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To the memory of my mother, Vera Gajić
and my uncle, Radovan Gajić.
Chapter 17 is dedicated to Colette.
Another smart, generous, and witty soul
gone too soon.



Reader,
I Here put into thy Hands, what has been the diversion of some of my idle and heavy

Hours: If it has the good luck to prove so of any of thine, and thou hast but half so much
Pleasure in reading, as I had in writing it, thou wilt as little think thy Money, as I do my
Pains, ill bestowed. Mistake not this, for a Commendation of my Work; nor conclude,
because I was pleased with the doing of it, that therefore I am fondly taken with it now
it is done.

John Locke, The Epistle to the Reader
An Essay Concerning Human Understanding, 1660

Well, that’s about it for tonight ladies and gentlemen, but remember if you’ve enjoyed
watching the show just half as much as we’ve enjoyed doing it, then we’ve enjoyed it twice
as much as you. Ha, ha, ha.

Monty Python’s Flying Circus, Episode 23, ‘Scott of the Antarctic’, 1970



Preface

This book is shorter than In Search of Lost Time, is easier to read than Principia
Mathematica, and has more mathematical content than War and Peace.1,2 It
provides an introduction to set-theoretic methods in the field of C∗-algebras,
functional analysis, and general large metric algebraic structures. The main objects
of the study are the two classes of C∗-algebras: (1) nonseparable but usually nuclear,
and even approximately finite, C∗-algebras and (2) properties of massive quotient
C∗-algebras such as coronas, ultraproducts, and relative commutants of separable
subalgebras of massive algebras.

While writing this book, I had in mind four types of readers:

1. Graduate students who had already taken an introductory course in C∗-algebras
and would like to learn set-theoretic methods

2. Graduate students who had already taken an introductory course in combinatorial
set theory and would like to apply their knowledge to C∗-algebras

3. Graduate students who had taken a first course in functional analysis, and
possibly a first course in mathematical logic (the latter can be replaced by
‘sufficient mathematical maturity’), and are interested in learning about set-
theoretic methods in functional analysis, and C∗-algebras in particular

4. Mature mathematicians interested in learning about applications of set theory to
C∗-algebras

This book can be used as a text for an advanced two-semester graduate course.
Alternatively, one can use Chapters 1–8, Section 9.2, and Chapters 10 and 11 for a
one-semester course on constructions of nonseparable C∗-algebras.

1If you thought there wasn’t much mathematical content in War and Peace then you haven’t
made it as far as the second epilogue, where the following sentence can be found: ‘Arriving at
infinitesimals, mathematics, the most exact of sciences, abandons the process of analysis and enters
on the new process of the integration of unknown, infinitely small, quantities’. Tolstoy proceeded
to speculate on applications of calculus to history. This was written in the 1860s, barely 10 years
after the birth of Riemann’s integral and full 80 years before Asimov’s ‘Foundation’.
2. . . and some of the jokes were not stolen from Douglas Adams.
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viii Preface

Another alternative is to use Chapters 1 and 2, and all of Part III (except Section
12.5, which relies on Chapter 5) for a one-semester course on set-theoretic aspects
of the Calkin algebra, other coronas, and ultraproducts.

Yet another possibility for a minicourse on representations of C∗-algebras would
be to use only Chapters 1–5. This option involves no set theory, but it covers aspects
of the representation theory of C∗-algebras not covered elsewhere.

If a course is given to students with a solid background in set theory, then all of
Chapter 6 and parts of Chapters 7 and 8 should be omitted.

In the dual situation, when the audience consists of students with a solid
background in C∗-algebras, Chapters 1–3 can be omitted.
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Why Bother?

In his 1925 PhD thesis, John von Neumann defined the cumulative hierarchy by
transfinite recursion on the ordinals. The 0th level is the empty set, the successor of
a given level is its power set, and a limit level is equal to the union of all preceding
levels (see Section A.5). Virtually, all of mathematics as we know it (and then some)
takes place within the first ten infinite levels of this hierarchy.

So why do we need all these sets?
The use of abstract set theory in mathematics can be compared to the analytic

number theory, where analytic methods are applied to prove statements about
natural numbers. Or think of the definition of cohomology, using uncountable free
groups. The only difference is that the gap between the cardinalities of objects
considered and tools used can be much larger and that it is known that in many
situations, this is necessarily so. Here are a few examples.

Take n ≥ 1 and a Borel subset X of Rn+2. Let Y be the projection of X to R
n+1.

Let Z be the projection of R
n+1 \ Y to R

n. Can one prove that Z is Lebesgue
measurable for every choice of the Borel set X? In Gödel’s constructible universe L,
the answer is negative, and with n = 2, one can even choose X so that Z is a

xv
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well-ordering of the reals. However, the existence of a very large cardinal called
measurable cardinal5 implies a positive answer. This is the question of Lebesgue
measurability of Σ1

2 sets of reals (see [148, 216]).
The assertion that there are uncountably many infinite cardinals cannot be

proved in Zermelo’s original axiomatization of set theory Z. This can be proved
by using the replacement axiom, added by Fraenkel, to obtain the Zermelo–
Fraenkel set theory (ZF). Borel Determinacy asserts that natural two-player games
of perfect information with a Borel payoff are determined. Borel Determinacy
cannot be proved in Z [108]. It was proved in ZF by Martin (see [151]) using
transfinite iteration of the power set operation. The interplay between the Axiom of
Determinacy and large cardinals that dwarf measurables provides one of the most
fascinating justifications of the higher set theory (see [148] and [265]).

Laver used one of the strongest large cardinal assumptions not known to lead to
a contradiction (the existence of a nontrivial elementary embedding of a rank-initial
segment of von Neumann’s universe into itself) to solve a problem about algebras
satisfying the left-distributive law a(bc) = (ab)(ac). This assumption has been
removed, but large cardinals provided a natural route towards the solution (see [53]).

Last but not least, some questions about operator algebras on a (separable!)
Hilbert space can be answered only by using abstract set theory. Read on.

5The extent of largeness of measurable cardinals is the subject of Exercise 16.8.32.
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Some papers should be seen as territorial claims, not instruments of instruction.
A.R.D. Mathias

A C∗-algebra is a subalgebra of B(H), the algebra of all bounded linear
operators on a complex Hilbert space H , closed under the formation of adjoints and
the norm topology. A von Neumann algebra is a unital subalgebra of B(H) which
is closed in the weak operator topology. The study of von Neumann algebras, under
the name of ‘rings of operators’, was initiated in the 1930s and 1940s in the work of
Murray and von Neumann. The study of C∗-algebras began in the 1940s by a result
of Gelfand and Naimark stating that a complex Banach algebra with an involution is
isomorphic to a C∗-algebra if and only if it satisfies the C∗-equality ‖aa∗‖ = ‖a‖2.
It has since expanded to touch much of modern mathematics, including number
theory, geometry, ergodic theory, mathematical physics, and topology.

Set theory is an area of mathematical logic concerned with the foundational
aspect of mathematics and to some extent (but by no means exclusively) inde-
pendence results. Gödel’s Incompleteness Theorem implies that no consistent and
recursive set of axioms that extends the theory of natural numbers can decide every
statement expressible in its language. Therefore, some statements of number theory
can be neither proved nor refuted on the basis of the standard Zermelo–Fraenkel set
theory with the Axiom of Choice (ZFC). Gödel’s statements code metamathematical
statements and are unnatural from the point of view of number theory. In spite of
Gödel’s Theorem, parts of core mathematics are generally considered immune to
set-theoretic independence, and such independent statements in the field of operator
algebras were found only recently. The answers to some prominent and long-
standing open problems on operator algebras are independent from ZFC, and this is
one of the main themes of this text.

In the past century, the connection between logic and operator algebras was
sparse albeit fruitful. In this text, we present one aspect of this progress that brought
two subjects closer together. Our main goal is to give a self-contained and as
elementary as possible ‘instrument of instruction’ for set-theoretic methods used
in the past 15 years to resolve several long-standing problems in the theory of

xvii
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C∗-algebras. Along the way, we provide an introduction to several loosely related
topics, such as the representation theory of C∗-algebras, massive C∗-algebras such
as coronas, asymptotic sequence algebras (reduced products), and ultraproducts, as
well as infinitary combinatorics and its applications to functional analysis.6

The problems from the field of operator algebras that were resolved using set
theory generally fall into one of the two following categories.

Nonseparable Examples

The problems in the first group ask whether all operator algebras with a certain
property P also satisfy a related property, Q. Two textbook examples of such
problems are Dixmier’s 1967 problems, asking is every unital inductive limit of
full matrix algebras isomorphic to a tensor product, and is every C∗-algebra that
locally looks like a full matrix algebra isomorphic to an inductive limit of full matrix
algebras? (In technical terms, is every unital approximately matricial (AM) C∗-
algebra is uniformly hyperfinite (UHF), and is every unital locally matricial (LM, or
matroid) C∗-algebra approximately matricial?) Yet another example is Naimark’s
problem, asking whether a C∗-algebra all of whose irreducible representations
are unitarily equivalent is isomorphic to the algebra of compact operators on
some Hilbert space. A problem closely related to Naimark’s is whether Glimm’s
Dichotomy, asserting that the number of unitary equivalence classes of irreducible
representations of a separable and simple C∗-algebras is either 1 or not smaller than
c7 holds for all simple C∗-algebras. Another problem asks whether every amenable
norm-closed algebra of operators on a Hilbert space is isomorphic to a C∗-algebra.
All of these problems, except possibly the last one, have positive solutions when
restricted to separable C∗-algebras.

In the simplest form of a set-theoretic resolution to a problem of this sort, an
example is defined from concrete parameters such as cardinals or real numbers. Both
Dixmier’s problems fall into this class, with counterexamples of minimal density
characters8 equal to the first two uncountable cardinals, ℵ1 and ℵ2, respectively.

Some other problems in the first group are solved by a recursive construction
of transfinite length. An example was provided by Weaver’s construction of a
prime, but not primitive, C∗-algebra. Crabb and Katsura later simplified Weaver’s
construction and provided a definition of such an algebra, thus ‘upgrading’ (or
perhaps downgrading?) the solution of this problem to the first class. The problem
of the existence of an amenable norm-closed algebra of operators on a Hilbert space

6Students and non-experts, please proceed to ‘Annotated Contents’ on page xx or even straight to
‘Prerequisites and Appendices’ on page xxv and later use the earlier pages of this introduction as
a reference.
7c := 2ℵ0 , the cardinality of the real line.
8The density character of a topological space is the smallest cardinality of a dense subset.
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not isomorphic to a C∗-algebra is resolved by defining a counterexample, but the
definition uses as a parameter a so-called Luzin family of subsets of N, constructed
by transfinite recursion.

In the third subgroup of examples, the algebras are again constructed by a trans-
finite recursive construction, but the construction is facilitated by a diagonalization
principle independent from the standard ZFC axioms of set theory such as the
Continuum Hypothesis or its strengthening, Jensen’s diamond ♦ℵ1 . The latter is
used to construct counterexamples to Naimark’s problem and Glimm’s Dichotomy
for C∗-algebras of density character ℵ1. More precisely, for every 1 ≤ n ≤ ℵ0, we
construct a simple C∗-algebra with exactly n irreducible representations (up to the
unitary equivalence) that is not isomorphic to the algebra of compact operators on
a Hilbert space. This algebra can be chosen to be nuclear, stably finite, and even
approximately finite.

Properties of Massive Quotients

Another, even more exciting and more fundamental, group of questions is concerned
with properties of familiar, canonical, examples of C∗-algebras. Explicitly defined
C∗-algebras, some of whose essential properties may depend on set theory, are
unlikely to be separable.9 The massive quotient algebras are the most likely can-
didates for having a ‘set-theoretically malleable’ theory. This unruliness is closely
related to the fact observed in both noncommutative geometry and descriptive set
theory, that the quotient spaces are frequently intractable. The simplest, and most
established, example of a massive quotient C∗-algebra is the quotient of the algebra
of bounded linear operators on H = �2(N) over the ideal of compact operators. This
is the Calkin algebra, Q(H).

Motivated by their seminal work on extensions of separable C∗-algebras by the
algebra of compact operators, Brown, Douglas, and Fillmore asked whether Q(H)

has an outer automorphism. By results of Phillips–Weaver and the author, the answer
to this question is independent from ZFC.

Separable C∗-algebras and the General Theory

While the main goal of this text is to present the theory of nonseparable C∗-algebras,
a substantial amount of space and effort is devoted to the theory of C∗-algebras that
does not explicitly involve set theory. In addition, a fair portion of this theory applies
only to separable C∗-algebras.

9This is essentially a consequence of Shoenfield’s Absoluteness Theorem and standard descriptive
set-theoretic coding arguments (see Theorem B.2.12).
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This choice was guided by two rationales. First, students may appreciate having
all the required information in a single volume. The second one is more substantial.
Many of the standard results needed in the latter parts of this text cannot be easily
found elsewhere, and in at least one case, a complete proof hasn’t been available at
all until now. A list of these results follows.

The strong homogeneity of the pure state space of every separable C∗-algebra is
Theorem 5.6.1. A rough sketch of a proof of this theorem was given by Akemann
and Weaver in [6], combining techniques of [110, 161], and [121].10 We give a
complete proof, including Kishimoto’s rather elementary proof [159] of Haagerup’s
result on the existence of an approximate diagonal of an irreducible representation
of a C∗-algebra (Theorem 5.1.2). The Wolf–Winter–Zacharias Structure Theorem
for completely positive maps of order zero is Theorem 3.2.9. Theorem 12.3.2
is the Johnson–Parrott Theorem about derivations of C∗-algebras (or rather its
consequence that the image of any masa in B(H) under the quotient map is
a masa in the Calkin algebra). The Akemann–Anderson–Pedersen Theorem on
excision of pure states is proved in Theorem 5.2.1. We use excision to provide
a proof of Kirchberg’s Slice Lemma.11 Excision also forms the basis for the
theory of noncommutative analogs of ultrafilters, known as maximal quantum filters
(see Section 5.3). They are used to facilitate the use of set-theoretic methods in the
study of pure states on C∗-algebras. A proof of Ulam stability of ε-representations of
compact groups and ε-∗-homomorphisms between finite-dimensional C∗-algebras is
in Section 17.2.

Many of the proofs have been taken apart, have had all of their gears oiled,
and were then reassembled. One example is Theorem 3.7.2, Glimm’s Theorem that
every non-type I C∗-algebra has a subalgebra with a quotient isomorphic to the CAR
algebra.12

Annotated Contents

Part I is about C∗-algebras.
In Chapter 1, we introduce the abstract C∗-algebras and work towards the

Gelfand–Naimark–Segal Theorem (Theorem 1.10.1). Along the way, we discuss
abelian C∗-algebras and Gelfand–Naimark and Stone dualities, continuous func-
tional calculus, positivity in C∗-algebras, approximate units, and quasi-central
approximate units.

10As I was writing these lines, a more detailed exposition of this proof became available in [242].
11This proof is adapted from [206], where a proof of the excision of pure states in the case of
purely infinite and simple C∗-algebras can be found.
12This result can be found, for example, in the classic [192], but the proof given here is somewhat
different.
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In Chapter 2, we give basic examples of constructions C∗-algebras: direct
sums and products, inductive limits, stabilization, suspension, cone, hereditary C∗-
subalgebras, quotients, tensor products, full and reduced group C∗-algebras, and
full and reduced crossed products. Finite-dimensional C∗-algebras and ∗-homomor-
phisms between them are classified by Bratteli diagrams. Universal C∗-algebras
given by generators and relations are studied in some detail. After a discussion of
automorphisms of C∗-algebras, we conclude with a section on C∗-algebras of real
rank zero.

Chapter 3 starts with a telegraphic introduction to von Neumann algebras. We
also prove the Stinespring and Wolf–Winter–Zacharias Structure Theorems for
completely positive maps and completely positive maps of order zero, respectively,
and introduce averaging techniques and conditional expectations. We prove the
Kadison Transitivity Theorem and its generalization due to Glimm–Kadison. After
studying pure states and equivalence relations on the space of pure states of a
C∗-algebra (unitary/spatial equivalence and conjugacy by an automorphism), we
conclude with a study of the second dual of a C∗-algebra.

In Chapter 4, we adapt a technique, borrowed from the theory of II1 factors, of
juxtaposing the GNS Hilbert space structure associated with a tracial state and the
C∗-algebra structure to study reduced group C∗-algebras. An emphasis is given to
the C∗-algebras associated to free products of groups. We give basic norm estimates
for the elements of a group algebra and present basics of Powers groups and criteria
for simplicity of reduced group C∗-algebras. The chapter concludes with a study of
normalizers of diffuse masas.

Chapter 5 starts with Kishimoto’s construction of approximate diagonals. We
then prove the Akemann–Anderson–Pedersen Theorem on excision of pure states
and apply it to prove Glimm’s Lemma and Kirchberg’s Slice Lemma. Excision
is also used to exhibit a bijection between ‘maximal quantum filters’ and pure
states of a C∗-algebra. The maximal quantum filters are used to study extensions
of pure states. The chapter concludes with a proof of the Kishiomoto–Ozawa–Sakai
Theorem on the homogeneity of the pure state space of separable C∗-algebras.

In Part II, we introduce set-theoretic tools and apply them to C∗-algebras.
Chapter 6 is devoted to infinitary combinatorics: club filter, nonstationary ideal,

the pressing down lemma, variants of the Δ-system lemma, and Kueker’s Structure
Theorem for clubs in [X]ℵ0 .

In Chapter 7, we introduce continuous variants of the results from Chapter 6 in
which [X]ℵ0 , the family of countably infinite subsets of a fixed uncountable set X,
is replaced with Sep(A), the family of all separable substructures of a nonsepa-
rable metric structure A. The latter directed set is σ -directed, but not concretely
represented, and in some cases, only the approximate versions of results studied in
Chapter 6 hold. These approximate versions are used to reflect properties of large
C∗-algebras to their separable subalgebras and prove that algebras indistinguishable
by any of the standard K-theoretic invariants are not isomorphic. The spaces of
models—both discrete and metric—are studied in Section 7.1. Proposition 7.2.9 is
a metric variant of the Pressing Down Lemma.
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Chapter 8 is devoted to the additional set-theoretic axioms used in this text. They
are literally treated as axioms—no attempt has been made to prove their relative
consistency with ZFC. We start with rather standard, brief, and self-contained
treatments of the Continuum Hypothesis and Jensen’s ♦ℵ1 and use ♦ℵ1 to construct
a Suslin tree. The σ -complete directed systems of isomorphisms between separable
substructures are studied in some detail. The axiom asserting that a Polish space
cannot be covered by fewer than c meager subsets is used to construct a selective
ultrafilter on N. The chapter ends with a discussion of the Ramseyan axiom OCAT
and some of its applications.

Several themes picked up later on in this text originate in Chapter 9. The
first one is the structure of the Boolean algebra P(N)/Fin and related quotient
structures. The interplay between separability of P(N) (identified with the Cantor
space) and countable saturation of P(N)/Fin is used to construct several objects
witnessing the incompactness of ℵ1, such as the independent families, almost
disjoint families, and gaps in P(N)/Fin. In the latter sections, this Boolean algebra
is injected into massive corona C∗-algebras. This is used to construct subalgebras
of B(H) with unexpected properties, such as an amenable norm-closed algebra
of operators on a Hilbert space not isomorphic to a C∗-algebra (Section 15.5),
and Kadison–Kastler near, but not isomorphic, C∗-algebras (Section 14.4). We
introduce the Rudin–Keisler ordering on the ultrafilters and construct Rudin–Keisler
incomparable nonprincipal ultrafilters on N. The basics of the Tukey ordering of
directed sets are presented in Section 9.6. We prove that two directed sets are
cofinally equivalent if and only if they are isomorphic to cofinal subsets of some
directed set. We study the directed set NN, the associated small cardinals b and d,
and two directed sets cofinally equivalent to N

N used to stratify the Calkin algebra,
PartN and Part�2 . This chapter ends with a convenient and well-known structure
result for comeager subsets of products of finite spaces.

In Chapter 10, infinitary combinatorics is applied to study graph CCR algebras.
These ‘twisted’ reduced group C∗-algebras associated to a Boolean group and a
cocycle given by a graph are AF (approximately finite) and even AM (approximately
matricial) if they are simple (i.e. if they have no proper norm-closed, two-sided
ideals). After developing structure theory, we recast results of the author and Katsura
and show that in spite of their simplicity (here ‘simplicity’ stands for ‘lack of
complexity’), graph CCR algebras provide counterexamples to several conjectures
about the structure of simple, nuclear C∗-algebras. We construct an AM C∗ algebra
that is not UHF, but it has a faithful representation on a separable Hilbert space.
In every uncountable density character κ , there are 2κ nonisomorphic graph CCR
algebras with the same K-theoretic invariants as the CAR algebra. By using an
independent family of subsets of N, we construct a simple graph CCR algebra that
has irreducible representations on both separable and nonseparable Hilbert spaces.

Other examples of nonseparable C∗-algebras are constructed in Chapter 11. We
start with Akemann’s C∗-algebra with no abelian approximate unit. This is followed
by a strengthening of a result of Akemann and Weaver due to the author and
Hirshberg. It gives a counterexample to Glimm’s Dichotomy for nonseparable C∗-
algebras: for every n ≤ ℵ0, there exists a simple C∗-algebra of density character ℵ1
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with exactly n unitarily inequivalent irreducible representations. The case n = 1
is a counterexample to Naimark’s problem. These results use Jensen’s ♦ℵ1 , and it
is not known whether they can be proved in ZFC. The chapter concludes with a
study of C∗r (Fκ), the reduced group algebra of the free group with κ generators.
For every κ , this C∗-algebra has only separable abelian C∗-subalgebras (Popa), and
every two pure states are conjugate by an automorphism (Akemann–Wassermann–
Weaver). Both results apply to C∗r (Γ ), where Γ is the free product of any family of
nontrivial countable groups.

Part III of this text is devoted to the Calkin algebra and other massive quotient
structures—coronas, ultraproducts, asymptotic sequence algebras, and relative com-
mutants of their separable C∗-subalgebras. A mix of set-theoretic, model-theoretic,
and operator-algebraic techniques provides means for a unified treatment of these
C∗-algebras.

In Chapter 12, we introduce the Calkin algebra Q(H) and establish the parallel
between the poset of its projections and the quotient Boolean algebra P(N)/Fin.
We prove the Weyl–von Neumann–Berg–Sikonia Theorem on the existence of
diagonalized liftings of singly generated abelian C∗-subalgebras of Q(H). In the
separable case, the only obstructions to the existence of diagonalized liftings are
K-theoretic. In the nonseparable case, examples can be provided by a simple
counting argument or by a more profound Luzin-type construction of a ‘twist’
of projections in Q(H). We prove the Johnson–Parrot Theorem, that the image
of a masa in B(H) under the quotient map is a masa in Q(H). Pure states on
Q(H) are the noncommutative analogs of nonprincipal ultrafilters on N, and this
connection is brought forth by the language of maximal quantum filters. A recursive
construction of maximal quantum filters facilitated by the Continuum Hypothesis is
used to construct non-diagonalizable pure states on Q(H), refuting a conjecture of
Anderson and giving a negative answer to a problem of Kadison and Singer; this
is a theorem of Akemann and Weaver. We offer additional proofs of this theorem
from two weakenings of the Continuum Hypothesis (cov(M ) = c and d ≤ t∗) that
between them cover many ‘common’ models of ZFC. No ZFC construction of a
nondiagonalizable pure state on Q(H) is presently known.

In Chapter 13, we study multiplier algebras and coronas of non-unital C∗-
algebras. These are the noncommutative analogs of the Čech–Stone compactifica-
tion and the Čech–Stone remainder, respectively, of a locally compact Hausdorff
space.

Gaps in coronas are studied in Chapter 14. We show that the rich and well-studied
gap spectrum of P(N)/Fin embeds into the corona of every σ -unital, non-unital
C∗-algebra. This is used to prove two incompactness results. The Choi–Christensen
construction of Kadison–Kastler near, but non-isomorphic, C∗-algebras is recast in
terms of gaps: every gap in the Calkin algebra can be used to produce a family
of examples of this sort. Every uniformly bounded representation of a countable,
amenable group in the Calkin algebra is unitarizable. Using a Luzin family, one
defines a uniformly bounded, non-unitarizable representation of

⊕
ℵ1

Z/2Z in the
Calkin algebra. This example yields an amenable operator algebra not isomorphic
to a C∗-algebra. This is a result of the author, Choi and Ozawa.
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In Chapter 15, we study the overarching concept of countable degree-1 saturation
and prove a theorem of the author and Hart that that all massive quotient C∗-
algebras (coronas of σ -unital, non-unital C∗-algebras, ultraproducts associated with
a nonprincipal ultrafilter on N, and relative commutants of separable C∗-subalgebras
of countably degree-1 saturated C∗-algebras) have this property. Countable degree-
1 saturation subsumes several separation properties of massive C∗-algebras with
neat acronyms, such as Pedersen’s SAW∗, CRISP, and AA-CRISP, also sub-Stonean
and Kirchberg’s σ -sub-Stonean C∗-algebras, and those C∗-algebras satisfying
the conclusion of Kasparov’s Technical Lemma. Many of these properties are
analogs of the absence of gaps with countable sides in P(N)/Fin. Among other
applications, we prove that countably degree-1 saturated C∗-algebras are essentially
non-factorizable (Section 15.4.3), that every uniformly bounded representation of a
countable amenable group into such C∗-algebra is unitarizable (Section 15.4.1; this
fails for uncountable groups, Section 14.5), and that such C∗-algebras admit a poor
man’s version of Borel functional calculus that generalizes the Brown–Douglas–
Fillmore ‘Second Splitting Lemma’ (Section 15.4.2).

In Chapter 16, we use continuous model theory to study ultraproducts and
asymptotic sequence algebras (i.e. reduced products associated with the Fréchet
filter). The Fundamental Theorem of Ultraproducts (Łoś’s Theorem) and the cor-
responding result for reduced products, Ghasemi’s Feferman–Vaught Theorem, are
proved for arbitrary metric theories. These theorems are used to prove the countable
saturation of ultraproducts associated with countably incomplete ultrafilters and the
countable saturation of reduced products associated with the Fréchet filter. The σ -
complete back-and-forth systems of partial isomorphisms between metric structures
(introduced in Section 8.2) are used in Section 16.7 to prove that the Continuum
Hypothesis implies all ultrapowers and all relative commutants of a separable C∗-
algebra associated with nonprincipal ultrafilters on N are isomorphic.13 The chapter
ends with theorems due to Ge–Hadwin and the author, Hart, and Sherman, in which
a large number of (outer) automorphisms of ultrapowers, asymptotic sequence
algebras, and related massive C∗-algebras are constructed using the Continuum
Hypothesis.

Chapter 17 begins with a rather elementary proof of the Phillips–Weaver
Theorem: the Continuum Hypothesis implies that the Calkin algebra has outer
automorphisms. The analogous result, due to Coskey and the author, is proved for
the coronas of all stable, σ -unital C∗-algebras. This is followed by a proof of the
Burger–Ozawa–Thom Theorem on Ulam stability of ε-homomorphisms, used to
prove an Ulam stability result for ε-∗-homomorphisms whose domain is a finite-
dimensional C∗-algebra. The final sections of this chapter (and the text) are devoted
to a complete proof that OCAT implies that all automorphisms of the Calkin algebra
are inner.

13This assertion is equivalent to the Continuum Hypothesis. In order to keep the cardinality of the
set of pages of this text within reasonable limits, the proof of the converse is only outlined.
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Prerequisites and Appendices

The reader is assumed to have taken a standard one-semester first course in
functional analysis. This subsumes some familiarity with the basic point-set topol-
ogy: compactness, Hausdorffness, nets, and Cauchy nets. Paracompactness is used
exactly once in this text. The reader is also assumed to be familiar with rudimentary
axiomatic and naive set theory. Some acquaintance with model theory and logic of
metric structures is helpful, but not necessary (except in Chapter 16, but this chapter
is an end in itself). To be specific, most uses of model theory outside of Chapter 16
can be summarized in three words, ‘Löwenheim–Skolem Theorem’, and the readers
who would rather call it ‘Blackadar’s method’ are by all means welcome to do
so. In addition, all uses of Łoś’s Theorem for ultraproducts relevant to us can be
proved with one’s bare hands. However, one can also solve any cubic equation using
Tartaglia’s original algorithm.

The appendices contain brief reviews of the axiomatic and naive set
theory (Appendix A), descriptive set theory (Appendix B), functional analysis
(Appendix C), and model theory (Appendix D).14

Notation

Our notation is mostly standard is what I wish I could say at this point. Alas! This
text attempts to bridge the gap between two sophisticated areas of mathematics,
each of which has its own (often idiosyncratic) notation and terminology. The best
that I can do is provide a list of notational conventions and conflicts.

The issue of choosing the right fonts and symbols cannot be overestimated—
one of the most serious criticisms of [52] that I am aware of is that ‘the author
used all the wrong fonts’. I will mostly refrain from using ω (see Exercise 1 and
Exercise 2), with two exceptions. The vector state associated to a unit vector ξ
will be denoted ωξ . I will write N instead of ω almost everywhere; in transfinite
constructions, ω will denote the least infinite ordinal.

Greek letters ξ, η, and ζ , denote vectors in a Hilbert space except in the
appendix, where they denote ordinals. Thus, ωξ stands for the vector state associated
with vector ξ throughout this text, except in Appendix A (see page xxviii,
Exercise 2). The letters ε and δ will stand for small but positive real numbers, with
one exception. The standard δ symbol is defined by δx,y = 1 if x = y and δx,y = 0
otherwise.

14An early draft of this text contained an extensive appendix on absoluteness. I am convinced
that understanding absoluteness is necessary for understanding the role (and the limitations) of set
theory as we presently know it. Nevertheless, the insane idea of cramming this sensitive material
into an appendix to a 500 page book that already contained diverse, and sometimes technically
demanding, material has been abandoned. I owe special thanks to Matt Foreman for providing the
voice of reason.
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The symbol π (sometimes embellished with subscripts) is used to denote repre-
sentations of C∗-algebras, projections from a Cartesian product to its components,
various quotient maps, and, last but not least, the area of the unit disk. Symbols
m, n, i, j, k, and l stand for natural numbers, with an occasional i = √−1.

The asterisk is even more overused than ω or π (at least in operator algebras). In
addition to having a∗ denote the adjoint operation, X∗ denote the dual of a Banach
space, and assorted C∗s and W∗s denote self-adjoint operator algebras, I will use
the standard set-theoretic notation X ⊆∗ Y for ‘the difference X \ Y is finite’.

We shall be using |a| only to denote the absolute value of a scalar, the absolute
value of a function or an operator, and the cardinality of a set.15

Some of the rules for the assignment of fonts to data types are described in the
following lines.

Ultrafilters are assumed to be nonprincipal (or free) ultrafilters on N, and they
will be denoted U ,V , and W .

Blackboard bold font is used for sets of numbers, N,Z,Q,R,C,T, and D,
where

T := {z ∈ C : |z| = 1} and D := {z ∈ C : |z| < 1}.

The remaining symbols, N,Z,Q,R, and C, are I believe standard enough (but note
that 0 ∈ N and ω = N when convenient).

For abstract sets, I use the sans-serif font: A,X,Y, s, and t. This font is also used
to denote distinguished sets of operators or functionals associated to a C∗-algebra A:
S(A) is the set of states on A, P(A) is the space of pure states in A, and U(A) is the
unitary group of A. In order to avoid confusion with the power set P(A) and the set
of pure states P(A), the poset of projections of a C∗-algebra A is denoted Proj(A).

Capital letters A,B,C, and D will usually denote C∗-algebras, and capital
letters M and N will usually denote von Neumann algebras or multiplier algebras
of non-unital C∗-algebras. Operators are denoted by lower case letters, mostly
a, b, c, and d, but in some of the more complex arguments, we use up a fair portion
of the alphabet. When venturing into operator theory and talking about concrete
operators on a Hilbert space that do not belong to any given operator algebras,
we denote them with capital Roman letters R, S, T , . . . . Capital letters in fraktur
font are used to denote structures (in the model-theoretic sense), both discrete and
metric: A, and B. The domains of these structures are denoted by the corresponding
letters in sans serif font, so that the domain of A is denoted A, the domain of B is
denoted B, and so on. This convention is used only until the distinction has been
made very clear. Small fraktur font is reserved for small cardinals associated with
the continuum.

And now, for the good news, the fruitful interaction between operator algebras
and descriptive set theory is reflected in some common terminology. In both

15Indeed, N.C. Phillips pointed out that the absolute value signs are even more overused in
mathematics than the asterisk.
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subjects, analytic sets are continuous images of Borel sets, and an equivalence
relation is smooth if the quotient Borel space is standard. Unlike ‘normal’, the word
‘compact’ has, to the best of my knowledge, the same meaning throughout all of
mathematics. ‘Weakly compact’ will mean ‘compact in some weak topology’ or
‘compact in the weak operator topology’; weakly compact cardinals haven’t been
used in the field of C∗-algebras, yet.

The ε-ball centred at x in a metric or normed space is denoted

Bε(x) := {y : d(x, y) < ε}.

If X and Y are subsets of a metric space, I write X ⊆ε Y if infy∈Y d(x, y) < ε for
all x ∈ X. For elements x and y of a metric space, x ≈ε y stands for d(x, y) < ε.
(In spite of the suggestive notation, this is certainly not an equivalence relation.)

We write F � A for ‘F is a finite subset of A’.
It will be convenient to use the following two quantifiers:

(∀∞n) stands for (∃m ∈ N)(∀n ≥ m)

(∃∞n) stands for (∀m ∈ N)(∃n ≥ m).

Following a convention going back to von Neumann, an ordinal is identified with
the set of smaller ordinals, and natural numbers are identified with finite ordinals:
0 := ∅, 1 := {∅}, and n = {0, . . . , n − 1} for all n ∈ N.16 This is but one reason
why it is important to distinguish between f (X) and

f [X] := {f (x) : x ∈ X}.

The characteristic function of a set X (considered as a subset of some fixed set clear
from the context) is denoted χX. (Some authors, and functional analysts in particular,
use 1X, but in this text, 1A is reserved for the unit of a C∗-algebra A.)

Symbols for index sets are omitted whenever this is convenient both for myself
and—to the best of my knowledge—for the reader. I will interchangeably write
(bj : j ∈ J), (bj )j , or even (bj ) when the index-set is clear from the context. The
same remark applies to standard abbreviations such as

∏
U Aj for the ultraproducts

and
⊗

N
An or

∏
n An for products. The symbol limn stands for limn→∞, and limλ

stands for limλ→Λ if Λ is a net clear from the context.
Apart from the hopefully innocuous conventions described in the previous para-

graph, between redundancy and confusion, I systematically choose redundancy.17

Every ordered set is therefore either ‘linearly ordered’ (this is synonymous to
‘totally ordered’) or ‘partially ordered’. A relation is a quasi-ordering if it is
transitive but not necessarily antisymmetric.

16The line has to be drawn somewhere; I avoid writing (∀j ∈ n) in place of (∀j < n).
17With apologies to George Elliott.
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Exercises

As an ice-breaker, I provide a multiple-choice quiz.

Exercise 1 What does Rω stand for?

1. An ultrapower of the hyperfinite II1 factor R associated to a free ultrafilter ω
on N

2. The space of all sequences (rn : n ∈ ω) of real numbers, where ω denotes the
least infinite ordinal, identified with N (and yes, zero is a natural number)

Exercise 2 What does ωξ stand for?

1. The vector state on B(H) associated with a vector ξ in the Hilbert space H , in
symbols ωξ (a) := (aξ |ξ).

2. The ξ th infinite cardinal, also denoted ℵξ , where ξ is an ordinal and counting
starts at 0.

Exercise 3 What is the meaning of ‘ϕ is a contraction’?

1. ‖ϕ(x)− ϕ(y)‖ ≤ ‖x − y‖ for all x and y in the domain of ϕ.
2. ‖ϕ(x)− ϕ(y)‖ < ‖x − y‖ for all x and y in the domain of ϕ.
3. Well, it’s the shortening of a word or a group of words by omission of a sound or

letter.

Hint Apparently, there is not much use for Banach’s fixed point theorem in operator
algebras. Contraction is a 1-Lipshitz function, i.e. function f between metric spaces
such that d(x, y) ≥ d(f (x), f (y)) for all x, y. (A notable special case of a
contraction is a linear operator of norm ≤ 1.)

Exercise 4 What does |A| stand for?

1. (A∗A)1/2.
2. The smallest ordinal equinumerous with A, assuming the Axiom of Choice.

Otherwise, this is the equivalence class of all sets equinumerous with A.

Exercise 5 A C∗-algebra A is finite if

1. For every partial isometry v ∈ A such that the projections p := vv∗ and q := v∗v
satisfy pq = p one has p = q

2. |A| < ℵ0

Exercise 6 What are the elements of L2?

1. Equivalence classes of square-integrable functions.
2. They are ∅ and {∅}.

If you answered (1) to more than half of the questions, you are an operator
algebraist. If you answered (2) to more than half of the questions, you are a set
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theorist.18 If you answered (3), then you may be a linguist or a ‘Weird Al’ Yankovich
fan.

Exercises

A fair number of the exercises form an integral part of the text. They are chosen
to widen and deepen the material from the corresponding chapters. Some other
exercises serve as a warm-up for the latter chapters, either by preparing the technical
grounds or by putting a bug into the reader’s ear. Every single instance of the
dreaded ‘it is easy to see’ phrase has been (at least) repackaged as a timely exercise,
invoked later on, sometimes several chapters later. Every exercise used in some
proof has been clearly marked. Finally, the entire subsections work as mini Moore-
style courses, enticing and cajoling the reader to learn more about C∗-algebras and
set theory.19

Silliness

Every effort has been made to relieve and reward the reader’s efforts. In addition
to providing the best available proofs and unearthing analogies and connections
previously unknown to humanity, the text contains a variety of quips of varying
relevance (and, regrettably, of varying funniness degrees). All of them serve the
purpose of putting the reader’s mind at ease before hitting them with complex (no
pun intended) mathematics. All quotations are related to the section they precede in
some, frequently unobvious, way.

What Has Been Omitted

In order to maintain an elementary level and a (relatively) slow pace, it was
necessary to omit numerous results. Descriptive set theory and abstract classification
are mentioned only in passing, and model theory plays a nontrivial role only in
Chapter 16 (cf. [83]). We do not prove the relative consistency of set-theoretic
axioms, such as Jensen’s ♦ℵ1 or OCAT, with ZFC. The reader can either take
this on faith or read any of the existing excellent presentations (e.g. [165, §III.7],
also [258]).

18Bonus question: What is Mn?
19Or so I like to think.
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The original (abandoned) plan for this text included a section on selective
ultrafilters, but see [98].

The most recent general book on C∗-algebras that omits K-theory that comes to
my mind is the (recently reissued) 40 years old [192]. The K-theory, K-homology,
and Ext haven’t yet been applied to C∗-algebras in conjunction with set theory, but
this may be only a matter of time.

As I am writing these lines, exciting new developments are taking place in direct
applications of forcing to C∗-algebras and set-theoretic analysis of the uniform Roe
algebras, but it is now too late to start another elephant (see [183, p. 155]).

All C∗-algebras in Part I are separable unless otherwise specified. All C∗-
algebras in Part II and Part III are nonseparable unless they are obviously separable.


