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Preface

Stochastic orders and inequalities have been used during the last 40 years,
at an accelerated rate, in many diverse areas of probability and statistics.
Such areas include reliability theory, queuing theory, survival analysis, biology,
economics, insurance, actuarial science, operations research, and management
science. The purpose of this book is to collect in one place essentially all that
is known about these orders up to the present. In addition, the book illustrates
some of the usefulness and applicability of these stochastic orders.

This book is a major extension of the first six chapters in Shaked and
Shanthikumar [515]. The idea that led us to write those six chapters arose
as follows. In our own research in reliability theory and operations research
we have been using, for years, several notions of stochastic orders. Often we
would encounter a result that we could easily (or not so easily) prove, but we
could not tell whether it was known or new. Even when we were sure that
a result was known, we would not know right away where it could be found.
Also, sometimes we would prove a result for the purpose of an application,
only to realize later that a stronger result (stronger than what we needed)
had already been derived elsewhere. We also often have had difficulties giving
a reference for one source that contained everything about stochastic orders
that we needed in a particular paper. In order to avoid such difficulties we
wrote the first six chapters in Shaked and Shanthikumar [515].

Since 1994 the theory of stochastic orders has grown significantly. We think
that now is the time to put in one place essentially all that is known about
these orders. This book is the result of this effort.

The simplest way of comparing two distribution functions is by the com-
parison of the associated means. However, such a comparison is based on only
two single numbers (the means), and therefore it is often not very informative.
In addition to this, the means sometimes do not exist. In many instances in
applications one has more detailed information, for the purpose of compari-
son of two distribution functions, than just the two means. Several orders of
distribution functions, that take into account various forms of possible knowl-
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edge about the two underlying distribution functions, are studied in Chapters
1 and 2.

When one wishes to compare two distribution functions that have the same
mean (or that are centered about the same value), one is usually interested in
the comparison of the dispersion of these distributions. The simplest way of
doing it is by the comparison of the associated standard deviations. However,
such a comparison, again, is based on only two single numbers, and therefore
it is often not very informative. In addition to this, again, the standard devi-
ations sometimes do not exist. Several orders of distribution functions, which
take into account various forms of possible knowledge about the two underly-
ing distribution functions (in addition to the fact that they are centered about
the same value), are studied in Chapter 3. Orders that can be used for the
joint comparison of both the location and the dispersion of distribution func-
tions are studied in Chapters 4 and 5. The analogous orders for multivariate
distribution functions are studied in Chapters 6 and 7.

When one is interested in the comparison of a sequence of distribution
functions, associated with the random variables Xi, i = 1, 2, . . ., then one can
use, of course, any of the orders described in Chapters 1–7 for the purpose
of comparing any two of these distributions. However, the parameter i may
now introduce some patterns that connect all the underlying distributions. For
example, suppose not only that the random variables Xi, i = 1, 2, . . ., increase
stochastically in i, but also that the increase is sharper for larger i’s. Then
the sequence Xi, i = 1, 2, . . ., is stochastically increasing in a convex sense.
Such notions of stochastic convexity and concavity are studied in Chapter 8.

Notions of positive dependence of two random variables X1 and X2 have
been introduced in the literature in an effort to mathematically describe the
property that “large (respectively, small) values of X1 go together with large
(respectively, small) values of X2.” Many of these notions of positive depen-
dence are defined by means of some comparison of the joint distribution of
X1 and X2 with their distribution under the theoretical assumption that X1
and X2 are independent. Often such a comparison can be extended to gen-
eral pairs of bivariate distributions with given marginals. This fact led re-
searchers to introduce various notions of positive dependence orders. These
orders are designed to compare the strength of the positive dependence of the
two underlying bivariate distributions. Many of these orders can be further
extended to comparisons of general multivariate distributions that have the
same marginals. In Chapter 9 we describe these orders.

We have in mind a wide spectrum of readers and users of this book. On
one hand, the text can be useful for those who are already familiar with many
aspects of stochastic orders, but who are not aware of all the developments in
this area. On the other hand, people who are not very familiar with stochastic
orders, but who know something about them, can use this book for the purpose
of studying or widening their knowledge and understanding of this important
area.
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Note

Throughout the book “increasing” means “nondecreasing” and “decreasing”
means “nonincreasing.” Expectations are assumed to exist whenever they are
written. The “inverse” of a monotone function (which is not strictly monotone)
means the right continuous version of it, unless stated otherwise. For example,
if F is a distribution function, then the right continuous version of its inverse
is F−1(u) = sup{x : F (x) ≤ u}, u ∈ [0, 1].

The following aging notions will be encountered often throughout the text.
Let X be a random variable with distribution function F and survival function
F ≡ 1 − F .

(i) The random variable X (or its distribution) is said to be IFR [increasing
failure rate] if F is logconcave. It is said to be DFR [decreasing failure
rate] if F is logconvex.

(ii) The nonnegative random variable X (or its distribution) is said to be
IFRA [increasing failure rate average] if − log F is starshaped; that is,
if − log F (t)/t is increasing in t ≥ 0. It is said to be DFRA [decreasing
failure rate average] if − log F is antistarshaped; that is, if − log F (t)/t is
decreasing in t ≥ 0.

(iii) The nonnegative random variable X (or its distribution) is said to be NBU
[new better than used] if F (s)F (t) ≥ F (s + t) for all s ≥ 0 and t ≥ 0. It
is said to be NWU [new worse than used] if F (s)F (t) ≤ F (s + t) for all
s ≥ 0 and t ≥ 0.

(iv) The random variable X (or its distribution) is said to be DMRL [decreas-

ing mean residual life] if
∫ ∞

t
F (s)ds

F (t)
is decreasing in t over {t : F (t) > 0}. It

is said to be IMRL [increasing mean residual life] if
∫ ∞

t
F (s)ds

F (t)
is increasing

in t over {t : F (t) > 0}.
(v) The nonnegative random variable X (or its distribution) is said to be

NBUE [new better than used in expectation] if
∫ ∞

t
F (s)ds

F (t)
≤ EX for all
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t ≥ 0. It is said to be NWUE [new worse than used in expectation] if
∫ ∞

t
F (s)ds

F (t)
≥ EX for all t ≥ 0.

The majorization order will be used in some places in the text. Recall from
Marshall and Olkin [383] that a vector a = (a1, a2, . . . , an) is said to be smaller
in the majorization order than the vector b = (b1, b2, . . . , bn) (denoted a ≺ b)
if
∑n

i=1 ai =
∑n

i=1 bi and if
∑j

i=1 a[i] ≤
∑j

i=1 b[i] for j = 1, 2, . . . , n−1, where
a[i] [b[i]] is the ith largest element of a [b], i = 1, 2, . . . , n. An n-dimensional
function φ is called Schur convex [concave] if a ≺ b =⇒ φ(a) ≤ [≥] φ(b).

The notation N ≡ {. . . ,−1, 0, 1, . . . }, N+ ≡ {0, 1, . . . }, and N++ ≡
{1, 2, . . . } will be used in this text.
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Univariate Stochastic Orders

In this chapter we study stochastic orders that compare the “location” or the
“magnitude” of random variables. The most important and common orders
that are considered in this chapter are the usual stochastic order ≤st, the
hazard rate order ≤hr, and the likelihood ratio order ≤lr. Some variations of
these orders, and some related orders, are also examined in this chapter.

1.A The Usual Stochastic Order

1.A.1 Definition and equivalent conditions

Let X and Y be two random variables such that

P{X > x} ≤ P{Y > x} for all x ∈ (−∞,∞). (1.A.1)

Then X is said to be smaller than Y in the usual stochastic order (denoted
by X ≤st Y ). Roughly speaking, (1.A.1) says that X is less likely than Y to
take on large values, where “large” means any value greater than x, and that
this is the case for all x’s. Note that (1.A.1) is the same as

P{X ≤ x} ≥ P{Y ≤ x} for all x ∈ (−∞,∞). (1.A.2)

It is easy to verify (by noting that every closed interval is an infinite intersec-
tion of open intervals) that X ≤st Y if, and only if,

P{X ≥ x} ≤ P{Y ≥ x} for all x ∈ (−∞,∞). (1.A.3)

In fact, we can recast (1.A.1) and (1.A.3) in a seemingly more general, but
actually an equivalent, way as follows:

P{X ∈ U} ≤ P{Y ∈ U} for all upper sets U ⊆ (−∞,∞). (1.A.4)

(In the univariate case, that is on the real line, a set U is an upper set if, and
only if, it is an open or a closed right half line.) In the univariate case the



4 1 Univariate Stochastic Orders

equivalence of (1.A.4) with (1.A.1) and (1.A.3) is trivial, but in Chapter 6 it
will be seen that the generalizations of each of these three conditions to the
multivariate case yield different definitions of stochastic orders.

Still another way of rewriting (1.A.1) or (1.A.3) is the following:

E[IU (X)] ≤ E[IU (Y )] for all upper sets U ⊆ (−∞,∞), (1.A.5)

where IU denotes the indicator function of U . From (1.A.5) it follows that if
X ≤st Y , then

E
[ m∑

i=1

aiIUi
(X)
]

− b ≤ E
[ m∑

i=1

aiIUi
(Y )
]

− b (1.A.6)

for all ai ≥ 0, i = 1, 2, . . . , m, b ∈ (−∞,∞), and m ≥ 0. Given an increasing
function φ, it is possible, for each m, to define a sequence of Ui’s, a sequence
of ai’s, and a b (all of which may depend on m), such that as m → ∞ then
(1.A.6) converges to

E[φ(X)] ≤ E[φ(Y )], (1.A.7)

provided the expectations exist. It follows that X ≤st Y if, and only if, (1.A.7)
holds for all increasing functions φ for which the expectations exist.

The expressions
∫∞

x
P{X > y}dy and

∫∞
x

P{Y > y}dy are used exten-
sively in Chapters 2, 3, and 4. It is of interest to note that X ≤st Y if, and
only if,∫ ∞

x

P{Y > y}du −
∫ ∞

x

P{X > y}dy is decreasing in x ∈ (−∞,∞).

(1.A.8)
If X and Y are discrete random variables taking on values in N, then we

have the following. Let pi = P{X = i} and qi = P{Y = i}, i ∈ N. Then
X ≤st Y if, and only if,

i∑
j=−∞

pj ≥
i∑

j=−∞
qj , i ∈ N,

or, equivalently, X ≤st Y if, and only if,

∞∑
j=i

pj ≤
∞∑

j=i

qj , i ∈ N.

1.A.2 A characterization by construction on the same probability
space

An important characterization of the usual stochastic order is the following
theorem (here =st denotes equality in law).
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Theorem 1.A.1. Two random variables X and Y satisfy X ≤st Y if, and
only if, there exist two random variables X̂ and Ŷ , defined on the same prob-
ability space, such that

X̂ =st X, (1.A.9)

Ŷ =st Y, (1.A.10)

and
P{X̂ ≤ Ŷ } = 1. (1.A.11)

Proof. Obviously (1.A.9), (1.A.10), and (1.A.11) imply that X ≤st Y . In order
to prove the necessity part of Theorem 1.A.1, let F and G be, respectively, the
distribution functions of X and Y , and let F−1 and G−1 be the corresponding
right continuous inverses (see Note on page 1). Define X̂ = F−1(U) and
Ŷ = G−1(U) where U is a uniform [0, 1] random variable. Then it is easy to
see that X̂ and Ŷ satisfy (1.A.9) and (1.A.10). From (1.A.2) it is seen that
(1.A.11) also holds. 
�

Theorem 1.A.1 is a special case of a more general result that is stated in
Section 6.B.2.

From (1.A.2) and Theorem 1.A.1 it follows that the random variables X
and Y , with the respective distribution functions F and G, satisfy X ≤st Y
if, and only if,

F−1(u) ≤ G−1(u), for all u ∈ (0, 1). (1.A.12)

Another way of restating Theorem 1.A.1 is the following. We omit the
obvious proof of it.

Theorem 1.A.2. Two random variables X and Y satisfy X ≤st Y if, and
only if, there exist a random variable Z and functions ψ1 and ψ2 such that
ψ1(z) ≤ ψ2(z) for all z and X =st ψ1(Z) and Y =st ψ2(Z).

In some applications, when the random variables X and Y are such that
X ≤st Y , one may wish to construct a Ŷ [X̂] on the probability space on
which X [Y ] is defined, such that Ŷ =st Y and P{X ≤ Ŷ } = 1 [X̂ =st X and
P{X̂ ≤ Y } = 1]. This is always possible. Here we will show how this can be
done when the distribution function F [G] of X [Y ] is absolutely continuous.
When this is the case, F (X) [G(Y )] is uniformly distributed on [0, 1], and
therefore Ŷ = G−1(F (X)) [X̂ = F−1(G(Y ))] is the desired construction Ŷ
[X̂].

1.A.3 Closure properties

Using (1.A.1) through (1.A.11) it is easy to prove each of the following closure
results. The following notation will be used: For any random variable Z and
an event A, let [Z

∣∣A] denote any random variable that has as its distribution
the conditional distribution of Z given A.
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Theorem 1.A.3. (a) If X ≤st Y and g is any increasing [decreasing ] func-
tion, then g(X) ≤st [≥st] g(Y ).

(b) Let X1, X2, . . . , Xm be a set of independent random variables and let
Y1, Y2, . . . , Ym be another set of independent random variables. If Xi ≤st
Yi for i = 1, 2, . . . , m, then, for any increasing function ψ : R

m → R, one
has

ψ(X1, X2, . . . , Xm) ≤st ψ(Y1, Y2, . . . , Ym).

In particular,
m∑

j=1

Xj ≤st

m∑
j=1

Yj .

That is, the usual stochastic order is closed under convolutions.
(c) Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two sequences of random

variables such that Xj →st X and Yj →st Y as j → ∞, where “→st”
denotes convergence in distribution. If Xj ≤st Yj, j = 1, 2, . . ., then X ≤st
Y .

(d) Let X, Y , and Θ be random variables such that [X
∣∣Θ = θ] ≤st [Y

∣∣Θ = θ]
for all θ in the support of Θ. Then X ≤st Y . That is, the usual stochastic
order is closed under mixtures.

In the next result and in the sequel we define
∑0

j=1 aj ≡ 0 for any sequence
{aj , j = 1, 2, . . . }.

Theorem 1.A.4. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative inde-
pendent random variables, and let M be a nonnegative integer-valued random
variable which is independent of the Xi’s. Let {Yj , j = 1, 2, . . . } be another
sequence of nonnegative independent random variables, and let N be a non-
negative integer-valued random variable which is independent of the Yi’s. If
Xi ≤st Yi, i = 1, 2, . . ., and if M ≤st N , then

M∑
j=1

Xj ≤st

N∑
j=1

Yj .

Another related result is given next.

Theorem 1.A.5. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed random variables, and let M be a pos-
itive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of independent and identically dis-
tributed random variables, and let N be a positive integer-valued random vari-
able which is independent of the Yi’s. Suppose that for some positive integer
K we have that

K∑
j=1

Xj ≤st [≥st] Y1

and
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M ≤st [≥st] KN,

then
M∑

j=1

Xj ≤st [≥st]
N∑

j=1

Yj .

Proof. The assumptions yield

M∑
i=1

Xi ≤st [≥st]
KN∑
i=1

Xi =
N∑

i=1

Ki∑
j=K(i−1)+1

Xj ≤st [≥st]
N∑

i=1

Yi. 
�

Consider now a family of distribution functions {Gθ, θ ∈ X} where X is a
subset of the real line R. Let X(θ) denote a random variable with distribution
function Gθ. For any random variable Θ with support in X , and with distri-
bution function F , let us denote by X(Θ) a random variable with distribution
function H given by

H(y) =
∫

X
Gθ(y)dF (θ), y ∈ R.

The following result is a generalization of both parts (a) and (c) of Theorem
1.A.3.

Theorem 1.A.6. Consider a family of distribution functions {Gθ, θ ∈ X}
as above. Let Θ1 and Θ2 be two random variables with supports in X and
distribution functions F1 and F2, respectively. Let Y1 and Y2 be two random
variables such that Yi =st X(Θi), i = 1, 2; that is, suppose that the distribution
function of Yi is given by

Hi(y) =
∫

X
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If
X(θ) ≤st X(θ′) whenever θ ≤ θ′, (1.A.13)

and if
Θ1 ≤st Θ2, (1.A.14)

then
Y1 ≤st Y2. (1.A.15)

Proof. Note that, by (1.A.13), P{X(θ) > y} is increasing in θ for all y. Thus

P{Y1 > y} =
∫

X
P{X(θ) > y}dF1(θ)

≤
∫

X
P{X(θ) > y}dF2(θ)

= P{Y2 > y}, for all y,

where the inequality follows from (1.A.14) and (1.A.7). Thus (1.A.15) follows
from (1.A.1). 
�
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Note that, using the notation that is introduced below before Theorem
1.A.14, (1.A.13) can be rewritten as {X(θ), θ ∈ X} ∈ SI.

The following example shows an application of Theorem 1.A.6 in the area
of Bayesian imperfect repair; a related result is given in Example 1.B.16.

Example 1.A.7. Let Θ1 and Θ2 be two random variables with supports in X =
(0, 1] and distribution functions F1 and F2, respectively. For some survival
function K, define

Gθ = K
1−θ

, θ ∈ (0, 1],

and let X(θ) have the survival function K
1−θ

. Note that (1.A.13) holds be-

cause K
1−θ

(y) ≤ K
1−θ′

(y) for all y whenever 0 < θ ≤ θ′ ≤ 1. Thus, if
Θ1 ≤st Θ2 then Yi, with survival function Hi defined by

Hi(y) =
∫ 1

0
K

1−θ
(y)dFi(θ), y ∈ R, i = 1, 2,

satisfy Y1 ≤st Y2.

1.A.4 Further characterizations and properties

Clearly, if X ≤st Y then EX ≤ EY . However, as the following result shows, if
two random variables are ordered in the usual stochastic order and have the
same expected values, they must have the same distribution.

Theorem 1.A.8. If X ≤st Y and if E[h(X)] = E[h(Y )] for some strictly
increasing function h, then X =st Y .

Proof. First we prove the result when h(x) = x. Let X̂ and Ŷ be as in Theorem
1.A.1. If P{X̂ < Ŷ } > 0, then EX = EX̂ < EŶ = EY , a contradiction to the
assumption EX = EY . Therefore X =st X̂ = Ŷ =st Y . Now let h be some
strictly increasing function. Observe that if X ≤st Y , then h(X) ≤st h(Y )
and therefore from the above result we have that h(X) =st h(Y ). The strict
monotonicity of h yields X =st Y . 
�

Other results that give conditions, involving stochastic orders, which imply
stochastic equalities, are given in Theorems 3.A.43, 3.A.60, 4.A.69, 5.A.15,
6.B.19, 6.G.12, 6.G.13, and 7.A.14–7.A.16.

As was mentioned above, if X ≤st Y , then EX ≤ EY . It is easy to find
counterexamples which show that the converse is false. However, X ≤st Y
implies other moment inequalities (for example, EX3 ≤ EY 3). Thus one may
wonder whether X ≤st Y can be characterized by a collection of moment
inequalities. Brockett and Kahane [109, Corollary 1] showed that there exist
no finite number of moment inequalities which imply X ≤st Y . In fact, they
showed it for many other stochastic orders that are studied later in this book.

In order to state the next characterization we define the following class of
bivariate functions:

Gst = {φ : R
2 → R : φ(x, y) is increasing in x and decreasing in y}.
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Theorem 1.A.9. Let X and Y be independent random variables. Then X ≤st
Y if, and only if,

φ(X, Y ) ≤st φ(Y, X) for all φ ∈ Gst. (1.A.16)

Proof. Suppose that (1.A.16) holds. The function φ defined by φ(x, y) ≡ x
belongs to Gst. Therefore X ≤st Y .

In order to prove the “only if” part, suppose that X ≤st Y . Let φ ∈ Gst
and define ψ(x, y) = φ(x,−y). Then ψ is increasing on R

2. Since X and Y
are independent it follows that X and −Y are independent and also that −X
and Y are independent. Since X ≤st Y it follows (for example, from Theorem
1.A.1) that −Y ≤st −X. Therefore, by Theorem 1.A.3(b), we have

ψ(X, −Y ) ≤st ψ(Y,−X),

that is,
φ(X, Y ) ≤st φ(Y, X). 
�

The next result is a similar characterization. In order to state it we need
the following notation: Let φ1 and φ2 be two bivariate functions. Denote
∆φ21(x, y) = φ2(x, y)−φ1(x, y). The proof of the following theorem is omitted.

Theorem 1.A.10. Let X and Y be two independent random variables. Then
X ≤st Y if, and only if,

Eφ1(X, Y ) ≤ Eφ2(X, Y )

for all φ1 and φ2 which satisfy that, for each y, ∆φ21(x, y) decreases in x on
{x ≤ y}; for each x, ∆φ21(x, y) increases in y on {y ≥ x}; and ∆φ21(x, y) ≥
−∆φ21(y, x) whenever x ≤ y.

Another similar characterization is given in Theorem 4.A.36.
Let X and Y be two random variables with distribution functions F and G,

respectively. Let M(F, G) denote the Fréchet class of bivariate distributions
with fixed marginals F and G. Abusing notation we write (X̂, Ŷ ) ∈ M(F, G)
to mean that the jointly distributed random variables X̂ and Ŷ have the
marginal distribution functions F and G, respectively. The Fortret-Mourier-
Wasserstein distance between the finite mean random variables X and Y is
defined by

d(X, Y ) = inf
(X̂,Ŷ )∈M(F,G)

{E|Ŷ − X̂|}. (1.A.17)

Theorem 1.A.11. Let X and Y be two finite mean random variables such
that EX ≤ EY . Then X ≤st Y if, and only if, d(X, Y ) = EY − EX.

Proof. Suppose that d(X, Y ) = EY −EX. The infimum in (1.A.17) is attained
for some (X̂, Ŷ ), and we have E|Ŷ −X̂| = E(Ŷ −X̂). Therefore P{X̂ ≤ Ŷ } =
1, and from Theorem 1.A.1 it follows that X ≤st Y .

Conversely, suppose that X ≤st Y . Let X̂ and Ŷ be as in Theorem 1.A.1.
Then, for any (X ′, Y ′) ∈ M(F, G) we have that E|Y ′ −X ′| ≥ |EY ′ −EX ′| =
EŶ − EX̂. Therefore d(X, Y ) = EY − EX. 
�
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A simple sufficient condition which implies the usual stochastic order is
described next. The following notation will be used. Let a(x) be defined on I,
where I is a subset of the real line. The number of sign changes of a in I is
defined by

S−(a) = supS−[a(x1), a(x2), . . . , a(xm)], (1.A.18)

where S−(y1, y2, . . . , ym) is the number of sign changes of the indicated se-
quence, zero terms being discarded, and the supremum in (1.A.18) is extended
over all sets x1 < x2 < · · · < xm such that xi ∈ I and m < ∞. The proof of
the next theorem is simple and therefore it is omitted.

Theorem 1.A.12. Let X and Y be two random variables with (discrete or
continuous) density functions f and g, respectively. If

S−(g − f) = 1 and the sign sequence is −,+,

then X ≤st Y .

Let X1 be a nonnegative random variable with distribution function F1
and survival function F 1 ≡ 1 − F1. Define the Laplace transform of X1 by

ϕX1(λ) =
∫ ∞

0
e−λxdF1(x), λ > 0,

and denote

aX1
λ (n) =

(−1)n

n!
dn

dλn

[
1 − ϕX1(λ)

λ

]
, n ≥ 0, λ > 0,

and
αX1

λ (n) = λnaX1
λ (n − 1), n ≥ 1, λ > 0.

Similarly, for a nonnegative random variable X2 with distribution function F2
and survival function F 2 ≡ 1 − F2, define αX2

λ (n). It can be shown that αX1
λ

and αX2
λ are discrete survival functions (see the proof of the next theorem);

denote the corresponding discrete random variables by Nλ(X1) and Nλ(X2).
The following result gives a Laplace transform characterization of the order
≤st.

Theorem 1.A.13. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described above. Then

X1 ≤st X2 ⇐⇒ Nλ(X1) ≤st Nλ(X2) for all λ > 0.

Proof. First suppose that X1 ≤st X2. Select a λ > 0. Let Z1, Z2, . . . , be
independent exponential random variables with mean 1/λ. It can be shown
that αX1

λ (n) = P
{∑n

i=1 Zi ≤ X1
}

and that αX2
λ (n) = P

{∑n
i=1 Zi ≤ X2

}
. It

thus follows that Nλ(X1) ≤st Nλ(X2).
Now suppose that Nλ(X1) ≤st Nλ(X2) for all λ > 0. Select an x > 0.

Thus αX1
n/x(n) ≤ αX2

n/x(n). Letting n → ∞, one obtains F 1(x) ≤ F 2(x) for all
continuity points x of F1 and F2. Therefore, X1 ≤st X2 by (1.A.1). 
�
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The implication =⇒ in Theorem 1.A.13 can be generalized as follows. A
family of random variables {Z(θ), θ ∈ Θ} (Θ is a subset of the real line) is
said to be stochastically increasing in the usual stochastic order (denoted by
{Z(θ), θ ∈ Θ} ∈ SI) if Z(θ) ≤st Z(θ′) whenever θ ≤ θ′. Recall from Theorem
1.A.3(a) that if X1 ≤st X2, then g(X1) ≤st g(X2) for any increasing function
g. The following result gives a stochastic generalization of this fact.

Theorem 1.A.14. If {Z(θ), θ ∈ Θ} ∈ SI and if X1 ≤st X2, where Xk and
Z(θ) are independent for k = 1, 2 and θ ∈ Θ, then Z(X1) ≤st Z(X2).

Note that Theorem 1.A.14 is a restatement of Theorem 1.A.6.
Let X be a random variable and denote by X(−∞,a] the truncation of

X at a, that is, X(−∞,a] has as its distribution the conditional distribution
of X given that X ≤ a. X(a,∞) is similarly defined. It is simple to prove the
following result. Results that are stronger than this are contained in Theorems
1.B.20, 1.B.55, and 1.C.27.

Theorem 1.A.15. Let X be any random variable. Then X(−∞,a] and X(a,∞)
are increasing in a in the sense of the usual stochastic order.

An interesting example in which truncated random variables are compared
is the following.

Example 1.A.16. Let X(1), X(2), . . . , X(n) be independent and identically dis-
tributed random variables. For a fixed t, let X

(1)
(t,∞), X

(2)
(t,∞), . . . , X

(n)
(t,∞) be the

corresponding truncations, and assume that they are also independent and
identically distributed. Then(

max
{
X(1), X(2), . . . , X(n)})

(t,∞) ≤st max
{

X
(1)
(t,∞), X

(2)
(t,∞), . . . , X

(n)
(t,∞)

}
,

where
(
max

{
X(1), X(2), . . . , X(n)

})
(t,∞) denotes the corresponding trunca-

tion of max
{
X(1), X(2), . . . , X(n)

}
. The proof consists of a straightforward

verification of (1.A.2) for the compared random variables.

Let φ1 and φ2 be two functions that satisfy φ1(x) ≤ φ2(x) for all x ∈ R,
and let X be a random variable. Then, clearly, φ1(X) ≤ φ2(X) almost surely.
From Theorem 1.A.1 we thus obtain the following result.

Theorem 1.A.17. Let X be a random variable and let φ1 and φ2 be two
functions that satisfy φ1(x) ≤ φ2(x) for all x ∈ R. Then

φ1(X) ≤st φ2(X).

In particular, if φ is a function that satisfies x ≤ [≥] φ(x) for all x ∈ R, then
X ≤st [≥st] φ(X).

Remark 1.A.18. The set of all distribution functions on R is a lattice with
respect to the order ≤st. That is, if X and Y are random variables with
distributions F and G, then there exist random variables Z and W such that
Z ≤st X, Z ≤st Y , W ≥st X, and W ≥st Y . Explicitly, Z has the survival
function min{F , G} and W has the survival function max{F , G}.
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The next four theorems give conditions under which the corresponding
spacings are ordered according to the usual stochastic order. Let X1, X2, . . . ,
Xm be any random variables with the corresponding order statistics X(1) ≤
X(2) ≤ · · · ≤ X(m). Define the corresponding spacings by U(i) = X(i)−X(i−1),
i = 2, 3, . . . , m. When the dependence on m is to be emphasized, we will denote
the spacings by U(i:m).

Theorem 1.A.19. Let X1, X2, . . . , Xm, Xm+1 be independent and identically
distributed IFR (DFR) random variables. Then

(m − i + 1)U(i:m) ≥st [≤st] (m − i)U(i+1:m), i = 2, 3, . . . , m − 1,

and

(m − i + 2)U(i:m+1) ≥st [≤st] (m − i + 1)U(i:m), i = 2, 3, . . . , m.

The proof of Theorem 1.A.19 is not given here. A stronger version of
the DFR part of Theorem 1.A.19 is given in Theorem 1.B.31. Some of the
conclusions of Theorem 1.A.19 can be obtained under different conditions.
These are stated in the next two theorems. Again, the proofs are not given.
In the next two theorems we take X(0) ≡ 0, and thus U(1) = X(1). For the
following theorem recall from page 1 the definition of Schur concavity.

Theorem 1.A.20. Let X1, X2, . . . , Xm be nonnegative random variables with
an absolutely continuous joint distribution function. If the joint density func-
tion of X1, X2, . . . , Xm is Schur concave (Schur convex ), then

(m − i + 1)U(i:m) ≥st [≤st] (m − i)U(i+1:m), i = 1, 2, . . . , m − 1.

Theorem 1.A.21. Let X1, X2, . . . , Xm be independent exponential random
variables with possibly different parameters. Then

(m − i + 1)U(i:m) ≤st (m − i)U(i+1:m), i = 1, 2, . . . , m − 1.

Theorem 1.A.22. Let X1, X2, . . . , Xm be independent and identically distri-
buted random variables with a finite support, and with an increasing [decreas-
ing ] density function over that support. Then

U(i:m) ≥st [≤st] U(i+1:m), i = 2, 3, . . . , m − 1.

The proof of Theorem 1.A.22 uses the likelihood ratio order, and therefore
it is deferred to Section 1.C, Remark 1.C.3.

Note that any absolutely continuous DFR random variable has a decreas-
ing density function. Thus we see that the assumption in the DFR part of
Theorem 1.A.19 is stronger than the assumption in the decreasing part of
Theorem 1.A.22, but the conclusion in the DFR part of Theorem 1.A.19 is
stronger than the conclusion in the decreasing part of Theorem 1.A.22. It is
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of interest to compare Theorems 1.A.19–1.A.22 with Theorems 1.B.31 and
1.C.42.

From Theorem 1.A.1 it is obvious that if X(1) ≤ X(2) ≤ · · · ≤ X(m) are
the order statistics corresponding to the random variables X1, X2, . . . , Xm,
then X(1) ≤st X(2) ≤st · · · ≤st X(m). Now let X(1) ≤ X(2) ≤ · · · ≤ X(m) be
the order statistics corresponding to the random variables X1, X2, . . . , Xm,
and let Y(1) ≤ Y(2) ≤ · · · ≤ Y(m) be the order statistics corresponding to the
random variables Y1, Y2, . . . , Ym. As usual, for any distribution function F , we
let F ≡ 1 − F denote the corresponding survival function.

Theorem 1.A.23. (a) Let X1, X2, . . . , Xm be independent random variables
with distribution functions F1, F2, . . . , Fm, respectively. Let Y1, Y2, . . . , Ym

be independent and identically distributed random variables with a com-
mon distribution function G. Then X(i) ≤st Y(i) for all i = 1, 2, . . . , m if,
and only if,

m∏
j=1

Fj(x) ≥ Gm(x) for all x;

that is, if, and only if, X(m) ≤st Y(m).
(b) Let X1, X2, . . . , Xm be independent random variables with survival func-

tions F 1, F 2, . . . , Fm, respectively. Let Y1, Y2, . . . , Ym be independent and
identically distributed random variables with a common survival function
G. Then X(i) ≥st Y(i) for all i = 1, 2, . . . , m if, and only if,

m∏
j=1

F j(x) ≥ G
m

(x) for all x;

that is, if, and only if, X(1) ≥st Y(1).

The proof of Theorem 1.A.23 is not given here.
More comparisons of order statistics in the usual stochastic order can be

found in Theorem 6.B.23 and in Corollary 6.B.24.
The following neat example compares a sum of independent heterogeneous

exponential random variables with an Erlang random variable; it is of interest
to compare it with Examples 1.B.5 and 1.C.49. We do not give the proof here.

Example 1.A.24. Let Xi be an exponential random variable with mean λ−1
i >

0, i = 1, 2, . . . , m, and assume that the Xi’s are independent. Let Yi,
i = 1, 2, . . . , m, be independent, identically distributed, exponential random
variables with mean η−1. Then

m∑
i=1

Xi ≥st

m∑
i=1

Yi ⇐⇒ m
√

λ1λ2 · · ·λm ≤ η.

The next example may be compared with Examples 1.B.6, 1.C.51, and
4.A.45.



14 1 Univariate Stochastic Orders

Example 1.A.25. Let Xi be a binomial random variable with parameters ni

and pi, i = 1, 2, . . . , m, and assume that the Xi’s are independent. Let Y be a
binomial random variable with parameters n and p where n =

∑m
i=1 ni. Then

m∑
i=1

Xi ≥st Y ⇐⇒ p ≤ n

√
pn1
1 pn2

2 · · · pnm
m ,

and
m∑

i=1

Xi ≤st Y ⇐⇒ 1 − p ≤ n
√

(1 − p1)n1(1 − p2)n2 · · · (1 − pm)nm .

The following example gives necessary and sufficient conditions for the
comparison of normal random variables; it is generalized in Example 6.B.29.
See related results in Examples 3.A.51 and 4.A.46.

Example 1.A.26. Let X be a normal random variable with mean µX and vari-
ance σ2

X , and let Y be a normal random variable with mean µY and variance
σ2

Y . Then X ≤st Y if, and only if, µX ≤ µY and σ2
X = σ2

Y .

Example 1.A.27. Let the random variable X have a unimodal density, sym-
metric about 0. Then

(X + a)2 ≤st (X + b)2 whenever |a| ≤ |b|.
Example 1.A.28. Let X have a multivariate normal density with mean vector
0 and variance-covariance matrix Σ1. Let Y have a multivariate normal den-
sity with mean vector 0 and variance-covariance matrix Σ1 + Σ2, where Σ2
is a nonnegative definite matrix. Then

‖X‖2 ≤st ‖Y ‖2,

where ‖ · ‖ denotes the Euclidean norm.

The next result involves the total time on test (TTT) transform and the
observed TTT random variable. Let F be the distribution function of a non-
negative random variable, and suppose, for simplicity, that 0 is the left end-
point of the support of F . The TTT transform associated with F is defined
by

H−1
F (u) =

∫ F −1(u)

0
F (x)dx, 0 ≤ u ≤ 1, (1.A.19)

where F ≡ 1−F is the survival function associated with F . The inverse, HF , of
the TTT transform is a distribution function. If the mean µ =

∫∞
0 xdF (x) =∫∞

0 F (x)dx is finite, then HF has support in [0, µ]. If X has the distribution
function F , then let Xttt be any random variable that has the distribution
HF . The random variable Xttt is called the observed total time on test.

Theorem 1.A.29. Let X and Y be two nonnegative random variables. Then

X ≤st Y =⇒ Xttt ≤st Yttt.

See related results in Theorems 3.B.1, 4.A.44, 4.B.8, 4.B.9, and 4.B.29.
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1.A.5 Some properties in reliability theory

Recall from page 1 the definitions of the IFR, DFR, NBU, and NWU proper-
ties. The next result characterizes random variables that have these properties
by means of the usual stochastic order. The statements in the next theorem
follow at once from the definitions. Recall from Section 1.A.3 that for any
random variable Z and an event A we denote by [Z

∣∣A] any random variable
that has as its distribution the conditional distribution of Z given A.

Theorem 1.A.30. (a) The random variable X is IFR [DFR] if, and only if,
[X − t

∣∣X > t] ≥st [≤st] [X − t′
∣∣X > t′] whenever t ≤ t′.

(b) The nonnegative random variable X is NBU [NWU] if, and only if, X ≥st
[≤st] [X − t

∣∣X > t] for all t > 0.

Note that if X is the lifetime of a device, then [X − t
∣∣X > t] is the residual

life of such a device with age t. Theorem 1.A.30(a), for example, characterizes
IFR and DFR random variables by the monotonicity of their residual lives
with respect to the order ≤st. Theorem 1.A.30 should be compared to Theorem
1.B.38, where a similar characterization is given. Some multivariate analogs of
Theorem 1.A.30(a) are used in Section 6.B.6 to introduce some multivariate
IFR notions.

For a nonnegative random variable X with a finite mean, let AX denote
the corresponding asymptotic equilibrium age. That is, if the distribution
function of X is F , then the distribution function Fe of AX is defined by

Fe(x) =
1

EX

∫ x

0
F (y)dy, x ≥ 0, (1.A.20)

where F ≡ 1 − F is the corresponding survival function. Recall from page 1
the definitions of the NBUE and the NWUE properties. The following result
is immediate.

Theorem 1.A.31. The nonnegative random variable X with finite mean is
NBUE [NWUE] if, and only if, X ≥st [≤st] AX .

Another characterization of NBUE random variables is the following. Re-
call from Section 1.A.4 the definition of the observed total time on test random
variable Xttt.

Theorem 1.A.32. Let X be a nonnegative random variable with finite mean
µ. Then X is NBUE if, and only if,

Xttt ≥st U(0, µ),

where U(0, µ) denotes a uniform random variable on (0, µ).

Let X be a nonnegative random variable with finite mean and distribution
function F , and let AX be the corresponding asymptotic equilibrium age
having the distribution function Fe given in (1.A.20). The requirement
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X ≥st [AX − t
∣∣AX > t] for all t ≥ 0, (1.A.21)

has been used in the literature as a way to define an aging property of the
lifetime X. It turns out that this aging property is equivalent to the new better
than used in convex ordering (NBUC) notion that is defined in (4.A.31) in
Chapter 4.

1.B The Hazard Rate Order

1.B.1 Definition and equivalent conditions

If X is a random variable with an absolutely continuous distribution function
F , then the hazard rate of X at t is defined as r(t) = (d/dt)(− log(1−F (t))).
The hazard rate can alternatively be expressed as

r(t) = lim
∆t↓0

P{t < X ≤ t + ∆t
∣∣X > t}

∆t
=

f(t)
F (t)

, t ∈ R, (1.B.1)

where F ≡ 1 − F is the survival function and f is the corresponding density
function. As can be seen from (1.B.1), the hazard rate r(t) can be thought of
as the intensity of failure of a device, with a random lifetime X, at time t.
Clearly, the higher the hazard rate is the smaller X should be stochastically.
This is the motivation for the order discussed in this section.

Let X and Y be two nonnegative random variables with absolutely con-
tinuous distribution functions and with hazard rate functions r and q, respec-
tively, such that

r(t) ≥ q(t), t ∈ R. (1.B.2)

Then X is said to be smaller than Y in the hazard rate order (denoted as
X ≤hr Y ).

Although the hazard rate order is usually applied to random lifetimes
(that is, nonnegative random variables), definition (1.B.2) may also be used to
compare more general random variables. In fact, even the absolute continuity,
which is required in (1.B.2), is not really needed. It is easy to verify that
(1.B.2) holds if, and only if,

G(t)
F (t)

increases in t ∈ (−∞,max(uX , uY )) (1.B.3)

(here a/0 is taken to be equal to ∞ whenever a > 0). Here F denotes the
distribution function of X and G denotes the distribution function of Y , and
uX and uY denote the corresponding right endpoints of the supports of X
and of Y . Equivalently, (1.B.3) can be written as

F (x)G(y) ≥ F (y)G(x) for all x ≤ y. (1.B.4)
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Thus (1.B.3) or (1.B.4) can be used to define the order X ≤hr Y even if X
and/or Y do not have absolutely continuous distributions. A useful further
condition, which is equivalent to X ≤hr Y when X and Y have absolutely
continuous distributions with densities f and g, respectively, is the following:

f(x)
F (y)

≥ g(x)
G(y)

for all x ≤ y. (1.B.5)

Rewriting (1.B.4) as

F (t + s)
F (t)

≤ G(t + s)
G(t)

for all s ≥ 0 and all t,

it is seen that X ≤hr Y if, and only if,

P{X − t > s
∣∣X > t} ≤ P{Y − t > s

∣∣Y > t} for all s ≥ 0 and all t; (1.B.6)

that is, if, and only if, the residual lives of X and Y at time t are ordered in
the sense ≤st for all t. Equivalently, (1.B.6) can be written as

[X
∣∣X > t] ≤st [Y

∣∣Y > t] for all t. (1.B.7)

Substituting u = F
−1

(t) in (1.B.3) shows that X ≤hr Y if, and only if,

G F
−1

(u)
u

≥ G F
−1

(v)
v

for all 0 < u ≤ v < 1.

Simple manipulations show that the latter condition is equivalent to

1 − FG−1(1 − u)
u

≤ 1 − FG−1(1 − v)
v

for all 0 < u ≤ v < 1. (1.B.8)

For discrete random variables that take on values in N the definition of ≤hr
can be written in two different ways. Let X and Y be such random variables.
We denote X ≤hr Y if

P{X = n}
P{X ≥ n} ≥ P{Y = n}

P{Y ≥ n} , n ∈ N. (1.B.9)

Equivalently, X ≤hr Y if

P{X = n}
P{X > n} ≥ P{Y = n}

P{Y > n} , n ∈ N.

The discrete analog of (1.B.4) is that (1.B.9) holds if, and only if,

P{X ≥ n1}P{Y ≥ n2} ≥ P{X ≥ n2}P{Y ≥ n1} for all n1 ≤ n2. (1.B.10)

In a similar manner (1.B.3) and (1.B.5) can be modified in the discrete case.
Unless stated otherwise, we consider only random variables with absolutely
continuous distribution functions in the following sections.


