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The International Symposia on Retinal Degeneration have been held in  
conjunction with the biennial meeting of the International Society for Eye 
Research (ISER) since 1984. These RD symposia have allowed basic and 
clinician scientists from around the world to convene and present their new 
research findings. They were organized to allow substantial time for discus-
sions and one-on-one interactions in a relaxed atmosphere, where interna-
tional friendships and collaborations could be fostered. The 18th International 
Symposium on Retinal Degeneration (also known as RD2018) was held from 
September 3 to 8, 2018, in the marvelous Victorian Hotel, The Great Southern, 
in the beautiful city of Killarney, Ireland. The meeting brought together 286 
basic and clinician scientists, retinal specialists in ophthalmology, and train-
ees in the field from all parts of the world.

Abstract submissions to the RD2018 meeting exceeded all expectations, 
both in quantity and quality. The scientific program covered many aspects of 
retinal degeneration. The presentations included 44 platform talks and 153 
posters. The program consisted of 3 full days of platform talks and 2 evening 
poster sessions. The RD2018 meeting was highlighted by four special key-
note lectures. The first keynote lecture was given by James Handa, MD, 
Johns Hopkins University, who discussed “The RPE in AMD: Are They on an 
Inevitable Journey to Death?”. Rando Allikmets, PhD, of Columbia University 
gave the second keynote lecture titled “Solving Stargardt/ABCA4 Disease by 
Integrating Clinical and Genetic Analyses.” Jacque Duncan, MD, University 
of California at San Francisco, presented the third keynote lecture titled 
“Retinal Structure and Function in Patients with Retinal Degenerations.” The 
fourth and final keynote lecture was given by Peter Humphries, PhD, Trinity 
College Dublin, who discussed “On Experimental Approaches to Molecular 
Therapy for Retinal Degeneration.” The scientific meeting ended with a 
“Welcome to RD2020” by Local Organizer Juan Gallo, MD, along with the 
organizers primarily responsible for the meeting, Drs. John D. Ash and Eric 
Pierce.

We thank the Local Organizing Committee Chairs, Dr. Peter and Marian 
Humphries, Trinity College Dublin, and their Local Organizing Committee 
Members, Drs. Laura Brady, Fighting Blindness Ireland; Matthew Campbell 
and Jane Farrar, Trinity College Dublin; and Paul Kenna, Research 
Foundation, Royal Victoria Eye and Ear Hospital Dublin. In addition, we 
thank the outstanding management and staff of the Great Southern Hotel and 
Conference Center for their assistance in making this an exceptionally 

Preface



vi

smooth-running conference and a truly memorable experience for all of the 
attendees. These included, in particular, Denise O’Sullivan and Aine 
McMahon.

We were very pleased to be able to fund 65 “full-ride” travel awards for 
graduate students, postdocs, and junior faculty, the largest number of travel 
awards for an RD meeting to date! Travel awards were made possible in part 
by funding from the National Eye Institute (NEI) of the National Institutes of 
Health. We are pleased to report this is the ninth consecutive symposium in 
which the NEI has contributed travel awards to support young investigators. 
We are also grateful to the Foundation Fighting Blindness (FFB) for their 
continuous support since 1986. FFB, then known as the National Retinitis 
Pigmentosa Foundation, started supporting our meeting from our second 
meeting, RDII, and we dedicated our first volume (RDI) to Ben Berman who 
was the founder of FFB.  Additional awards were provided by generous 
national and international financial support from a number of organizations, 
including the BrightFocus Foundation (since 2014), Pro Retina Germany 
(1998 and since 2012), the Fritz Tobler Foundation Switzerland (since 2012), 
Bayer, Novartis/Fighting Blindness Ireland, Science Foundation Ireland, 
Fáilte Ireland, and Biosciences Ireland. Many of the contributing foundations 
sent members of their organizations to attend the meeting. Their participation 
and comments in the scientific sessions were instructive to many, offering 
new perspectives to some of the problems being discussed.

We also acknowledge the diligent and outstanding efforts of Ms. Holly 
Whiteside and Jazzamine Asberry. Holly recently retired as the Administrative 
Manager of Dr. Anderson’s laboratory at the University of Oklahoma Health 
Sciences Center. She had been the RD Symposium Coordinator since 2000. 
Her duties were taken over for the RD2018 meeting by Jazzamine.

Finally, we acknowledge the contributions since 1984 of Matthew LaVail, 
one of the three founding organizers of the RD meetings. Matt has retired 
from the University of California at San Francisco and will no longer contrib-
ute (officially) to the ongoing RD meetings.

Catherine Bowes Rickman Durham, NC, USA
Christian Grimm Zurich, Switzerland
Robert E. Anderson Oklahoma City, OK, USA
John D. Ash Gainesville, FL, USA
Matthew M. LaVail San Fancisco, CA, USA
Joe G. Hollyfield Cleveland, OH, USA
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AMD-Associated HTRA1 Variants 
Do Not Influence TGF-β Signaling 
in Microglia

Isha Akhtar-Schaefer, Raphael Reuten, 
Manuel Koch, Markus Pietsch, 
and Thomas Langmann

Abstract

Genetic variants of high-temperature require-
ment A serine peptidase 1 (HTRA1) and age- 
related maculopathy susceptibility 2 (ARMS2) 
are associated with age-related macular degen-
eration (AMD). One HTRA1 single nucleotide 
polymorphism (SNP) is situated in the promotor 
region (rs11200638) resulting in increased 
expression, while two synonymous SNPs  
are located in exon 1 (rs1049331:C  >  T, 

rs2293870:G > T). HtrA1 is known to inhibit 
transforming growth factor-β (TGF-β) signal-
ing, a pathway regulating quiescence of microg-
lia, the resident immune cells of the brain and 
retina. Microglia-mediated immune responses 
contribute to AMD pathogenesis. It is currently 
unclear whether AMD-associated HTRA1 vari-
ants influence TGF-β signaling and microglia 
phenotypes. Here, we show that an HtrA1 iso-
form carrying AMD-associated SNPs in exon 1 
exhibits increased proteolytic activity. How-
ever, when incubating TGF-β- treated reactive 
microglia with HtrA1 protein variants, neither 
the wildtype nor the SNP- associated isoforms 
changed microglia activation in vitro.

Keywords
Age-related macular degeneration (AMD) · 
Genome wide association studies (GWAS) · 
Single nucleotide polymorphisms (SNPs) · 
AMRS2/HTRA1 · Transforming growth 
factor β (TGF-β) · TGF-β signaling · 
Microglia · Microglial quiescence · 
Immunomodulation

1.1  Introduction

Genome-wide association studies (GWAS) identi-
fied strong correlations between polymorphisms on 
chromosome 10q26 and AMD (Yang et al. 2006). 
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This locus harbors the genes for the HTRA1/
ARMS2. The risk haplotype contains several SNPs, 
with one of which situated in the promoter region of 
HTRA1 (rs11200638), resulting in increased tran-
script and protein levels (Tuo et al. 2008). HtrA1 
was found in drusen and the aqueous humor of 
AMD patients (Tosi et al. 2017). Mice overexpress-
ing HtrA1 exhibited Bruch’s membrane (BM) frag-
mentation which is characteristic for AMD 
(Vierkotten et al. 2011; Nakayama et al. 2014).

TGF-β is a well-defined regulator of immune reg-
ulation (Goumans et al. 2009). In the retina TGF-β 
belongs to factors released by the RPE into the sub-
retinal space and exhibits immunosuppressive func-
tions on the innate immune system by modulating 
microglia (Zamiri et al. 2007). Microglia, the resident 
immune cells in the retina, are responsible for tissue 
repair and pro- inflammatory responses associated 
with disease progression (Akhtar-Schafer et al. 2018). 
TGF-β potently attenuates neuroinflammation by 
dampening microgliosis (Zöller et al. 2018). Whether 
HtrA1 contributes to inflammation by inhibiting 
TGF-β signaling remains largely elusive. An AMD-
associated HtrA1isoform, which carries two synony-
mous SNPs in exon 1 (rs1049331 and rs2293870), 
exhibited reduced binding to TGF-β in microglia 
(Friedrich et al. 2015). In the present study, we asked 
whether HtrA1 triggers pro- inflammatory microglia 
responses by interfering with TGF-β signaling.

1.2  Methods

1.2.1  Eukaryotic Protein Expression

The ORFs of wildtype (WT) and protease inactive 
(S328A) mouse (m) HtrA1 and WT, S328A, and 
AMD-associated (SNP) human (h) HtrA1 variants 
were cloned into an expression plasmid containing 
an N-terminal 2x Strep II tag. The S328A mutants 
contained a substitution of serine at position 328 
with alanine, while the SNP isoform carried two 
SNPs in exon 1 (rs1049331:C  >  T: A34; 
rs2293870:G > T: G36). Proteins were expressed 
as previously described (Reuten et al. 2016).

1.2.2  Protease Assay

Enzymatic activity of HtrA1 was assessed using 
the EnzChek Protease Assay Kit (Thermo Fischer 
Scientific). HtrA1 proteins diluted in cold diges-
tion buffer (10  mM Tris-HCL pH  7.8, 0.1  mM 
NaN3) were pipetted into a black 96-well microti-
ter plate. Reaction was initiated by adding 5 μg/
ml BODIPY-FL casein. Increasing concentra-
tions of HtrA1 were applied. The increase in rela-
tive fluorescence units (RFUs) at excitation/
emission wavelengths of 485/535 nm was moni-
tored every 20  seconds at 37  °C using an 
Infinite®F200 Pro plate reader (Tecan). Values 
were baseline corrected by subtracting the mean 
RFU increase without any enzyme.

1.2.3  Cell Culture

BV-2 microglia-like cells were cultured as previ-
ously described (Scholz et al. 2015). Cells were 
treated with 10  ng/ml interferon-γ (IFN-γ) or 
1  ng/ml TGF-β (PreproTech) or both for 24  h. 
Treated cells were preincubated with 50 ng/ml, 
100  ng/ml, and 150  ng/ml HtrA1 protein. For 
Smad2 expression analysis, cells were incubated 
with TGF-β and HtrA1 proteins for 3 h.

1.2.4  Quantitative Real-Time 
RT-PCR

RNA extraction and first-strand cDNA synthesis 
was performed as described previously (Madeira 
et al. 2018). Amplifications of 50 ng cDNA were 
performed with the LightCycler® 480 Instrument 
II (Roche). For the detection of plasminogen acti-
vator inhibitor 1 (Pai-1), iNos and arginase-1 
(Arg1) intron spanning primers were used. 
ATP5B served as reference gene. The reactions 
were subjected to 40  cycles of amplification 
(95 °C for 15 s, 60 °C for 1 min). Relative quan-
tification was performed using the LightCycler® 
480 software 1.5.1.

I. Akhtar-Schaefer et al.



5

1.2.5  Western Blot

Isolated proteins were subjected to Western blot 
analysis as previously described (Aslanidis et al. 
2015). Primary antibodies against pSamd2 and 
Smad2 (Cell Signaling Technology) and second-
ary goat anti-rabbit IgG-HRP were used.

1.2.6  Statistical Analysis

Real-time RT-PCR data was analyzed using ANOVA 
followed by Tukey’s multiple comparison test. 
pSmad2/Smad2 Western blot analysis data was ana-
lyzed using the non-parametric Kruskal-Wallis test, 
followed by Dunn’s multiple comparison correction 
test using GraphPad Prism version 6.07. P ≤ 0.05 
which was considered as statistically significant.

1.3  Results

1.3.1  HtrA1 Protein Variants Are 
Proteolytically Active

We expressed recombinant mWT, mS328A, hWT, 
hSNP, and hS328A HtrA1. HtrA1 proteins were 
detected at approximately 59 kDa (Fig. 1.1a). Smaller 
fragments were partly attributed to autolytic cleavage. 
Quantitative protease assay using BODIPY FL-labeled 
casein demonstrated reproducible proteolytic activity 
of mWT, hWT, and hSNP forms (Fig. 1.1b).

1.3.2  HtrA1 Does Not Reduce TGF-β 
Induced Microglial 
Quiescence

Treatment of BV-2 cells with TGF-β led to a sig-
nificant mRNA increase in its response gene Pai-1 
(Fig. 1.2a). IFN-γ treatment induced a significant 
upregulation of iNos and reduction of the alterna-
tive activation marker Arg1 (Fig. 1.2d, g). TGF-β 
treatment reduced the pro-inflammatory pheno-
type of microglia by decreasing iNos and increas-
ing Arg1 transcripts. When mWT was applied, we 
observed a significant decrease in Pai-1, Arg1, 
and iNos (Fig.  1.2b, e, h). However, when the 
human forms were applied, no significant changes 
were observed in transcript levels of any marker 
when compared to IFN-γ + TGF-β (Fig. 1.2c, f, i).

1.3.3  HtrA1 Protein Variants Do Not 
Change TGF-β Induced 
pSmad2 Levels

Smad2 proteins are phosphorylated upon TGF-β 
receptor activation. Hence, we evaluated the 
influence of HtrA1 variants on pSmad2 levels in 
TGF-β-treated BV-2 cells (Fig. 1.3). Application 
of 1 ng/ml TGF-β led to an increase in pSmad2 
levels. However, co-treatment with any of the 
HtrA1 variants did not change pSmad2 levels.

Fig. 1.1 (a) Immunoblot of recombinant HtrA1 shows autolytic cleavage and smaller fragments which are absent in 
mS328A and hS328A (asterisk). (b) Slopes of enzymatic rates. Shown are mean values ± SEM (n = 3)

1 AMD-Associated HTRA1 Variants Do Not Influence TGF-β Signaling in Microglia
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Fig. 1.2 Treatment of BV-2 cells with TGF-β led to a sig-
nificant increase in Pai-1 (a–c). Treatment with IFN-γ 
induced significant upregulation of iNos and reduction 
in  Arg1. Co-treatment with TGF-β reduced the pro- 
inflammatory phenotype (d, g). Application of low-dose 

mWT led to a significant decrease in Pai-1 and Arg1 but 
also in iNos (b, e, h). Application of human HtrA1 led to 
no changes (c, f, i). Normalized values are presented as 
mean ± SEM. (n = 9) with ∗∗∗p ≤ 0.001

Fig. 1.3 HtrA1 does not change levels of pSmad2 after TGF-β stimulation. (a) Densitometric analysis of blots shown 
in (a) (b). Values are presented as mean ± SEM. (n = 6–14) with ∗∗∗p ≤ 0.001 when compared to TGF-β stimulation

I. Akhtar-Schaefer et al.
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1.4  Discussion

Here, we evaluated the effect of AMD-associated 
HtrA1 isoforms on microglia in  vitro. First, all 
HtrA1 proteins, apart from the S328A forms, 
were proteolytically active. Interestingly, we 
observed increased catalytic activity of the  
proteins with the hSNP variant.

Second, we observed that TGF-β significantly 
inhibited IFN-γ-mediated iNos mRNA produc-
tion, as previously described (Zöller et al. 2018). 
However, we did not observe an influence of 
HtrA1 on microglial TGF-β signaling. Similar 
findings were reported with mucosal mast cells, 
where no inhibition of TGF-β signaling by HtrA1 
was observed. (Gilicze et al. 2007)

Our results showed no differences between 
the wild-type and AMD-associated HtrA1 iso-
forms regarding TGF-β signaling. The synony-
mous AMD-associated SNPs are located in the 
insulin-like growth factor (IGF-1)-binding 
domain, and hSNP variants showed reduced abil-
ity to bind IGF-1 and TGF-β (Jacobo et al. 2013; 
Friedrich et  al. 2015). However, these findings 
are challenged by our results. Further studies will 
have to address the question whether AMD- 
associated HtrA1 isoforms may influence retinal 
microglia in vivo.
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Abstract

Age-related macular degeneration (AMD) 
continues to be the leading cause of visual 
impairment for the elderly in developed coun-
tries. It is a complex, multifactorial, progres-
sive disease with diverse molecular pathways 
regulating its pathogenesis. One of the cardinal 
features of the early clinical subtype of AMD 
is the accumulation of lipid- and protein- rich 
deposits within Bruch’s membrane, called dru-
sen, which can be visualized by fundus imag-
ing. Currently, multiple in  vitro and in  vivo 
model systems exist, which can be used to help 
tease out mechanisms associated with different 
molecular pathways driving disease initiation 
and progression. Given the lack of treatments 
for patients suffering from the dry form of 
AMD, it is imperative to appreciate the differ-

ent known morphological endpoints associated 
with the various pathogenic pathways, in order 
to derive further insights, for the ultimate pur-
pose of disease modeling and development of 
effective therapeutic interventions.

Keywords
Age-related macular degeneration · Lipid 
metabolism · Inflammation · Quick-freeze/
deep etch · Retinal pigment epithelial cells · 
Cholesterol · Apolipoprotein

2.1  Introduction

Age-related macular degeneration (AMD) is a 
progressive and complex age-related disease. It is 
the leading cause of vision loss among people 
over 50 years of age in the Western world. Since 
the principle risk factor for AMD is advanced 
age, the number of people afflicted with AMD is 
estimated to rise to 288 million people by 2040 
(Wong et al. 2014). A better understanding of the 
pathogenesis of AMD is crucial in identification 
and/or development of preclinical models, 
 ultimately leading to effective therapeutics that 
may prevent or reverse this disease.
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To date, several classification schemes of 
AMD have been described, based on in  vivo 
imaging using color fundus photos and optical 
coherence tomography. The Age-Related Eye 
Disease Study (AREDS) is one of the most well- 
known systems of classification (Age-Related 
Eye Disease Study Research 2000). It classifies 
AMD into early, intermediate, and late stages. A 
major clinical feature of the disease is extracel-
lular deposition of lipids and proteins underneath 
the retinal pigment epithelium (RPE) known as 
drusen. Early-stage “dry” AMD is characterized 
by the presence of medium-sized drusen (>63 μm; 
<125  μm) and pigmentary abnormalities; 
intermediate- stage “dry” AMD is defined by the 
presence of at least one large druse (>125 μm) 
and numerous medium-sized drusen, or RPE 
atrophy excluding the macular region. Advanced- 
stage AMD can manifest in two forms that may 
coexist: (1) geographic atrophy (GA) or late 
“dry,” affecting 85–90% of patients, character-
ized by several large drusen and RPE atrophy 
extending to the center of the macula and (2) exu-
dative AMD, affecting 10–15% of patients, 
defined by choroidal neovascularization and any 
of its associated sequelae such as subretinal fluid, 
hemorrhage, RPE detachment, and/or fibrotic 
scarring (Malek and Lad 2014). A subset of exu-
dative AMD patients respond to antiangiogenic 
treatment targeting vascular endothelial growth 
factor (VEGF), whereas the quest for an effective 
therapy for GA remains elusive to date, due to its 
diverse and complex pathology, which involves 
multiple mechanisms including but not limited to 
dysregulation of lipid metabolism and transport, 
inflammation, complement pathway dysregula-
tion, extracellular matrix (ECM) remodeling, cell 
death, and cell adhesion. The focus of this mini 
review is on the modeling of the pathobiology of 
dry AMD.

2.2  Pathobiology of AMD

The pathogenesis of AMD is influenced by cross 
talk between components of the retinal microen-
vironment, namely, photoreceptors, RPE cells, 
Bruch’s membrane (BrM), choriocapillaris, and 

the outer choroid. Though complement has been 
shown to play an important part in regulating the 
health of the choriocapillaris as well as the RPE 
(Chirco et al. 2016), several other pathways have 
been shown to regulate the early stages of AMD 
including lipid metabolism and transport, inflam-
mation, and ECM remodeling, whereas the late 
“dry” AMD seems to converge into pathogenic 
pathways such as cell senescence and death 
(Miller et al. 2017). Thus it would be valuable to 
develop a targeted approach to understanding 
modeling of disease phenotypes as well as iden-
tify quantifiable endpoints targeting these 
pathways.

2.2.1  Lipid Metabolic Dysregulation 
in AMD

One of the defining characteristics of early “dry” 
AMD is the accumulation of lipid-rich deposits 
between the RPE and BrM, as well as within 
BrM, which vary in size, thickness, and conflu-
ence (Klein et al. 1991). It has been shown that at 
least 40% of drusen volume is comprised of lip-
ids (Wang et al. 2010). Components of drusen are 
derived from the  retina, RPE, and to a lesser 
extent, the choroidal circulation. This retention of 
lipids causes formation of a variety of deposits, 
not only drusen but also basal laminar deposits 
(BLamD, between RPE and its plasma mem-
brane) and basal linear deposits (BLinD, between 
the  RPE and inner collagenous layer of BrM) 
(Curcio et al. 2011). Furthermore, genome-wide 
association studies (GWAS) of AMD patients 
have led to the identification of multiple lipid 
metabolism-related genes like ABCA1, ABCA4, 
APOE, CETP, and LIPC (Yu et al. 2011; Merle 
et  al. 2013). Complementary to the GWAS 
reports, several epidemiological studies that have 
investigated the role of statins and AMD, point 
toward an association between circulating lipid 
levels and drusen formation (Klein et  al. 2014; 
Vavvas et  al. 2016). Possible mechanisms of 
statin therapy have been postulated, including 
changes in lipoprotein metabolism, improvement 
in lipid efflux, lipid clearing by macrophages, 
and anti-inflammatory and protective effects on 
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RPE cells. Collectively, these studies suggest that 
AMD may be reversible anatomically and func-
tionally, and establishes lipid metabolism and 
transport as a viable target for disease modeling 
and therapy development.

Key players in cholesterol transport and lipid 
metabolism are apolipoproteins (apo), proteins 
that have been shown to accumulate in drusen. 
Accordingly, multiple studies have been con-
ducted to date investigating the role of apolipo-
proteins  using in  vivo modeling, often 
incorporating an additional stressor such as 
dietary manipulation. For example, apo∗E3- 
Leiden mice (modeling human type III hyperli-
poproteinemia) when fed a high-fat diet for 
9 months developed BLamD, composed of elec-
tron dense material similar to that seen in human 
AMD and immunoreactivity toward apoE, sup-
porting apoE’s involvement in BLamD develop-
ment (Kliffen et  al. 2000). Further, aged mice 
expressing the human APOE4 allele maintained 
on a high cholesterol diet developed AMD-like 
pathology, including diffuse sub-RPE deposits, 
thickened BrM, and RPE atrophy (Malek et  al. 
2005). The apolipoprotein (apo) A-I mimetic 
peptide 4F, a small anti-inflammatory and anti-
atherogenic agent, when delivered via intravitreal 
route in apoEnull mice displayed improvement in 
BrM’s health and lessened the esterified choles-
terol levels in BrM (Rudolf et  al. 2018). Since 
apoB lipoprotein particles have been detected in 
BrM in early-stage “dry” AMD, transgenic mice 
expressing human apoB100 have been generated. 
High-fat diet and photooxidative injury in these 
transgenic mice resulted in loss of basal infold-
ings and cytoplasmic vacuoles in the RPE, in 
addition to accumulation of BLamD and long- 
spacing collagen in BrM (Espinosa-Heidmann 
et  al. 2004; Fujihara et  al. 2009). Additionally 
mice expressing mouse apoB100 develop lipo-
protein accumulations in their BrM (Fujihara 
et al. 2014). These studies are consistent with the 
hypothesis that under conditions of hyperlipid-
emia, the RPE may secrete apoB100-rich lipo-
proteins to counter lipotoxicity, which may lead 
to the formation of lipid-rich deposits as seen in 
early-stage “dry” AMD.  This may explain the 
aging effect, which in combination with photo-
oxidative injury, leads to lipid accumulation, cul-

minating in the formation of sub-RPE deposits. 
The accumulation of drusen can be exacerbated 
by inflammation, as discussed in the next 
section.

2.2.2  Inflammation in AMD

Inflammation and immune dysfunction are other 
pathogenic mechanisms associated with AMD 
development and central to early stages of the dis-
ease. With aging, the retina suffers from a low- 
grade chronic oxidative insult, which it reportedly 
sustains for decades. Therefore, the 
inflammation/“para-inflammation” may at a given 
point cross a threshold, become pathogenic, and 
lead to disease development. Noteworthy is that 
human histological/biochemical evaluation of 
para-inflammation in the AMD eye is limited to 
studies that have shown involvement of CD163+, 
CD68,+ and complement factor- 3+ cells in AMD 
specimens (Lad et  al. 2015; Wang et  al. 2015; 
Natoli et al. 2017). In light of the “para-inflamma-
tion” hypothesis, the potential for modulating the 
inflammatory response is currently being  evalu-
ated as a therapeutic avenue in AMD.

An element of inflammation that has been 
postulated to regulate AMD pathogenesis is the 
NACHT, LRR, and PYD domains containing 
protein 3 (NLRP3) inflammasome. It is a large 
multiprotein complex within the immune cells 
that functions in the innate immune response 
pathway as a molecular platform for activation of 
caspase-1 and subsequent maturation and secre-
tion of biologically active interleukin-1β (IL-1β) 
and IL-18 (Schroder and Tschopp 2010). Terallo 
et  al. described that accumulation of Alu RNA 
transcripts in RPE following DICER1 loss 
primed and activated the NLRP3 inflammasome 
in RPE, leading to IL-1β- and IL-18-mediated 
RPE degeneration (Tarallo et al. 2012).

2.3  Potential Endpoints 
for Preclinical Studies

This mini review has attempted to present some 
aspects of dry AMD pathobiology, with a focus 
on the role of lipid metabolism and inflammation 
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in the progression of the disease. Transgenic 
mouse models are an effective tool to study the 
contribution of specific molecular pathways to 
the pathogenicity of AMD. Targeting molecular 
pathways necessitates the use of unambiguous 
endpoints to elucidate the role of a particular 
pathway. For example, characterization of lipids 
present in mouse BrM requires staining reagents 
to establish the normal baseline, which then may 
be compared against genetic or dietary manipula-
tions. Oil red O is a histological tool that may be 
employed to stain a class of lipids called neutral 
lipids which encompasses triglycerides (TG), 
esterified cholesterol (EC), and fatty acids (FA). 
Furthermore, EC and unesterified cholesterol 
(UC) can be distinguished by a fluorescent, poly-
ene antibiotic filipin stain. Successful filipin 
staining has been shown in human tissue sections 
and cultured cells (Curcio et  al. 2011). 
Ultrastructural studies using transmission elec-
tron microscopy (TEM) have long been a bench-
mark to study deposits in human tissue and 
animal models. It provides detailed visualization 
of photoreceptor outer segments, RPE cells and 
BrM. Using TEM, studies have illustrated elec-
tron dense materials below the RPE, RPE pig-
mentary changes, BrM thickening, and changes 
in the choriocapillaris. Detailed views of ocular 
lipoprotein particles and ECM changes have also 
been made possible by quick-freeze/deep etch, a 
tissue preparation technique used in conjunction 
with electron microscopy that can produce three- 
dimensional images of tissue structure and mac-
romolecular elements while preventing the 
introduction of post-processing artifacts (Ismail 
et al. 2017). Finally, immunohistochemical stains 
may be used to visualize lipid accumulations 
using antibodies against apoB, apoE, perilipin, 
and E06, which bind to proteins covalently modi-
fied by oxidized phospholipids (Malek et  al. 
2003; Harris et al. 2013).

Assessment of inflammation is also important 
as an in vitro, ex  vivo, or in  vivo endpoint and 
may be performed by surveying for immune cells. 
Retinal and RPE-choroid flatmounts are an excel-
lent way to get an overview of the resident microg-
lial cells to establish a baseline. The number and 
density of microglia can be used to evaluate the 

effect of injury/insult or transgene expression. 
Various antibodies can be employed for this pur-
pose, namely, Iba1 (ionized calcium- binding 
adaptor molecule 1), F4/80, CD68, and CD45. In 
addition to the number/density of immune cells, 
the morphological characterization of microglia/
macrophage may be used as a measure of inflam-
matory status. Macrophages can differentiate into 
either classically activated M1 phenotype, charac-
terized by the expression and production of pro-
inflammatory mediators including IL-1β, TNF-α, 
and IL-6 as well as an increased expression of 
surface markers such as CD16/32, CD86, CD40, 
and inducible nitric oxide synthase, which have 
been reported to drive the inflammatory process. 
Additionally, the M2 macrophages express high 
levels of arginase- 1 and IL-10 but low levels of 
IL-12 and IL-23 and are usually induced by anti-
inflammatory cytokines IL-4 and IL-13.

2.4  Summary

Investigation into the pathological mechanisms of 
a complex and multifactorial disease such as AMD 
may entail the use of an assortment of model sys-
tems, each of which may target distinct disease-
associated pathways. It is imperative to develop a 
comprehensive understanding of potential end-
points associated with each model system in order 
to delve deeper into mechanistic questions as well 
as develop effective therapeutic modalities.
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GPR143 Signaling and Retinal 
Degeneration

Anna G. Figueroa and Brian S. McKay

Abstract
Age-related macular degeneration (AMD) is 
the most common cause of irreversible blind-
ness. We do not know the cause of the disease 
and have inadequate prevention and treatment 
strategies for those at risk or affected. The 
greatest risk factors include age and race, with 
the white population at the highest risk for the 
disease. We developed the hypothesis that pig-
mentation in the retinal pigment epithelium 
(RPE) protects darkly pigmented individuals 
from AMD. We have tested this hypothesis in 
multiple ways including dissecting the pig-
mentation pathway in RPE using albinism- 
related tools, identification of a G 
protein-coupled receptor in the pigmentation 
pathway that drives expression of trophic fac-
tors, and using a very large retrospective chart 
analysis to test whether the ligand for the 
receptor prevents AMD.  In total, our results 
indicate that pigmentation of the RPE is a cor-
nerstone of RPE-retinal interaction and sup-
port and that the receptor in the pigmentation 
pathway most likely underlies the racial bias 
of the disease. The ligand for that receptor is 
an ideal candidate as a preventative and treat-
ment for AMD.  Here we summarize these 

results, discussing the research in its entirety 
with one overall goal, treatment or prevention 
of AMD.

Keywords
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3.1  Introduction

Age-related macular degeneration (AMD) is the 
most common cause of irreversible visual loss in 
the developed world, reviewed in (Jager et  al. 
2008). Despite years of intensive research, the 
pathogenesis and etiology of AMD are unknown. 
Some of the identified risk factors for AMD 
include genetics, age, gender, smoking, sunlight 
exposure, and race (Ehrlich et al. 2008). AMD is 
not a genetic disease, but clear association with 
various risk alleles within the complement sys-
tem is strongly supported (Hageman et al. 2005; 
Loane et al. 2011; Holliday et al. 2013; Cascella 
et al. 2014). The immune system participates in 
the pathologic process of AMD, but whether that 
is a response to tissue injury or a primary cause of 
the disease remains unclear.

Race is one of the strongest risk factors for 
AMD, with the white population particularly sus-
ceptible (Fig. 3.1a). Race is a complex trait based 
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on many genes, but retinal pigment epithelium 
(RPE) pigmentation may be a key factor for the 
racial bias of AMD. Lessons from albinism, the 
loss of pigmentation, illustrate how RPE pigmen-
tation supports the neurosensory retina. All forms 
of albinism are genetic, and all exhibit the same 
retinal phenotype, reviewed in (Mckay 2018). 
Albinism from any cause, be it a lysosomal stor-
age defect, enzymatic dysfunction in melanin 
synthesis, or loss of a G-protein-coupled receptor 
(GPCR), each causes a similar retinal phenotype. 
People with albinism frequently exhibit low 
vision due to developmental changes in the neu-
rosensory retina, despite the fact that the retina 
never expresses any of the genes that cause albi-
nism. The degree of visual problems varies 
among affected individuals, generally along with 
the residual levels of RPE pigmentation. Finally, 
the retinal consequences of albinism are the same 
in all races directly indicating that the relation-
ship between RPE pigmentation and retinal sup-
port transcends the other genetic traits involved 
in race. AMD’s prevalence is complex, as it 
appears to be equally distributed among all racial 
groups between the ages of 50–74 but becomes 
significantly greater in the white population after 
the age of 75 (Fig. 3.1a). Despite this finding and 
a linkage between RPE pigmentation and retinal 
health as suggested by the albinism retinal defi-
cits, the contribution of pigment pathways to 
AMD remains to be elucidated.

3.2  GPR143 Biology

An important gene involved in the pigmentation 
pathway encodes a GPCR that is expressed in 
RPE and melanocytes, GPR143 (Schiaffino 
2010). Genetic mutations in the gene encoding 
GPR143 cause ocular albinism which is associ-
ated with the complete retinal albinism pheno-
type – despite normal or near normal pigmentation 
in the RPE (Oetting 2002). This observation sep-
arates RPE pigmentation from the retinal albi-
nism phenotype, because in individuals with 
mutations in GPR143, the RPE exhibits normal 
pigmentation but still develops retinal problems. 
This directly indicates that the retinal albinism 
phenotype is linked to GPR143, rather than RPE 
pigmentation. Further, the ocular albinism phe-
notype can be rescued by tyrosine hydroxylase 
activity; tyrosine hydroxylase produces L-dopa 
but not melanin (Lavado et al. 2006).

We discovered that a ligand for GPR143 is 
L-dopa, an intermediate product in melanin syn-
thesis produced by the enzyme tyrosinase (Lopez 
et al. 2008). L-dopa is synthesized by tyrosinase 
activity and crosses membranes using the same 
transporter as tyrosine. Thus, L-dopa produced 
by tyrosinase in pigment granules is released into 
the RPE cytoplasm and subsequently accumu-
lates in the subretinal space (Roffler-Tarlov et al. 
2013). Tyrosinase catalyzes several steps through 
which tyrosine is hydroxylated creating L-dopa, 

Fig. 3.1 (a) Percentage of individuals with intermediate 
and advanced age-related macular degeneration separated 
by age and race. Adapted from the National Eye Institute 
(b) Overview of melanin synthesis compared to neuronal 

dopamine synthesis. Both melanin and dopamine are 
derived from tyrosine, with an intermediate production of 
L-dopa
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