIlEScccvvrerricrirr s 280
USING fil8 NAMEScceverreriererrere st s e s sa e s s e e ae e e e e e sae e e e e e naees 287

ix

TABLE OF CONTENTS

Chapter 14: Character Arrays and Dynamic Memoryccccsrusssssnssssssssssssssssnnnss 293
(8 T T T 1 - O 293

LA 41110100 o 1 T SO S RSTS 296
Dynamic allocation Of @rrays ... e 299
LY 411101070 o 1 T OSSO 302

UL T I (TRl 110 U o] SR 303
L1 010 o 1T o TSR 307
Chapter 15: ClaSSeS ..uuuuueumrmssssnnmmsssssnnnssssssnnnmsssssnnnsssssnnnnssssssnnnsssssnnnnsssssnnnssssssnnnnss 309
WIEING ClaSSES. . .ueiriuirrrrierrierisessse s s sr s sr s sr s nr e e s r e e nne e s e e e nennnnn e 309
0] LY 1T £ R 312
01110100 o 1 T O 316
const objects, const member fUNCLIONS... ... —————— 318
311101070 o o O 319
«..@Nd CONST PAFAMETEIS......cccveeecerceree e s s e e s a e s e e e e e re e e e e s 319
MUItiple CONSTIMUCTOrScocceicr e s 320
COPY CONSITUCTOS.ciuerieerecirere s e e e p e e e ne s 320
Default CONSTIFUCTONS ... s 321
CONVEISION CONSIIUCTONS.....ccocrerurrereerereresreese e e se e e ne s 322

ST 1111 - OO 323

LA 411101070 o 1 T OO SRS 323
Default parameters for COUE rBUSEccuereriirrne et enens 324
Date Program (SO Far)........cccvrrererrereresernsesese s 325
Chapter 16: Classes (Continued)ccuuseessssansssssnsssssnsssssnnssssnsssssnsssssnsssssnsssssnnssssns 329
inline functions for EffiCIENCY.......ccucvirrrrir e eaens 329
ACCESS TUNCLIONS.....ceicerierce e 331
Separate compilation and inClUde fileS.........cccvrvrrierriinrnir e ———— 332
What happens in separate compilation..........cccovervnininnnnnrne s 333
LT I T o 1S 334
Backing up @ multi-file ProjeCt.........ccuveveriririr s 337

1Y o]0 o [0 TS 337

TABLE OF CONTENTS

Multiple-file projects in Microsoft Visual StUTI0ccevverrerievensenseresssessessessesessesessessssessensens 339
Multiple-file ProjECS iN g4+ ..o s ene s 340
Command line: more typing, 1€SS thiNKiNgccueevniirininnnn e 340
Makefiles: more thinking, [€SS tyPiNg.......cccoucvrriniinrni e 340

1Y o] o [0 TS 344

Final Date Program ... s s sr s st se s s s e s s st 344
static members (OPLIONAI)cooeeerrerrierre s 350
Chapter 17: Operatorsccceeummmisssnmmmsssssmmmsssssnmsssssnnmssssnnesssssnsesssssnsesssnnnns 353
The basSiC SEHNG ClASScccvcerrierrresiree e e e srnne e 353
DESITUCTONS ...t s 355
Binary and unary OPEratorscccvceririerninnenerses e s see e a e s s s a e s n e e s 356
Assignment operators and *this.........c.cccviinininnns e —————— 358
LA 011101070 o 1 T SO S S OSTS 360
ArithmetiC OPEIaALOrSccvicic i 361
2L N S 364
>> and <<: operators that aren’t class MeMDErS.........cccvcvveriiirrnse s 365
F AN = e e e nnnanas 368
EXpIiCit Call 10 CONSITUCTONvecvrcerererir s s sre e nne e 369
Final STriNG PrOgramcccccveverrrereresesserere s sese e ssesessessessesessessessesssssssessesasssssessessesssssnsesaens 370
HNCIUAE <SIFNGS> ..o e r e ene s 376
Chapter 18: Exceptions, Move Constructors, Recursion, and 0 Notation 377
o (e 4110 | OO SN 377
Move constructors and move = (OPoNAl)cccvcervvrnierne s 382
Recursion (optional; used in the next SECHON)cccvvvrvrrrie s 384
41110100 o 1 o O 388
Algorithm analysis and 0 notation (OPtioNAl)cccvereerrerinrerrrrerre e 389
Chapter 19: INheritance..........ccoummmmmmsnmmsnmmsnmmsssmsssnmsssmsssmsasssssssssasssasn 393
The basics Of INNEHTANCE..........coreererer e e 393
Constructors and AESTIUCIONScovecvrcrerecrr e 398
INNEritanCe as @ CONCEPL........ccucrvrire e e nae 400

TABLE OF CONTENTS

ClasSES TOr CAr JAMEScvrevrererrererreserserersessesesessessessssessessessssessessesssssssessesssssssessessesssssnsessens 401
An inheritance NIErarchy ... 404
Private iNNEMTANCEccoce v e 408
Hiding an inherited member fUNCHION..........ccccvvrirnrr s 410
A game of MONTANA ..o 411

Chapter 20: Templates......cccusvemrmmmssnnnmmssssnnnmmsssssnmssssssnsesssssssesssssssesssssssessssnnn 423

FUNCHION tEMPIALEScccceecceecr e 423
LA 411101070 o 1 T OO SRS 425

THE VECION ClaSS...ceecereeerrecreresese e se s sesre e r e e e e nnnnens 426

LT 1] ey (0] (o 4) 431

Making Vector a template ..o s 432
LN 41 o1 To 1T o SRS 436

Unusual Class teMPIALEScciiviiieiirririr e 437

HINCIUAR KVBCTOI> ...t e 439

Chapter 21: Virtual Functions and Multiple Inheritance.......cccccusseemrrnssssnnsssssssnnns 4141

Virtu@l FUNCLIONS ..o e 441
BEhind the SCENEScccouecrreerere e 446
Pure virtual functions and abstract base Classes...........ccuorrirrnnnernennese e 447
Why virtual functions often mean using POINters........cccvvrininnsnsnr s 447
Virtu@l deSTIUCTONS ..o s 452
Inheritance and move ctor/move = (OpLioNal)ccccveverrirriern - 454
1Y] o1 TS 455

Multiple INNEFTANCEcceceececr e s eae 457
LA 411101070 o 1 T SO SRS 459

Chapter 22: Linked LiStS......cccccurimnmmmmsmsmmmmmmmmmsssssssssssssmsssssssssssssnsssssssssssssssssnssnnss 463

What lists are and why have them.........c..coerrcnrninnse e 463

(IS O I I B | OSSOSO 467

void List<T>::push_front (const T& NEWEIEMENL);ccvcevevvrrvriererrrerrere s 468

(010 B IESY O I o o T (0] S 469

LISERT>1i~LIST() cvrvrreeeeesesssssssssssssssssssssssssssss s e e e e e e e s s s s s ssss s s sssssssasasssssssnsssssssnsnenenes 472

xii

TABLE OF CONTENTS

->: @ Dit O SYNTACTIC SUGA......ccveiirire e 472
More friendly syntax: pointers as conditionsc.ccocvvvvrininnsnrnisss e 472
The linked list temMPIALEccocviriirr s ————— 473
LAY 41110100 o 1 T O SRS OSSR 477
4T LT Lo 1] 478
Chapter 23: The Standard Template Librarycccccussemmmmssssnnmmnsssssnnmssssssssssssssnnns 479
12T 1] £ TSRO 479
BN 171 1IN (0 (o 483
cOoNSt and reverse itErators ... —— 484

LN 41 o1 To 1T o PSSR 485
Getting really lazy: ranges and AUL0.........ccocevevrrrenn s s 486
initializer_listS (OPLIONAI).......ccovereeriererirrerere s se e s ae e s s ae s ne e e e nne e 487
algorithm (OPHIONAI)........cceeere e e e 489
The erase-remove idiOM ... sne e 490

1Y] [TS 490
Chapter 24: Building Bigger Projectsccoumsssmnmmssssssssssssssnsssssssssssssssssssssssssnnnss 493
NAMESPACESceereerieiisirer et s e s s s e s e s e e e e e b e e et e R b e b e e e e nne 493
Conditional ComMPIALIONc.ocrirr e ———————— 494
[0 =SSOSO 495

0 496
Microsoft ViSUal StUAIO.......c.oueeerererisernsesrnesese s se s s s seasis 498
Chapter 25: HiStOry.......ccccmmmsmmmmmmssssnnnmssssssnnmssssssnnmsssssnsssssssssnnssssssnnnsssssnnnnssssnnnnnss 509
SIMUIA B7 ...ttt 509
B3] 11 11 - LGP 509
What “object-0riented” iS ... ————— 510
ettt R A A A A g A AR R AR R R R R e e e e s 511
5 OSSR 511

B3] 2T 0 10 LSS 512

xiii

TABLE OF CONTENTS

Chapter 26: Esoterica (Recommended)ccuuseeuresssssnssmsssssnssssssssssssssssssnsssssssnnnss 513
sstream: using Strings liKe CIN/COUL.........ccoevvverierrere v naennes 513
iomanip: formatted OULPUL ..o ——————— 516
Command-line argumMeNtSscccriiinininr s 522

Debugging with command-line arguments in Visual Studioccccccevrverercncnrevcevccneenns 525
Debugging with command-line arguments in UNiX.........ccoovvninnnnninnnnsnsese s sesennns 525
SEAtIC_CAST BL Al ..o ———————————————— 527
Defaulted CONSIrUCIOrS @nd =.......ccoecrrerrererese e e 528
constexpr and static_assert: moving work to compile timeccccovvvvrininncncnnnecncnen, 529
User-defined literals: automatic conversion between systems of measurement..................... 533
Lambda functions for one-time USE..........cocurrinmnnm s 536
LamBDAa CAPTUIES......coceieeereirere e s r e s 537
Structured bindings and tuples: returning multiple values at once.........ccccocevvvreerieresenseriennes 542
E 11 L 01011 (=T P 546
(1 L0 =) 1 OSSR 546
SNANBU DI .. ——————————————— 552
31110107 o o O 553
Bit twiddling: &, I, ~, AN....cceiiierieriererirrerere s se e s ss e s s saesesesaesaesassesnesaees 553
DAY 1] o1 T S 559

Chapter 27: Esoterica (Not So Recommended).........ccccurrnssnnnnrnssssnnssssssssnsssssssnnnss 561
protected sections, protected iNNEritanCe ... 561
Template SPECIAliZatioN ... ————————— 565
friends, and why you shouldn’t have any...........cccorerrernes s 566
User-defined CONVEISIONSccovermrreserrnsmsessesesesesessesessesessesessssssesssssssssessssssessssssssssssessssssssenns 571

Chapter 28: C.......ccccruiismmmmmmissnnnmmsssssnnmsssssssnmsssssssnesssssnsnssssssnnnsssssnnnnsssssnnnnsssssnnnnss 573
[0 T o1 T o ST 574
/0 e e e e s e Re e e e e e nae s 575

P e ————————————— 575
scanf, and the address-0f (&) OPErator..........cccvrvrervrernrisrsese s 575
fprintf and fscanf; fopen and fCIOSE ... ——————- 578
sprintf and sscanf; fputs and fGets........cocucrvrinrrrn i ————— 580

Xiv

TABLE OF CONTENTS

L4114 RS 583

DY] o [0 T[S 584
Parameter passing With * ... 584
1Y] 0 [0 TS 588
DYNAMIC MEBIMOTYciviiticirciere s s e e s e s e b e s p e e e s R b e e e e e nne 588
Chapter 29: Moving On with SDL......ccccccciiiimnnssssssssmmmmmssssssssssssssssessssssssssssssssnnes 591
WIING COUR.....eveerrrirrrcserrese s s s n e nne e r e nenne e nnn e 593
[0] o111 o OSSOSO 597
FUIMNEE FBSOUICES.c.ciuiiriiirisce e e 598
Appendix A: SDL/SSDL Setup ISSUES......ccurssusssassssassssnsssansssassssnsssassssassssnsssassssanssas 599
0 G 599
[0 OSSOSO 599

]] OO TTRRo 599
1S 0 OSSPSR 600
Making your oWn MaKefiles........couoerrererrnerenererese s 600
ANDUGOING...e e ———————— 600
MINGW......ooticerere iR b b b e e e 601
0 OSSPSR 601

SDL NG SSDLvvviireririresesesesesesesessss s s se e p s e e e s 601
Making your OWN MaKEFilES.......cccvverrereriirie s serrer e s s e s s e s se s sn e s s s e sne s naeens 601
DY L]0 THTo o T o OSSOSO 601
MicroSoft VISUAl STUAIOccoveererererescrenseserese s s 602
SDL/SSDL ...vvvierererereresesese e s s s s s bbb g e e e nnnan 602
Making your oWn Project filesS........ccvurrnsrrneserenernsesesese s sesse s 602
ANDUGOING.c.t et nr s 603

£ 011 o 604
Appendix B: OpPerators......ccucuussmsssmsssssssasssssssssnsssassssnsssansssassssnssssssssassssnsssansssanssas 605
ASSOCIALIVITY ..veveveerererre s b e e b e e e b e e e nne s 605
Lo (T2 0[] T 605
L0 (0= Lo o 606

TABLE OF CONTENTS

Appendix C: ASCI COUESuuruirmmmmmmssssnssmssssnsssssssssssssssssnssssssssssnsssssssnsssssssnnnsssssnns 607
Appendix D: Fundamental TYpes......ccccuumsmmmmmmmmmmmmmsssssssssssnnmmsssssssssssssssssssssssssssnnnns 609
Appendix E: ESCAPe SEQUENCES ...uurrrsssnnsrrsssssnssessssnnsssssssnssssssssnnsssssssnnsssssssnnnsssssnns 611
Appendix F: Basic C Standard LiDraryc.ccccrunmsesmmmmmssssmmssssssmssssssssssssssssssssssnns 613
CIMALN . 613
(101X R 614
CSTOIID e ——————————————— 615
Appendix G: Common Debugger Commandsccccuussmnnmmssssssnmsssssssssssssssnssssssnns 617
Microsoft Visual STUIOcc.cereierieriresir st nae 617
00 oo OO 618
Appendix H: SSDL ReferencCeccccuverrmssssssnnssssssssssssssssssssssssssssssssssnssssssssssssssnnnnns 619
UpPdating the SCIEEN.........cccive i a e s e e a e s an e 619
AUUEA TYPLS ..t R e e R r e R 619
Clearing the SCIrEEN ... s e an 620
{00 10T SRS 620
[0 U oSSR 620
T2 T L= SO PR S 621
Mouse, keyboard, and BVENTSc.ccccerririinniri s s 622
MUSIC ...ttt e e e e e R e e e R Re e p e e nne e 623
QUIT MBSSAYES .uerverrerererserserersersersersessssessessessessssessessessssessessesssssssessesssssssessessessesessessessessssensenses 624
SOUNMS ...t e E e e e R e e e e AR e e AR e e e e nan 625
£ 0] TSRS 626
=2 628
Time and SYNCAFONIZALIONccvereririrce s s sr e s s e e ene e 629
WINAOW ...ttt e e e e e e e e R e b e e e R nrnne s 630
RefereNCEeS..ciiiuenrrssanrrssannsssanssssansessansesssnnesssnnesssnnesssnnesssnnesssnnesssnnesssnnesssnnssssnnssssnns 631
INA@X.ueiiiissnnnnnnnsssnnnnmssssnnnnnsssnnnnessssnnnnsssssnnnnsssssnnnnssssnnnnnsssssnnnnssssnnnnsssssnnnnnsssnnnnnssss 633

About the Author

Will Briggs, PhD, is a professor of computer science at the University of Lynchburg

in Virginia. He has over 20 years of experience teaching C++, 12 of them using earlier
drafts of this textbook, and more than that teaching other languages including C, LISP,
Pascal, PHP, PROLOG, and Python. His primary focus is teaching of late while also doing
research in artificial intelligence.

Xvii

About the Technical Reviewer

Michael Thomas has worked in software development for over 20 years as an individual
contributor, team lead, program manager, and vice president of engineering. He has over
10 years of experience working with mobile devices. His current focus is in the medical
sector using mobile devices to accelerate information transfer between patients and
health-care providers.

Xix

Acknowledgments

Special thanks to

Dr. Kim McCabe, for advice on publishing

Dr. Zakaria Kurdi, for advice on publishing

Apress

Microsoft

The makers of GIMP (the GNU Image Manipulation Program)

Pixabay.com and contributors, especially David Mark/12019
(Chapter 2, beach), Free-Photos (Chapter 2, pug), Andi Caswell/
andicaz (Chapter 6, scones), joakant (Chapter 11, tropical fish),
Gerhard Janson/Janson_G (Ch12, ufo), 13smok (Chapter 12, alien
sign), Prawny (Chapter 12, splat), Elliekha (Chapter 12, haunted
house), pencil parker (Chapter 12, candy), and Robert Davis/
rescueram3 (Chapter 12, pumpkin photos)

Wikimedia Commons

OpenClipArt.org and contributors, especially Firkin (Chapter 2,
flamingo)

Flickr, especially Speedy McZoom (Chapter 12, jack-o-lantern art)

FreeSounds.org and contributors, especially Razor5 (Chapter 2,
techno music), robbo799 (Chapter 2, church bells), alqutis

(Chapter 12, hovercar), Berviceps (Chapter 12, splat), mistersherlock
(Chapter 12, Hallowe’en graveyard), matypresidente (Chapter 12,
water drop), Osiruswaltz (Chapter 12, bump), mrose6 (Chapter 12,
echoed scream), and robcro6010 (Chapter 12, circus theme)

xxi

ACKNOWLEDGMENTS

o Chad Savage of Sinister Fonts for Werewolf Moon (Chapter 12)
o Lazy Foo’ Productions
o StackOverflow.com

» Einar Egilsson of cardgames.io for images of card games, Nicu
Buculei (http://nicubunu.ro/cards) for card images, and “Nanami
Kamimura” for Montana image

xxii

http://nicubunu.ro/cards

Introduction

Surely there’s no shortage of C++ intro texts. Why write yet another?

I'm glad you asked.

Ever since moving from Pascal to C++ (back when dinosaurs roamed the Earth), I've
been underwhelmed by available resources. I wanted something quirky and fun to read,
with sufficient coverage and fun examples, like the old Oh! Pascal! text by Cooper and
Clancy.

It’s about time we had this again. Even a perfectly accurate text with broad coverage
gives you nothing if you fall asleep when you read it. Well, nothing but a sore neck.

But the other reason, of course, is to promote laziness.

We all want our projects to be done more quickly, with less wailing and gnashing of
teeth. Sometimes, it’s said, you have to put your nose to the grindstone. Maybe, but I like
my nose too well for that. I'd rather do things the easy way.

But the easy way isn’t procrastinating and dragging my feet: it’s to find something
I'love doing and do it so well that it feels relatively effortless. It’s producing something
robust enough that when it does break down, it tells me exactly what the problem is, so
I don’t have to spend a week pleading with it to explain itself. It’s writing code that I can
use again and again, adapting it to a new use in hours instead of days.

You'll benefit from this book if you're a beginning programmer or one who hasn’t yet
learned C++ or its descendants like Java or C#; if you already know a C++-like language,
you can go a little faster.

Here’s what you can expect:

e Apleasantreading experience.
e Adequate coverage.

e Games, that is, use of the SDL graphics library, which makes it easy
to get graphics programs working quickly and easily. It isn’t fair
that Python and Visual Basic should get all the eye candy.! The SDL

1”7

Eye candy”: things that look good on the screen. See The New Hacker’s Dictionary, available at
time of writing at www.catb.org/jargon/.

xxiii

http://www.catb.org/jargon/

INTRODUCTION

library is used through Chapter 12. After that we’ll use more standard
(but less visually interesting) I/0, so we can also get practice with the
more common console programs.

e ...and an easy introduction to SDL’s graphical magic, using the SSDL
library (see below).

o Sufficient examples, and they won’t all be about actuarial tables or how
to organize an address book. (See “pleasant reading experience” earlier.)

» Antibugging sections throughout the text to point out common or
difficult-to-trace errors - and how to prevent them.

o Compatibility with g++ and Microsoft Visual Studio.

e Compliance with C++17, the latest standard, and the nice goodies it
provides.

e For g++ programmers, instructions on using g++, the ddd/gdb
debugger system, and Makefiles; for Visual Studio, use of the
debugger and project files.

e An appreciation of laziness.

e Acooltitle. Maybe I could have tried to write a “For Dummies” book,
but after seeing Bioinformatics for Dummies I'm not sure I have what
it takes.

Why SDL?

It’s surely more enjoyable to make programs with graphics and WIMP?-style interaction
than to merely type things in and print them out. There’s a variety of graphical libraries
out there. SDL, or Simple DirectMedia Layer, is popular, relatively easy to learn, portable
between platforms, and fast enough for real-world work, as evidenced by its use in actual
released games (Figure 1).

2WIMP: window, mouse, icon, pointer. What we're all used to.

XXiv

INTRODUCTION

g B
© Freeciv (=) e

Game Edit View Select Unit Work Combat Civilization Help

AP

< >

Carthaginians
Population: 12,910,000
Year: 1505 CE (T201)
Gold: 4564 (+224)
Tax: 40 Lux: 20 Sci: 40

PP o
Turn Done
Submarine
Moves: 4
Ocean
Kells

\@

View Chat Messages @ MNations @ Cities @ Research @

Figure 1. A game of Freeciv, which uses the SDL library.

Why SSDL?

...but although SDL is relatively simple, it’s not simple enough to start with on day 1
of programming with C++. SSDL (Simple SDL) saves you from needing to know things
we don’t get to until Chapter 14° before doing basic things like displaying images
(Chapter 2) or even printing a greeting (Chapter 1). It also hides the initialization and
cleanup code that’s pretty much the same every time you write a program, and makes
error handling less cumbersome.

You may want to keep using SSDL as is after you're done with this book, but if you
decide to go on with SDL, you'll find you know a lot of it already, with almost nothing to
unlearn: most SSDL function names are names from SDL with another “S” stuck on the
front. We'll go into greater depth on moving forward with SDL in Chapter 29.

SPointers.

INTRODUCTION

Software You Will Need

Your compiler, plus various free SDL libraries (SDL2, SDL2_Image, SDL2_TTEF, and
SDL2_Mixer), my free SSDL library, and (for Chapter 2, and whenever you need it) a
deluxe graphics editing package. I use GIMP, which is free, and at time of writing is
available from www.gimp.org.

SSDL is available at www.apress.com/9781484251867, as is my sample code.

In Unix, you may choose to install the GNU Free Fonts library, or msttcorefonts,
Microsoft Core Fonts for the Web. Look for ttf-mscore-fonts and fonts-freefont-
ttf (Debian and Ubuntu systems) and gnu-free-fonts-common and msttcore-fonts-
<something or other> (Red Hat and Fedora), remembering that systems differ,
standards change, and Unix is hard. But if you're using Unix, you knew that. T use
Microsoft Core Fonts for the Web in the example programs.

Programming with sound may not be practical over remote connections, because
of the difficulty of streaming sound. If using Unix emulation, you might check the
emulator’s sound capabilities - say, by playing a video.

If this is for a course...

C++ for Lazy Programmers covers through pointers, operator overloading, virtual
functions, templates, exceptions, STL - everything you might reasonably expect in two
semesters of C++.

The SSDL library does take a small amount of time, but the focus is firmly on writing
good C++ programs, with SSDL there just to make the programs more enjoyable. How
many labs or projects do you have in which it’s hard to stop working because it’s so much
fun? It may not happen with all these problems, but I do see it happen.

SDL also gives a gentle introduction to event-driven programming.

In the first 12 chapters, there is emphasis on algorithm development and
programming style, including early introduction of constants.

After Chapter 12, the examples are in standard I/0, though SDL is still an option for a
few exercises and is used in Chapter 21 and (briefly) Chapter 26.

XxXVi

http://www.gimp.org/
http://www.apress.com/9781484251867

INTRODUCTION

A normal two-semester sequence should cover approximately

o Semester 1: The first 12 chapters, using SDL; Chapter 13, introducing
standard I/0. With some exceptions (& parameters, stream I/0),
this looks a lot like C, and includes variables, expressions, functions,
control structures, arrays, and stream I/0.

o Semester 2: Chapters 14-22, using standard I/0O, covering pointers,
character arrays, classes, operator overloading, templates,
exceptions, virtual functions, multiple inheritance (briefly), and a
taste of the Standard Template Library using vectors and linked lists.

Subsequent chapters cover material that wouldn't easily fit in two semesters,
including more of the Standard Template Library, history of C++, C programming, and a
few more esoteric topics.

Online Help

Here are some sites to go to for more information, with URLs correct at time of writing.

SDL: www.1libsdl.org; click “Wiki.” You'll find a reference for SDL functions.

SDLs helper libraries SDL_Image, SDL_Mixer, and SDL_TTF: www.1libsdl.org/
projects/SDL_image/, www.libsdl.org/projects/SDL_mixer/, and www.libsdl.org/
projects/SDL_ttf/.In each case, click Documentation. You'll find references for their
functions. If the web sites have changed, doing a web search for the name of the library
(SDL_image, for example) should get you there.

Legal Stuff

Visual Basic, Visual Studio, Windows, Windows Vista, Excel, and Microsoft are
trademarks of the Microsoft Corporation. All other trademarks referenced herein are
property of their respective owners.

This book and its author are neither affiliated with nor authorized, sponsored, or
approved by Microsoft Corporation.

Screenshots of Microsoft products are used with permission from Microsoft.

Xxvii

http://www.libsdl.org/
http://www.libsdl.org/projects/SDL_image/
http://www.libsdl.org/projects/SDL_image/
http://www.libsdl.org/projects/SDL_mixer/
http://www.libsdl.org/projects/SDL_ttf/
http://www.libsdl.org/projects/SDL_ttf/

CHAPTER 1

Getting Started

Most programs in the first half of this book use the SDL and SSDL libraries,' on the
theory that watching colorful shapes move across the screen and shoot each other is
more interesting than printing text. Don’t worry; when you're done, you'll be able to
write programs both with and without this library - and if I have anything to say about it,
you’ll have had fun doing it. Let’s see how it goes.

A simple program

It's wise to start small. Fewer things can go wrong.
So we'll start small here with a simple program that writes “Hello, world!” on the
screen. We'll take it line by line to see what’s in it. (In the next section, we’ll compile and

run it.)

Example 1-1. “Hello, world!” is a classic program to start off a new language
with. (I think it’s a law somewhere.)

//Hello, world! program, for C++ for Lazy Programmers_
// Your name goes here
// Then the date?

'SDL provides graphics, sound, and friendly interaction including mouse input. SSDL, standing
for Simple SDL, is a “wrapper” library that wraps SDL’s functions in easier-to-use versions. Both
libraries are described in more detail in the Introduction. Don’t worry; I don’t read introductions
either.

2From here on, I'll be putting the title of the text, rather than name and date, because that’s more
useful for textbook examples. Ordinarily name of programmer and date are better for keeping
track of what was done and who to track down if it doesn’t work.

© Will Briggs 2019
W. Briggs, C++ for Lazy Programmiers, https://doi.org/10.1007/978-1-4842-5187-4_1

CHAPTER 1 GETTING STARTED

//1t prints "Hello, world!" on the screen.
// Quite an accomplishment, huh?

#include "SSDL.h"

int main (int argc, char*x argv)

{
sout << "Hello, world! (Press any key to quit.)\n";
SSDL_WaitKey (); //Wait for user to hit any key
return O;

}

The first set of lines are comments. Comments look like this - //Something on a
line after two slashes - and are there just for you or for someone who later tries to
understand your program. It’s best to be kind to yourself and your maintainers - help
them easily know what the program’s doing, without having to search and figure it out.

Next we have an include file. Some language features are built into the C++ compiler
itself, like the comment markers // and #include. Other things are in libraries; they’ll
only be loaded if needed. In this case, we need to know how to print things on the screen
using the SSDL library, so we load the include file SSDL. h.

Next we have the main program. main () is special: it’s what that tells the compiler,
“This is what we're doing in the program; start here.” The int at the start and the weird
sequence int argc, charx* argv we’ll get in Chapter 26 under “Command-line
arguments.” Same for the return 0; at the end. For now, we always put these things in. If
not, the C++ gods will punish us with incomprehensible error messages.

In this case, main () only does two things.

First, it prints "Hello, world" usingthe sout object, pronounced “S-out”

Second, it calls SSDL_WaitKey (), which waits for you to hit a key before ending the
program. Otherwise the program closes before you have a chance to see its message.

We return 0 because main () has to return something, largely for historical reasons.
In practice we almost never care what main returns.

The curly braces {} tellmain () where to start taking action and where to end: whatever
you want the computer to do when it runs the program goes between the curly braces.

CHAPTER 1 GETTING STARTED

The compiler is very picky about what you type. Leave off a ; and the program won't
compile. Change capitalization on something and C++ won't recognize it.

If you're curious what this program would have looked like without SSDL, see
Chapter 29. It's not for the fainthearted beginner, but later it should make perfect sense.

Extra “Hello, world!” is often the first program a beginner writes in a new
language. Although it was originally a simple example in C — the language C++ is
descended from; more on that in Chapter 25 — the practice of writing this as the
first program has spread. Here’s “Hello, world!” in BASIC:

10 PRINT "Hello, world!"
Not bad, huh?

This is what it looks like in APL. APL (A Programming Language) has been
described as a “write-only” language because it’s said you can’t read the
programs you wrote yourself. APL requires symbols such as [, V, and p.

[]< 'Hello, world!'

Although those look easier than C++’s version, C++’s is neither the longest nor the
toughest. I'll spare you the long ones to save trees (an example for the language
Redcode took 158 lines, which may be why you’ve never heard of Redcode), but
here’s one of the tough ones, from a purposefully difficult language sometimes
called BF.

FhtHt b [DD H > H D H > HHCCLL |
D R TR s U = DD TR LR E E = R

More “Hello, world!” examples, at time of writing, can be found at http://
helloworldcollection.de/.

http://helloworldcollection.de/
http://helloworldcollection.de/

CHAPTER 1 GETTING STARTED

Spacing

One thing the compiler doesn’t care about is spacing. As long as you don’t put a space
inside a word, you can put it wherever you like. You can break lines or not as you choose;
itwon't care, as long as you don’t break a //comment or a "quotation”.

Example 1-2. A blatant instance of evil and rude® in programming

//Hello, world! program, for C++ for Lazy Programmers
//1t prints "Hello, world!" on the screen.

//Quite an accomplishment, huh?

// -- from C++ for Lazy Programmers

#include "SSDL.h"

int main (int argc, char** argv) {
sout <<
"Hello, world! (Press any key to quit.)\n";

SSDL_WaitKey (); //Wait for user to hit any key

return 0;

}

The compiler won'’t care about spacing - but the poor soul that has to understand
your 500-page program will! Example 1-2’s spacing would be a cruel thing to do to the
people who later maintain your code.

Readability is a Good Thing.* The programmer struggling to figure what you
meant may very well be you a few days after writing it. Most of the expense in software
development is programmer time; you won'’t want to waste yours trying to decipher your
own code. Make it clear.

3“Evil and rude” is a technical term meaning, essentially, “maliciously awful.” See
The New Hacker’s Dictionary, currently online at waw.catb.org/jargon, for other terms in
programmers’ slang.

*Good Thing: hacker slang for something that’s completely wonderful and everybody knows it
(or should).

4

http://www.catb.org/jargon

CHAPTER 1 GETTING STARTED

Tip Make your code clear as you write it, not later. Readable code helps with
development, not just future maintenance.

To help with clarity, I have things in Example 1-1, like initial comments, #include,
andmain (), separated by blank lines.It’s sort of like writing paragraphs in an English
paper: each section is its own “paragraph.” Blank lines increase readability.

I also break lines in sensible places and indent in a way that makes the program
easy to read. The default indentation is the left margin. But if something is contained
in something else - as the sout statement is contained in the main program - it gets
indented one tab, or a few spaces.

This is like outline format for a paper, or like the layout of a table of contents
(Figure 1-1). What'’s contained in something else is indented slightly. What’s in
Example 1-2 breaks the rule because #include "SSDL.h" isn’t part of the comment
above it, so it shouldn’t be indented relative to it. int main (int argc, char*x argv)
isn’t part of #include "SSDL.h", so it shouldn’t be indented either.

int main (int argc, My wonderful paper
char** argv) Part One
{
sout << "Hello, world!\n"; Part Two
. Reasons Part One is wrong
SSDL_WaitKey (); a. Why those reasons fail
b. Reassurance it's right
return O, Reasons Part Two is way better
}
Conclusion

Figure 1-1. Like an English paper outline, a C++ program is indented, with
subparts indented relative to what they're parts of

By contrast, the sout statement in Example 1-1 is contained in main, so it gets
indented a little.
You'll have plenty of examples of clear indenting as you read on.

