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Preface

This volume is a collection of several works focusing on differential equations from
viewpoints of formal calculus and geometry through applications of quiver theory.
This book consists of two parts. The first one introduces the theory of Gröbner
bases in their commutative and noncommutative contexts. In particular, the lectures
will focus on algorithmic aspects and applications of Gröbner bases to analysis on
systems of partial differential equations, effective analysis on rings of differential
operators, and homological algebra. The second part constitutes an introduction to
representations of quivers, quiver varieties, and their applications to the moduli
spaces of meromorphic connections on the complex projective line P

1. All the
contributions are presented without assuming any particular background, and the
authors have done their best to make the chapters suitable for graduate students.

Gröbner bases and quivers in algebra and geometry. Gröbner bases and more
generally linear rewriting systems constitute models for computation in algebras of
various types (associative, commutative, Lie…). One of the applications of the
theory is to compute normal forms, bases, and more generally Hilbert or Poincaré
series. Another important application is a generalization of Gaussian elimination to
polynomial systems in various types of algebras (commutative, Weyl algebra…).
The theory of Gröbner bases was developed in the twentieth century. Several works
had led to the development of computational methods in algebra well before the
introduction of algebraic structures such as ideals and algebras and the modern
algebraic language. Chapter 1 explains the long and rich developments from the
work of M. Janet in 1920 on partial differential equations, elimination theory with
seminal works of E. Noether in 1921, and the computational methods in algebraic
geometry with the theory of Gröbner bases for commutative algebras developed by
B. Buchberger in 1965. In recent years, new algorithms of the theory of Gröbner
bases were developed in rings of differentials operators by Oaku–Takayama. In the
meanwhile, decision problems in semigroups and groups by A. Thue in 1914 and
M. Dehn in 1910 motivate a new combinatorial theory of equivalence relations, the
rewriting theory. This theory was expended throughout the twentieth century, in
particular with seminal results on confluence by M. Newman in 1942, on completion
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by Knuth–Bendix in 1970. Rewriting theory had been applied to algebra with works
of A. I. Shirshof in 1962 for computing bases in Lie algebras and L. A. Bokut and G.
Bergman independently in 1976–1978 for associative algebras. More recently at the
end of 1980s, rewriting methods were applied in homological algebra by several
authors such as D. J. Anick, C. Squier, K. Brown, and Y. Kobayashi.

Graphical methods in representation theory are rather new in comparison to the
theory of Gröbner bases. Nevertheless, many applications are developed in the last
decade. In 1934, H. Coxeter classified the finite real reflection groups and repre-
sented their fundamental relations in terms of graphs which was applied by E. Witt
in 1941 to study the structure of semisimple Lie algebras. H. Weyl, in 1925–1926,
and B. L. van der Waerden in 1933 simplified the classification of simple Lie
algebras after W. Killing in 1888–1890, but it was E. B. Dynkin in 1946 who used
the graphical expression to classify simple Lie algebras, where the name (Coxeter-)
Dynkin diagram came from. In 1972, the Dynkin diagrams of type ADE have
re-appeared by the work of P. Gabriel in view of the classification of the algebras
with finitely many isomorphic classes of simple modules, see Chap. 6. It was only
in the 1990s when the so-called quiver varieties were introduced by G. Lusztig for
his study on quantum groups and H. Nakajima for his study on gauge theory, see
Chap. 7. Their geometric approaches have big impacts not only on representation
theory but also on algebraic geometry, for example, the moduli spaces of mero-
morphic connections on compact Riemann surfaces.

Gröbner bases and applications. The aim of the first part of the volume is to focus
on various aspects of the theory of Gröbner bases and of the mathematical problems
at the origin of the theory. Chapter 1 briefly reviews the seminal works on con-
structive methods for computing in ideals by M. Janet in 1920 motivated by
integration of partial equation differential systems by C. Riquier and É. Cartan. The
main tool introduced by M. Janet is the notion of involutive bases which are
particular cases of Gröbner bases. Another domain in application that will be treated
is the effective analysis on rings of differential operators. In particular, integral
transformations and restriction functors on D-modules will be presented using
noncommutative Gröbner bases. Chapters 2 and 3 present algorithmic aspects
on D-modules. In particular, Chap. 2 deals with the notion of Gröbner bases in
D-modules and their applications to Bernstein–Sato polynomials. An introduction
to algorithms for D-modules with Quiver D-modules is also given in Chap. 3.
Another aspect of Gröbner bases theory for noncommutative associative algebras is
given in Chap. 4. A generalization of noncommutative Gröbner bases without a
monomial order and a link between the theory of Gröbner bases and rewriting
theory will be also explained. Finally, an application of Gröbner bases to the
computation of free resolutions for associative algebras will be given. Chapter 5
will conclude this part with applications of the theory Gröbner bases to computa-
tional algebraic statistics.

Quivers and applications. The lectures of this part will be devoted to a geometric
application of quivers. In particular, the geometry of the moduli spaces of mero-
morphic connections on P

1 with irregular singularities is one of the subjects which
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has been developed recently, and this is the main theme of this part. Chapters 6 and
7 will provide introduction to representations of quivers and quiver varieties. There
are some results known by the experts but never explained in the literature. In
Chap. 8, the so-called additive Deligne–Simpson problem will be presented
including some background materials. Some known results due to Crawley-Boevey
and the author himself will also be explained. Geometric aspects of this problem
with some recent development will be given in the final chapter (Chap. 9), where
the author will recall necessary backgrounds from quiver varieties and symplectic
geometry.
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Kobe, Japan Nobuki Takayama
February 2018

Acknowledgements Several chapters presented in this volume were exposed at the Kobe—Lyon
Summer School in Mathematics in July 2015 on the theme On Quivers: Computational aspects
and Geometric applications. We would like to mention the following supports for the Summer
School: Kobe University, Université Claude Bernard Lyon 1, JSPS Grant-in-aid (S) 24224001
(PI: Masa-Hiko SAITO), JSPS Grant-in-aid (B) 25287018 (PI: Nobuki TAKAYAMA),
LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, Institut Camille Jordan, UMR
5208, Lyon.

Preface vii



Contents

Part I First Algebraic Byway: Gröbner Bases

1 From Analytical Mechanics Problems to Rewriting Theory
Through M. Janet’s Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Kenji Iohara and Philippe Malbos

2 Gröbner Bases in D-Modules: Application to Bernstein-Sato
Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Rouchdi Bahloul

3 Introduction to Algorithms for D-Modules with Quiver
D-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Hiromasa Nakayama and Nobuki Takayama

4 Noncommutative Gröbner Bases: Applications
and Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Philippe Malbos

5 Introduction to Computational Algebraic Statistics . . . . . . . . . . . . . . 185
Satoshi Aoki

Part II Second Algebraic Byway: Quivers

6 Introduction to Representations of Quivers . . . . . . . . . . . . . . . . . . . 215
Kenji Iohara

7 Introduction to Quiver Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Yoshiyuki Kimura

8 On Additive Deligne–Simpson Problems . . . . . . . . . . . . . . . . . . . . . . 271
Kazuki Hiroe

9 Applications of Quiver Varieties to Moduli Spaces
of Connections on PP

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Daisuke Yamakawa

ix



Contributors

Satoshi Aoki Department of Mathematics, Graduate School of Science, Kobe
University, Kobe, Japan

Rouchdi Bahloul Université Lyon, Université Claude Bernard Lyon 1,
CNRS UMR 5208, Institut Camille Jordan, Villeurbanne, France

Kazuki Hiroe Faculty of Mathematics and Informatics, Faculty of Science, Chiba
University, Chiba, Japan

Kenji Iohara Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR
5208, Institut Camille Jordan, Villeurbanne, France

Yoshiyuki Kimura Faculty of Liberal Arts and Sciences, Osaka Prefecture
University, Osaka, Japan

Philippe Malbos Université Lyon, Université Claude Bernard Lyon 1,
CNRS UMR 5208, Institut Camille Jordan, Villeurbanne, France

Hiromasa Nakayama Department of Mathematics, Tokai University, Hiratsuka,
Japan

Nobuki Takayama Department of Mathematics, Graduate School of Science,
Kobe University, Kobe, Japan

Daisuke Yamakawa Department of Mathematics, Faculty of Science Division I,
Tokyo University of Science, Tokyo, Japan

xi



Part I
First Algebraic Byway: Gröbner Bases



Chapter 1
From Analytical Mechanics Problems
to Rewriting Theory Through M. Janet’s
Work

Kenji Iohara and Philippe Malbos

1 Introduction

This chapter is devoted to a survey of the historical background of Gröbner bases for
D-modules and linear rewriting theory largely developed in algebra throughout the
twentieth century and to present deep relationships between them. Completionmeth-
ods are the main streams for these computational theories. In the theory of Gröbner
bases, they were motivated by algorithmic problems in elimination theory such as
computations in quotient polynomial rings modulo an ideal, manipulating algebraic
equations, and computing Hilbert series. In rewriting theory, they were motivated
by computation of normal forms and linear bases for algebras and computational
problems in homological algebra.

In this chapter, we present the seminal ideas of the French mathematician
M. Janet on the algebraic formulation of completion methods for polynomial sys-
tems. Indeed, the problem of completion already appears in Janet’s 1920 thesis [47],
which proposed an original approach by formal methods in the study of systems of
linear partial differential equations, PDE systems for short. The corresponding con-
structions were formulated in terms of polynomial systems, but without the notions
of ideal and Noetherian induction. These two notions were introduced by Noether in
1921 [68] for commutative rings.

Thework ofM. Janet was forgotten for about half of a century. It was rediscovered
by Schwarz in 1992 in [81]. Our exposition in this chapter does not follow the
historical order. The first section deals with the problems that motivate the PDE
study undertaken by M. Janet. In Sect. 3, we present completion for monomial PDE
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4 K. Iohara and P. Malbos

systems as introduced by Janet in his monograph [51]. This completion used an
original division procedure on monomials. In Sect. 4, we present an axiomatization
of this Janet notion of division, called involutive division, due to V. P. Gerdt. The
last two sections concern the case of polynomial PDE systems, with M. Janet’s
completion method used to reduce a linear PDE system to a canonical form and the
axiomatization of the reductions involved in terms of rewriting theory.

1.1 From Analytical Mechanics Problems to Involutive
Division

1.1.1 From Lagrange to Janet. The analysis of linear PDE systems was mainly
motivated in eighteenth century by the desire to solve problems of analytical mechan-
ics. The seminal work of J.-L. Lagrange gave the first systematic study of PDE
systems launched by such problems. The case of PDE of one unknown function of
several variables has been treated by J. F. Pfaff. The Pfaff problem will be recalled
in Sect. 2.1. This theory was developed in two different directions: toward the general
theory of differential invariants and the existence of solutions under given initial con-
ditions. The differential invariants approach will be discussed in Sects. 2.1 and 2.1.4.
The question of the existence of solution satisfying some initial conditions was for-
mulated in the Cauchy–Kowalevsky theorem recalled in Sect. 2.1.3.

1.1.2 Exterior Differential Systems. Following the work of H. Grassmann in 1844
which did set up the rules of exterior algebra computations, É.Cartan introduced exte-
rior differential calculus in 1899. This algebraic calculus allowed him to describe
a PDE system by an exterior differential system that is independent of the choice
of coordinates. This did lead to the so-called Cartan–Kähler theory, reviewed in
Sect. 2.2. We will present a geometrical property of involutivity on exterior differ-
ential systems in Sect. 2.2.6, which motivates the formal methods introduced by M.
Janet for the analysis of linear PDE systems.

1.1.3 Generalizations of the Cauchy–Kowalevsky Theorem. Another origin of
the work of M. Janet is the Cauchy–Kowalevsky theorem that gives the initial con-
ditions of solvability of a family of PDE systems that we describe in Sect. 2.1.3.
É. Delassus, C. Riquier, and M. Janet attempted to generalize this result to a wider
class of linear PDE systems which in turn led them to introduce the computation of
a notion of normal form for such systems.

1.1.4 The Janet Monograph. Section3 presents the historical work that motivated
M. Janet to introduce an algebraic algorithm in order to compute normal form of
linear PDE systems. In particular, we recall the problem of computation of inver-
sion of differentiation introduced by M. Janet in his monograph � Leçons sur les
systèmes d’équations aux dérivées partielles � on the analysis of linear PDE sys-
tems, published in 1929 [51]. Therein, M. Janet introduced formal methods based
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on polynomial computations for analysis of linear PDE systems. He developed an
algorithmic approach for analyzing ideals in the polynomial ring K[ ∂

∂x1
, . . . , ∂

∂xn
]

of differential operators with constant coefficients. Having the ring isomorphism
between this ring and the ring K[x1, . . . , xn] of polynomials with n variables in
mind, M. Janet gave its algorithmic construction in this latter ring. He began by
introducing some remarkable properties of monomial ideals. In particular, he recov-
ered Dickson’s Lemma [17], assertion that monomial ideals are finitely generated.
This property is essential for the Noetherian properties on the set of monomials. Note
that M. Janet was not familiar with the axiomatization of the algebraic structure of
ideals and the property of Noetherianity already introduced by Noether in [68] and
[69]. Note also that the Dickson Lemma was published in 1913 in a paper on number
theory in an American journal. Due to the First WorldWar, it took a long time before
these works became accessible to the French mathematical community. Janet’s alge-
braic constructions given in his monograph will be recalled in Sect. 3 for monomial
systems and in Sect. 5 for polynomial systems.

1.1.5 Janet’s Multiplicative Variables. The computations on monomial and poly-
nomial ideals carried out byM. Janet are basedon thenotionofmultiplicative variable
that he introduced in his thesis [47]. Given an ideal generated by a set of monomi-
als, he distinguished the monomials contained in the ideal and those contained in
the complement of the ideal. The notions of multiplicative and non-multiplicative
variables appear in order to stratify these two families of monomials. We will recall
this notion of multiplicativity of variables in Sect. 3.1.9. This leads to a refinement
of the classical division on monomials, nowadays called Janet’s division.

1.1.6 Involutive Division and Janet’s Completion Procedure. The notion of mul-
tiplicative variable is local, in the sense that it is defined with respect to a subset U of
the set of all monomials. A monomial u in U is said to be a Janet divisor of a mono-
mialw with respect toU , ifw = uv and all variables occurring in v are multiplicative
with respect to U . In this way, we distinguish the set coneJ (U) of monomials having
a Janet divisor in U , calledmultiplicative or involutive cone of U , and the set cone(U)

of multiple of monomials in U for the classical division. The Janet division being
a refinement of the classical division, the set coneJ (U) is a subset of cone(U). M.
Janet called a set of monomials U complete when this inclusion is an equality.

To a monomial PDE system (�) of the form

∂α1+...+αnϕ

∂xα1
1 . . . ∂xαn

n
= fα(x1, x2, . . . , xn),

where (α1, . . . ,αn) belongs to a subset I of N
n , M. Janet associated the set of

monomials
lm(�) = {xα1

1 . . . xαn
n | (α1, . . . ,αn) ∈ I }.

The compatibility conditions of the system (�) correspond to the factorizations of the
monomials ux in coneJ (lm(�)), where u is in lm(�) and x is a non-multiplicative



6 K. Iohara and P. Malbos

variable of u with respect to lm(�), as explained in Sect. 3.3.1. By definition, for any
monomial u in lm(�) and x non-multiplicative variable of u with respect to lm(�),
the monomial ux admits such a factorization if and only if lm(�) is complete, see
Proposition 3.2.5.

The main procedure presented in Janet’s monograph [51] completes in a finite
number of operations a finite set of monomials U to a complete set of monomials ˜U
that contains U . This procedure consists in analyzing all the local defects of com-
pleteness, by adding all the monomials ux where u in U and x is a non-multiplicative
variable for u with respect to U . This procedure will be recalled in Sect. 3.2.9. A gen-
eralization of this procedure to any involutive division was given by Gerdt in [25],
and is recalled in Sect. 4.2.12.

Extending this procedure to a set of polynomials, M. Janet applied it to linear PDE
systems, giving a procedure that transforms a linear PDE system into a complete
PDE system with the same set of solutions. This construction is given in Sect. 5.6. In
Sect. 6, we present such a procedure for an arbitrary involutive division given by V.
P. Gerdt and Blinkov in [27] and its relation to the Buchberger completion procedure
in commutative polynomial rings, [7].

1.1.7 The Space of Initial Conditions. In order to stratify the complement of the
involutive cone coneJ (U), M. Janet introduced the notion of complementary mono-
mial, see Sect. 3.1.13.With this notion, themonomials that generate this complement
in a such a way that the involutive cone of U and the involutive cone of the set U� of
complementary monomials form a partition of the set of all monomials, see Propo-
sition 3.2.2.

For each complementary monomial v in lm(�)�, each analytic function in the
multiplicative variables of v with respect to lm(�)� provides an initial condition of
the PDE system (�) as stated by Theorem 3.3.3.

1.1.8 Polynomial Partial Differential Equations Systems. In Sect. 5, we present
the analysis of polynomial PDE systems as Janet [51]. To deal with polynomials, he
defined some total orders on the set of derivatives, corresponding to total orders on
the set ofmonomials.We recall them in Sect. 5.1. The definitions onmonomial orders
given byM. Janet clarified the same notion introduced previously by Riquier in [74].
In particular, hemademore explicit the notion of parametric and principal derivatives
in order to distinguish the leading derivative in a polynomial PDE. In this way, he
extended the algorithms for monomial PDE systems to the case of polynomial PDE
systems. In particular, using these notions, he defined the property of completeness
for polynomial PDE systems. Namely, a polynomial PDE system is complete if the
associated set of monomials corresponding to leading derivatives of the system is
complete. Moreover, M. Janet extended the notion of complementary monomials to
define the notion of initial condition for a polynomial PDE system as in themonomial
case.

1.1.9 Initial Conditions. In this way, the notion of completeness provides a suitable
framework to discuss the existence and the uniqueness of the initial conditions for a
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linear PDE system. M. Janet proved that if a linear polynomial PDE system of the
form

Diϕ =
∑

j

ai, j Di, jϕ, i ∈ I,

with one unknown function ϕ is such that all the functions ai, j are analytic in a
neighborhood of a point P in C

n and if it is complete with respect to some total
order, then it admits at most one analytic solution satisfying the initial condition
formulated in terms of complementary monomials, see Theorems 5.3.4 and 5.3.6.

1.1.10 Integrability Conditions. A linear polynomial PDE system of the above
form is said to be completely integrable if it admits an analytic solution for any given
initial condition.M. Janet gave an algebraic characterization of complete integrability
by introducing integrability conditions formulated in terms of factorization of leading
derivatives of the PDEby non-multiplicative variables. These integrability conditions
are stated explicitly in Sect. 5.4.4 as generalization to the polynomial situation of the
integrability conditions formulated above for monomial PDE systems in Sect. 3.3.
M. Janet proved that a linear polynomial PDE system is completely integrable if and
only if every integrability condition is trivially satisfied, as stated in Theorem 5.4.7.

1.1.11 Janet’s Procedure of Reduction of Linear PDE Systems to a Canoni-
cal Form. In order to extend algorithmically the Cauchy–Kowalevsky theorem on
the existence and uniqueness of solutions of initial value problems as presented
in Sect. 2.1.3, M. Janet considered normal forms of linear PDE systems with respect
to a suitable total order on derivatives, satisfying some analytic conditions on coeffi-
cients and a complete integrability condition on the system, as defined in Sect. 5.5.2.
Such normal forms of PDE systems are called canonical by M. Janet.

Procedure 7 is Janet’s method for deciding if a linear PDE system can be trans-
formed into a completely integrable system. If the system cannot be reduced to a
canonical form, the procedure returns the obstructions to such a reduction. Janet’s
procedure depends on a total order on derivatives of unknown functions of the PDE
system. For this purpose, M. Janet introduced a general method to define a total order
on derivatives using a parametrization of a weight order on variables and unknown
functions, as explained in Sect. 5.1.5. The Janet procedure uses a specific weight
order called canonical and defined in Sect. 5.6.2.

The first step of Janet’s method consists in applying autoreduction procedure,
defined in Sect. 5.6.4, in order to reduce any PDE of the system with respect to the
total order on derivatives. Namely, two PDE of the system cannot have the same
leading derivative, and any PDE of the system is reduced with respect to the leading
derivatives of the others PDE, as specified in Procedure 5.
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The second step is the completion procedure, Procedure 6. In it, the set of leading
derivatives of the system defines a complete set of monomials in the sense given
in Sect. 5.3.2.

Having transformed the PDE system to an autoreduced and complete system, one
can look at its integrability conditions. M. Janet showed that this set of integrability
conditions is a finite set of relations that do not contain principal derivatives, as
explained in Sect. 5.4.4. Hence, these integrability conditions are J -normal forms
and uniquely defined. By Theorem 5.4.7, if all of these normal forms are trivial,
then the system is completely integrable. Otherwise, any nontrivial condition in the
set of integrability conditions that contains only unknown functions and variables
imposes a relation on the initial conditions of the system. If there is no such relation,
the procedure is applied again on the PDE system completed by all the integrability
conditions. Note that this procedure depends on the Janet division and on a total
order on the set of derivatives.

By this algorithmic method, M. Janet did generalize in certain cases the Cauchy–
Kowalevsky theorem at the time where the algebraic structures have not been intro-
duced to perform computations with polynomial ideals. This is pioneering work in
the field of formal approaches to analysis of PDE systems. Algorithmic methods for
dealing with polynomial ideals were developed throughout the twentieth century and
extended to a wide range of algebraic structures. In the next subsection, we present
some milestones on these formal themes in mathematics.

1.2 Constructive Methods and Rewriting in Algebra
Through the Twentieth Century

The constructions developed by M. Janet in his formal theory of linear partial differ-
ential equation systems are based on the structure of ideals that he called module of
forms. This notion corresponds to those introduced previously by Hilbert in [43] with
the terminology of algebraic form. Notice that Gunther studied such a structure in
[39]. The axiomatization of the notion of ideal in an arbitrary ring is due to Noether
[68]. As we will explain in this chapter, M. Janet introduced algorithmic methods to
compute a family of generators of an ideal having the involutive property and called
an involutive basis. This property is used to obtain a normal form of linear partial
differential equation systems.

Janet’s computation of involutive bases is based on a refinement of classical poly-
nomial division, called involutive division. He defined a division that is suitable for
reduction of linear partial differential equation systems. Thereafter, other involutive
divisions were studied, in particular, by Thomas [86] and by Pommaret [72]; we refer
to Sect. 4.3 for a discussion on these divisions.

The main purpose is to complete a generating family of an ideal to an involutive
basis with respect to a given involutive division. This completion process is quite
similar to those introduced bymeans of the classical division in the theory of Gröbner
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bases. In fact, involutive bases appear to be particular cases of Gröbner bases. The
principle of completion has been developed independently in rewriting theory, which
proposes a combinatorial approach to equivalence relations motivated by several
computational and decision problems in algebra, computer science, and logic.

1.2.1 Some Milestones in Algebraic Rewriting and Constructive Algebra. The
main results in the work of M. Janet rely on constructive methods in linear algebra
using the principle of computing normal forms by rewriting and the principle of
completion of a generating set of an ideal. These two principles have been developed
through the twentieth century in many algebraic contexts with different formulations
and in several instances. We review below some important milestones in this long
and rich history from T. Seki to the more recent developments.

1683. Seki introduced the notion of resultant and developed the notion of deter-
minant to express the resultant. He also made progress in elimination theory in
the Kai-fukudai-no-hō, see, e.g., [94].

1840. Sylvester studied the resultant of two polynomials in [85] and gave an exam-
ple for two quadratic polynomials.

1882. Kronecker [54] gave the first result in elimination theory using this notion.

1886. Weierstrass proved a fundamental result called preparation theorem on the
factorization of analytic functions by polynomials. As an application, he obtained
a division theorem for rings of convergent series [93].

1890. Hilbert proved that any ideal in a ring of commutative polynomials in a finite
set of variables over a field or over the ring of integers is finitely generated [43].
This is the first formulation of the Hilbert basis theorem, which states that every
polynomial ring over a Noetherian ring is Noetherian.

1913. In a paper on number theory, L. E. Dickson proved a monomial version of
the Hilbert basis theorem by a combinatorial method [17, Lemma A].

1913. In a series of forgotten papers,N.Günther developed algorithmic approaches
for polynomials rings [38–40]. A review of Günther’s theory can be found in [41].

1914. Dehn described the word problem for finitely presented groups [16]. Using
systems of transformations rules, A. Thue studied the problem for finitely pre-
sented semigroups [87]. It was only much later, in 1947, that the problem
for finitely presented monoids was shown to be undecidable, independently by
Post [73] and Markov [64, 65].

1916. Macaulay was one of the pioneers in commutative algebra. In his book
The algebraic theory of modular systems [59], following the fundamental Hilbert
basis theorem, he initiated an algorithmic approach to treat generators of polyno-
mial ideals. In particular, he introduced the notion of H-basis corresponding to a
monomial version of Gröbner bases.
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1920. Janet defended his doctoral thesis [47], which presents a formal study of
systems of partial differential equations following works of Ch. Riquier and É.
Delassus. In particular, he analyzed completely integrable systems and Hilbert
functions of polynomial ideals.

1921. In her seminal paper, Idealtheorie in Ringbereichen [68], Noether laid the
foundation of general commutative ring theory, and gave one of the first general
definitions of a commutative ring. She also formulated the Finite Chain Theorem
[68, Satz I, Satz von der endlichen Kette].

1923. Noether formulated in [69, 70] concepts of elimination theory in the lan-
guage of ideals that she had introduced in [68].

1926. Hermann, a student of Noether [42], initiated purely algorithmic approaches
to ideals, such as the ideal membership problem and primary decomposition ide-
als. Thiswork is a fundamental contribution to the emergence of computer algebra.

1927. Macaulay showed in [60] that the Hilbert function of a polynomial ideal I is
equal to the Hilbert function of the monomial ideal generated by the set of leading
monomials of the elements in I with respect a monomial order. As a consequence,
the coefficients of the Hilbert function of a polynomial ideal are polynomial for
sufficiently big degree.

1937. Based on early works by Ch. Riquier and Janet, in [86] J. M. Thomas refor-
mulated in the algebraic language of B. L. van der Waerden, Moderne Algebra
[89, 90], the theory of normal forms of systems of partial differential equations.

1937. In [32], W. Gröbner exhibited the isomorphism between the ring of polyno-
mials with coefficients in an arbitrary field and the ring of differential operators
with constant coefficients, see Proposition 3.1.2. The identification of these two
rings was used before in the algebraic study of systems of partial differential
equations, but without being explicit.

1942. In a seminal paper on rewriting theory, M. Newman presented rewriting as
a combinatorial approach to study equivalence relations [66]. He proved a funda-
mental rewriting result stating that under a termination hypothesis, the confluence
property is equivalent to local confluence.

1949. In his monographModerne algebraische Geometrie. Die idealtheoretischen
Grundlagen [33], W. Gröbner surveyed algebraic computation on ideal theory
with applications to algebraic geometry.

1962. Shirshov introduced in [83] an algorithmicmethod to compute normal forms
in a free Lie algebra with respect to a family of elements of the Lie algebra
satisfying a confluence property. The method is based on a completion procedure.
He also proved a version of Newman’s lemma for Lie algebras, called composition
lemma, and deduced a constructive proof of the Poincaré–Birkhoff–Witt theorem.
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1964. Hironaka introduced in [44] a division algorithm and proposed the notion of
standard basis, analogous to the notion of Gröbner basis, for rings of power series
in order to solve problems of resolution of singularities in algebraic geometry.

1965. Under the supervision ofW. Gröbner, B. Buchberger developed in his Ph.D.
thesis an algorithmic theory of Gröbner bases for commutative polynomial alge-
bras [7, 8, 10]. Buchberger gave a characterization of Gröbner bases in terms of
S-polynomials as well as an algorithm to compute such bases, with a complete
implementation in the assembler language of the computer ZUSE Z 23 V.

1967. Knuth and Bendix defined in [53] a completion procedure that completes
with respect to a termination a set of equations in an algebraic theory into a
confluent term rewriting system. The procedure is similar to Buchberger’s com-
pletion procedure. We refer the reader to [9] for a historical account of critical
pair/completion procedures.

1972. Grauert introduced in [30] a generalization ofWeierstrass’s preparation divi-
sion theorem in the language of Banach algebras.

1973. Nivat formulated a critical pair lemma for string rewriting systems and
proved that for a terminating rewriting system, the local confluence is decidable
[67].

1976, 1978. Bokut in [5] and Bergman in [4] extended the Gröbner bases and
Buchberger’s algorithm to associative algebras. They obtained the confluence
Newman Lemma for rewriting systems in free associative algebras compatible
with a monomial order, called, respectively, Diamond Lemma for ring theory and
Composition Lemma.

1978. Pommaret introduced in [72] a global involutive division simpler than those
introduced by M. Janet.

1980. Schreyer in his Ph.D. thesis [80] gave a method that computes syzygies in
commutative multivariate polynomial rings using the division algorithm, see [18,
Theorem 15.10].

1980. Huet [45] gave a proof ofNewman’s lemmausing aNoetherianwell-founded
induction method.

1985. Gröbner basis theory was extended to Weyl algebras by A. Galligo in [24],
see also [79].

1997. Gerdt and Blinkov [25, 27] introduced the notion of involutive monomial
division and its axiomatization.

1999, 2002. Faugère developed efficient algorithms for computing Gröbner bases,
algorithm F4 [20], then an algorithm F5 [21].

2005. Gerdt [26] presented and analyzed an efficient involutive algorithm for com-
puting Gröbner bases.

2012. Bächler, Gerdt, Lange-Hegermann, and Robertz algorithmized in [2] the
Thomas decomposition of algebraic and differential systems.
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1.3 Conventions and Notations

The set of nonnegative integers is denoted byN. In this chapter,K[x1, . . . , xn]denotes
the polynomial ring on the variables x1, . . . , xn over a field K of characteristic zero.
For a subset G of K[x1, . . . , xn], we will denote by Id(G) the ideal of K[x1, . . . , xn]
generated by G. A polynomial is either zero or it can be written as a finite sum of
nonzero terms, each term being the product of a scalar in K by a monomial.

1.3.1 Monomials. We denote by M(x1, . . . , xn) the set of monomials in the ring
K[x1, . . . , xn]. For a subset I of {x1, . . . , xn}wewill denote byM(I ) the set ofmono-
mials in M(x1, . . . , xn) whose variables lie in I . A monomial u in M(x1, . . . , xn)
is written as u = xα1

1 · · · xαn
n , were the αi are nonnegative integers. The integer αi

is called the degree of the variable xi in u, it will be also denoted by degi (u). For
α = (α1, . . . ,αn) in N

n , we denote xα = xα1
1 · · · xαn

n and |α| = α1 + · · · + αn .
For a finite subset U ofM(x1, . . . , xn) and 1 � i � n, we denote by degi (U) the

largest degree in the variable xi of the monomials in U , that is

degi (U) = max
(

degi (u) | u ∈ U
)

.

We call the cone of a subset U ofM(x1, . . . , xn) the set of all multiples of monomials
in U , defined by

cone(U) =
⋃

u∈U
uM(x1, . . . , xn) = { uv | u ∈ U , v ∈ M(x1, . . . , xn) }.

1.3.2 Homogeneous Polynomials. A homogenous polynomial in K[x1, . . . , xn] is
a polynomial for which all nonzero terms have the same degree. A homogenous
polynomial is of degree p if all its nonzero terms have degree p. We denote by
K[x1, . . . , xn]p the space of homogeneous polynomials of degree p. The dimension
of this space is given by the formula:

� p
n := dim

(

K[x1, . . . , xn]p
) = (p + 1)(p + 2) · · · (p + n − 1)

1 · 2 · · · · · (n − 1)
.

1.3.3 Monomial Order. Recall that amonomial order onM(x1, . . . , xn) is a relation
� on M(x1, . . . , xn) satisfying the following three conditions:

(i) � is a total order on M(x1, . . . , xn),
(ii) � is compatible with multiplication, that is, if u � u′, then uw � u′w for any

monomial w inM(x1, . . . , xn),
(iii) � is awell-order onM(x1, . . . , xn), that is, every non-empty subset ofM(x1, . . . ,

xn) has a smallest element with respect to �.

The leading term, leading monomial, and leading coefficient of a polynomial f
of K[x1, . . . , xn], with respect to a monomial order �, will be denoted by lt�( f ),
lm�( f ), and lc�( f ), respectively. For a set F of polynomials in K[x1, . . . , xn], we
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will denote by lm�(F) the set of leading monomials of the polynomials in F . For
simplicity, we will use notations lt( f ), lm( f ), lc( f ), and lm(F) if there is no danger
of confusion.

2 Exterior Differential Systems

Motivated by problems in analytical mechanics, Euler (1707–1783) and Lagrange
(1736–1813) initiated the so-called variational calculus, cf. [57], which led to the
problem of solving partial differential equations, PDEs for short. In this section, we
briefly present the evolution of this theory to serve as a guide to M. Janet’s contribu-
tions.We follow the history to introduce material on exterior differential systems and
various PDE problems. For a deeper discussion of the theory of differential equations
and the Pfaff problem, we refer the reader to [22, 92] or [11].

2.1 Pfaff’s Problem

2.1.1 Partial Differential Equations for One Unknown Function. In 1772,Lagrange [56]
considered a PDE of the form

F(x, y,ϕ, p, q) = 0, with p = ∂ϕ

∂x
and q = ∂ϕ

∂y
, (2.1)

i.e., a PDE for one unknown function ϕ of two variables x and y. Lagrange’s method
to solve this PDE can be summarized as follows.

(i) Express the PDE (2.1) in the form

q = F1(x, y,ϕ, p), with p = ∂ϕ

∂x
and q = ∂ϕ

∂y
. (2.2)

(ii) Ignore for the moment that p = ∂ϕ
∂x and consider the 1-form

� = dϕ − pdx − qdy = dϕ − pdx − F1(x, y,ϕ, p)dy,

where p is regarded as some (not yet fixed) function of x, y, and ϕ.
(iii) If there exist functions M and � of x, y, and ϕ satisfying M� = d�, then

�(x, y,ϕ) = C for some constant C . Solving this new equation, we obtain a
solution ϕ = ψ(x, y,C) to Eq. (2.2).

2.1.2 Pfaffian Systems. In 1814–15, Pfaff (1765–1825) [71] studied a PDE for one
unknown function of n variables; this work was then continued by Jacobi (1804–
1851) (cf. [46]). Recall that a PDE of any order is equivalent to a system of first-order
PDEs. Thus, we may only think of systems of first-order PDEs with m unknown
functions
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Fk
(

x1, . . . , xn,ϕ
1, . . . ,ϕm,

∂ϕa

∂xi
(1 � a � m, 1 � i � n)

) = 0, for 1 � k � r.

Introducing new variables pai , the system lives on the space with coordinates
(xi ,ϕa, pai ) and is given by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Fk(xi ,ϕa, pai ) = 0,

dϕa −
n
∑

i=1

pai dxi = 0,

dx1 ∧ · · · ∧ dxn �= 0.

Note that the last conditionmeans that the variables x1, . . . , xn are independent. Such
a system is called a Pfaffian system. One is interested in the questions whether this
system admits a solution or not, and if there exists a solution, if it is unique under
some conditions. We will refer to these as Pfaff’s problems.
2.1.3 Cauchy–Kowalevsky’s Theorem. Anaive approach toPfaff’s problems,with
applications tomechanics inmind, is the question of the initial conditions. In series of
articles published in 1842, A. Cauchy (1789–1857) studied the system of first-order
PDEs:

∂ϕa

∂t
= fa(t, x1, . . . , xn) +

m
∑

b=1

n
∑

i=1

f ia,b(t, x1, . . . , xn)
∂ϕb

∂xi
, for 1 � a � m,

where fa, f ia,b and ϕ1, . . . ,ϕm are functions of n + 1 variables t, x1, . . . , xn .
Kowalevsky (1850–1891) [91] in 1875 considered systems of PDEs of the following
form: for some ra ∈ Z>0 (1 � a � m),

∂raϕa

∂tra
=

m
∑

b=1

ra−1
∑

j=0
j+|α|�ra

f j,α
a,b (t, x1, . . . , xn)

∂ j+|α|ϕb

∂t j∂xα
,

where f j,α
a,b and ϕ1, . . . ,ϕm are functions of n + 1 variables t, x1, . . . , xn , and

where for a multi-index α = (α1, · · · ,αn) in (Z�0)
n , we set |α| =∑n

i=1 αi and
∂xα = ∂xα1

1 · · · ∂xαn
n . They showed that under the hypothesis of analyticity of the

coefficients, such a system admits a unique analytic local solution satisfying a given
initial condition. This statement is now called the Cauchy–Kowalevsky theorem.

2.1.4 Completely Integrable Systems. A first geometric approach to the above
problem was undertaken over by Frobenius (1849–1917) [23] and independently by
Darboux (1842–1917) [15]. Let X be a differentiable manifold of dimension n. We
consider the Pfaffian system

ωi = 0 1 � i � r,
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where ωi are 1-forms defined on a neighborhood V of a point x in X . Suppose that
the family

{(ωi )y}1�i�r ⊂ T ∗
y X

is linearly independent for all y in V . For 0 � p � n, let us denote by �
p
X (V ) the

space of differentiable p-forms on V . A p-dimensional distribution D on X is a
subbundle of T X with fiber of dimension p. A distributionD is involutive if, for any
vector fields ξ and η taking values in D, the Lie bracket

[ξ, , η] := ξη − ηξ

takes values inD as well. Such a Pfaffian system is said to be completely integrable.
G. Frobenius and G. Darboux showed that the ideal I of

⊕n
p=0 �

p
X (V ), generated

by the 1-forms ω1, . . . ,ωr , is a differential ideal, i.e., d I ⊂ I , if and only if the
distribution D on V defined as the annihilator of ω1, . . . ,ωr is involutive.

2.2 The Cartan–Kähler Theory

Here, we give a brief historically oriented exposition of the so-called Cartan–Kähler
theory. In particular, we will present the notion of system in involution. For the
original treatment by the founders of the theory, we refer the reader to [14, 52],
modern introductions are provided in [6, 62], and a quick survey can be found
in [95, Appendix].

2.2.1 Differential Forms. Grassmann (1809–1877) [29] introduced in 1844 the
first equation-based formulation of the structure of exterior algebra with the anti-
commutativity rule

x ∧ y = −y ∧ x .

Using this setting, Cartan (1869–1951) [11] defined in 1899 the exterior differential
and differential p-forms. He showed that these notions are invariant under arbitrary
coordinate transformation. Thanks to these differential structures, several results
obtained in the nineteenth century were reformulated in a clear manner.

2.2.2 Exterior Differential Systems. An exterior differential system � is a finite
set of homogeneous differential forms, i.e., � ⊂⋃p �

p
X . Cartan [12], in 1901, stud-

ied exterior differential systems generated by 1-forms, i.e., Pfaffian systems. Later,
Kähler (1906–2000) [52] generalizedCartan’s theory to anydifferential ideal I gener-
ated by an exterior differential system. For this reason, the general theory on exterior
differential systems is nowadays called the Cartan–Kähler theory.

In the rest of this subsection, we discuss briefly the existence theorem for such
a system. Since the argument developed here is local and we need the Cauchy–
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Kowalevsky theorem, we assume that all functions are analytic in x1, . . . , xn unless
otherwise stipulated.

2.2.3 Integral Elements. Let � be an exterior differential system on a real analytic
manifold X of dimension n such that the ideal generated by � is a differential ideal.
For 0 � p � n, set� p = � ∩ �

p
X .We fix x in X . For p > 0, a pair (Ep, x), with a p-

dimensional vector subspace Ep ⊂ Tx X , is called an integral p-element if ω|Ep = 0
for any ω in �

p
x := � p ∩ �

p
X,x , where �

p
X,x denotes the space of differential p-

forms defined on a neighborhood of x in X . We denote the set of integral elements
of dimension p by I� p

x .
An integral manifold Y is a submanifold of X whose tangent space TyY at each

point y in Y is an integral element. Since the exterior differential system defined by
� is completely integrable, there exists independent r -functions ϕ1(x), . . . ,ϕr (x),
called integrals of motion or first integrals, defined on a neighborhood V of a point
x ∈ X such that their restrictions on V ∩ Y are constants.

The polar space H(Ep) of an integral element Ep of� at the point x is the vector
subspace of Tx X generated by the vectors ξ ∈ Tx X such that Ep + Rξ is an integral
element of �.

2.2.4 Regular Integral Elements. Let E0 be the real analytic subvariety of X
defined as the zeros of �0 and let U be the subset of smooth points. A point in
E0 is called integral point. A tangent vector ξ in Tx X is called a linear integral ele-
ment if ω(ξ) = 0 for any ω ∈ �1

x with x ∈ U . We define inductively the properties
called “regular” and “ordinary” as follows:

(i) The zeroth-order character is the integer s0 = maxx∈U {dimR�1
x }. A point x ∈

E0 is said to be regular if dimR�1
x = s0, and a linear integral element ξ ∈ Tx X

is called ordinary if x is regular.
(ii) Let E1 = Rξ, where ξ is an ordinary linear integral element. The first-order

character is the integer s1 satisfying s0 + s1 = maxx∈U {dim H(E1)}. The ordi-
nary integral 1-element (E1, x) is said to be regular if dim H(E1) = s0 + s1.
An integral 2-element (E2, x) is called ordinary if it contains at least one regular
linear integral element.

(iii) Assume that all these concepts are defined up to (p − 1)th step and that s0 +
s1 + · · · + sp−1 < n − p + 1.
The pth-order character is the integer sp satisfying

p
∑

i=0

si = max
x∈U

{dim H(Ep)}.

An integral p-element (Ep, x) is said to be regular if

p
∑

i=0

si = dim H(Ep).

The integral p-element (Ep, x) is called ordinary if it contains at least one
regular integral element (Ep−1, x).
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Let h be the smallest positive integer such that
∑h

i=0 si = n − h. Then, there does not
exist an integral (h + 1)-element. The integer h is called the genus of the system �.
For 0 < p � h, one has

p−1
∑

i=0

si � n − p.

2.2.5 Theorem Let 0 < p � h be an integer.

(i) The case
∑p−1

i=0 si = n − p : let (Ep, x) be an ordinary integral p-element and
let Yp−1 be an integral manifold of dimension p − 1 such that (TxYp−1, x)
is a regular integral (p − 1)-element contained in (Ep, x). Then, there exists
a unique integral manifold Yp of dimension p containing Yp−1 such that
TxYp = Ep.

(ii) The case
∑p−1

i=0 si < n − p : let (Ep, x) be an integral p-element and let Yp−1

be an integral manifold of dimension p − 1 such that (TxYp−1, x) is a regular
integral (p − 1)-element contained in (Ep, x). Then, there is a one-to-one cor-

respondence between the set of real analytic functions Cω(Rp, R
n−p−∑p−1

i=0 si )

and the set of p-dimensional integral manifolds Yp containing Yp−1 such that
TxYp = Ep.

This theorem states that a given chain of ordinary integral elements

(E0, x) ⊂ (E1, x) ⊂ · · · ⊂ (Eh, x), dim Ep = p (0 � p � h),

one can inductively find an integral manifold Yp of dimension p such that Y0 = {x},
Yp−1 ⊂ Yp and TxYp = Ep. Notice that to obtain Yp from Yp−1, one applies the
Cauchy–Kowalevsky theorem to the PDE system defined by � p and the choice of
real analytic functions in the above statement provide a datum to define the integral
manifold Yp.

2.2.6 Systems in Involution. In many applications, the exterior differential systems
one considers admit p-independent variables x1, . . . , xp. In such a case, we are
only interested in the p-dimensional integral manifolds among which no additional
relation between x1, . . . , xp is imposed. In general, an exterior differential system �

for n − p unknown functions and p-independent variables x1, . . . , xp is said to be
in involution if it satisfies the two following conditions:

1. its genus is larger than or equal to p,
2. the defining equations of the generic ordinary integral p-element introduce no

linear relation among dx1, . . . , dxp.

2.2.7 Reduced Characters. Consider a familyF of integral elements of dimensions
1, 2, . . . , p − 1 than can be included in an integral p-element at a generic integral
point x ∈ X . Take a local chart with origin x . The reduced polar system H red(Ei ) of
an integral element at x is the polar system of the restriction of the exterior differential
system � to the submanifold



18 K. Iohara and P. Malbos

{x1 = x2 = · · · = xp = 0}.

The integers s ′
0, . . . , s

′
p−1, called the reduced characters, are defined in such a way

that s ′
0 + · · · + s ′

i is the dimension of the reduced polar system H red(Ei ) at a generic
integral element. For convenience, one sets s ′

p = n − p − (s ′
0 + · · · + s ′

p−1).
Let � be an exterior differential system of n − p unknown functions of

p-independent variables such that the ideal generated by � is a differential ideal.
É. Cartan showed that � is a system in involution iff the most general integral
p-element in F depends on s ′

1 + 2s ′
2 + · · · + ps ′

p independent parameters.

2.2.8 Recent Developments. In 1957, Kuranishi (1924 –) [55] considered the prob-
lem of the prolongation of a given exterior differential system and treated what É.
Cartan called total case. Here, M. Kuranishi as well as É. Cartan worked locally in
the analytic category. After an algebraic approach to the integrability was proposed
by Guillemin and Sternberg [34], in 1964, Singer and Sternberg, [84], in 1965 stud-
ied some classes of infinite-dimensional systems which can be treated even in the
C∞-category. In 1970s, with the aid of jet bundles and the Spencer cohomology,
Pommaret (cf. [72]) considered formally integrable involutive differential systems
generalizing the work of M. Janet, in the language of sheaf theory. For other geo-
metric aspects not using sheaf theory, see the books by Griffiths (1938-) [31], and
Bryant et al. [6].

3 Monomial PDE Systems

In this section, we present the method introduced byM. Janet under the name “calcul
inverse de la dérivation” in his monograph [51]. In [51, Chap. I], M. Janet considered
monomial PDE, that is, PDE of the form

∂α1+α2+···+αnϕ

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

= fα1α2...αn (x1, x2, . . . , xn), (3.1)

where ϕ is an unknown function and the fα1α2...αn are analytic functions of several
variables. By an algebraic method, he analyzed the solvability of such an equation,
namely, the existence and the uniqueness of an analytic solution ϕ of the system.
Notice that the analyticity condition guarantees the commutativity of partial differ-
entials operators. This property is crucial for the constructions that M. Janet carried
out in the ring of commutative polynomials. Note that the first example of PDE that
does not admit any solution was found by Lewy in the 1950s in [58].

3.1 Ring of Partial Differential Operators and
Multiplicative Variables

3.1.1 Historical Context. In the beginning of 1890s, following collaboration with
C.Méray (1835–1911), Riquier (1853–1929) initiated his research on finding normal
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forms of systems of (infinitely many) PDEs for finitely many unknown functions of
finitely many independent variables (see [75] and [76] for more details).

In 1894, Tresse [88] showed that such systems can be always reduced to systems
of finitely many PDEs. This is the first result on Noeterianity of a module over a ring
of differential operators. Based on this result, É. Delassus (1868–19..) formalized
and simplified Riquier’s theory. In these works, one already finds an algorithmic
approach for analyzing ideals of the ring K[ ∂

∂x1
, . . . , ∂

∂xn
].

It was Janet (1888–1983) who already in his thesis [47], published in 1920, had
realized that the latter ring is isomorphic to the ring of polynomials with n variables
K[x1, . . . , xn]. At that time, several abstract notions on rings were introduced by
E. Noether in Germany but by M. Janet in France was not familiar with them. It was
only in 1937 that W. Gröbner (1899–1980) proved this isomorphism.

3.1.2 Proposition [32, Sect. 2.] There exists a ring isomorphism

� : K[x1, . . . , xn] −→ K[ ∂

∂x1
, . . . ,

∂

∂xn
],

from the ring of polynomials in n variables x1, . . . , xn with coefficients in an arbitrary
field K to the ring of differential operators with constant coefficients.

3.1.3 Derivations and Monomials. M. Janet considers monomials in the variables
x1, . . . , xn and uses implicitly the isomorphism � of Proposition 3.1.2. To a mono-
mial xα = xα1

1 xα2
2 · · · xαn

n , he associates the differential operator

Dα := �(xα) = ∂|α|

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

.

In [51, Chap. I], M. Janet considered finite monomial PDE systems. The equations
are of the form (3.1) and since the system has a finitely many equations, the set of
monomials associated to it is finite. The first result of the monograph is a finiteness
result onmonomials stating that a sequence ofmonomials in which none is amultiple
of a preceding one is necessarily finite. M. Janet proved this result by induction on
the number of variables. We can formulate it as follows.

3.1.4 Lemma ([51, Sect. 7]) Let U be a subset ofM(x1, . . . , xn). If, for any mono-
mials u and u′ in U , the monomial u does not divide u′, then the set U is finite.

This result corresponds to Dickson’s Lemma [17], which asserts that every mono-
mial ideal of K[x1, . . . , xn] is finitely generated.

3.1.5 Stability of the Multiplication. M. Janet paid a special attention to families
ofmonomials with the following property. A subset ofmonomialU ofM(x1, . . . , xn)
is called multiplicatively stable if for any monomial u in M(x1, . . . , xn) such that
there exists u′ in U that divides u, one has that u is in U . In other words, the set U is
closed under multiplication by monomials inM(x1, . . . , xn).
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As a consequence of Lemma 3.1.4, if U is a multiplicatively stable subset of
M(x1, . . . , xn), then it contains only finitely many elements that are not multiples of
any other elements in U . Hence, there exists a finite subset U f of U such that for any
u in U , there exists u f in U f such that u f divides u.

3.1.6 Ascending Chain Condition. M. Janet observed another consequence of
Lemma 3.1.4: the ascending chain condition on multiplicatively stable monomial
sets, which he formulated as follows. Any ascending sequence of multiplicatively
stable subsets of M(x1, . . . , xn)

U1 ⊂ U2 ⊂ · · · ⊂ Uk ⊂ · · ·

is finite. This corresponds to the Noetherian property on the set of monomials in
finitely many variables.

3.1.7 Inductive Construction. Let us fix a total order on the variables xn > xn−1 >

· · · > x1. LetU be a finite subset ofM(x1, . . . , xn). Let us define, for every 0 � αn �
degn(U),

[αn] = {u ∈ U | degn(u) = αn }.

The family ([0], . . . , [degn(U)]) forms a partition of U . We define for every 0 �
αn � degn(U)

[αn] = {u ∈ M(x1, . . . , xn−1) | uxαn
n ∈ U }.

We set for every 0 � i � degn(U)

U ′
i =

⋃

0�αn�i

{u ∈ M(x1, . . . , xn−1) | there exists u′ ∈ [αn] such that u′|u }.

Finally, we set

Uk =
{

{ uxkn | u ∈ U ′
k }, if k < degn(U),

{ uxkn | u ∈ U ′
degn(U) }, if k � degn(U),

and M(U) = ⋃

k�0
Uk . By this inductive construction, M. Janet obtains the monomial

ideal generated by U . Indeed, M(U) coincides with the following set of monomial:

{ u ∈ M(x1, . . . , xn) | there exists u′ in Usuch that u′|u }.

3.1.8 Example. Consider the subset U = { x3x22 , x33 x21 } ofM(x1, x2, x3). We have

[0] = ∅, [1] = {x3x22 }, [2] = ∅, [3] = {x33 x21 }.

Hence,
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[0] = ∅, [1] = {x22 }, [2] = ∅, [3] = {x21 }.
The set M(U) is defined using of the following subsets:

U ′
0 = ∅, U ′

1 = {xα1
1 xα2

2 | α2 � 2}, U ′
2 = U ′

1, U ′
3 = {xα1

1 xα2
2 | α1 � 2 ou α2 � 2}.

3.1.9 Janet’s Multiplicative Variables [47, Sect. 7]. Let us fix a total order xn >

xn−1 > · · · > x1 on variables. Let U be a finite subset of M(x1, . . . , xn). For all
1 � i � n, we define the following subset of U :

[αi , . . . ,αn] = {u ∈ U | deg j (u) = α j for all i � j � n}.

That is, [αi , . . . ,αn] contains monomials of U of the form vxαi
i · · · xαn

n , with v in
M(x1, . . . , xi−1). The sets [αi , . . . ,αn] with αi , . . . ,αn in N form a partition of U .
Moreover, for all 1 � i � n − 1, we have [αi ,αi+1, . . . ,αn] ⊆ [αi+1, . . . ,αn] and
the sets [αi , . . . ,αn], where αi ∈ N, form a partition of [αi+1, . . . ,αn].

Given a monomial u in U , the variable xn is said to be multiplicative for u in the
sense of Janet if

degn(u) = degn(U).

For i � n − 1, the variable xi is said to bemultiplicative for u in the sense of Janet if

u ∈ [αi+1, . . . ,αn] and degi (u) = degi ([αi+1, . . . ,αn]).

We will denote by MultUJ (u) the set of multiplicative variables of u in the sense of
Janet with respect to the set U , also called J -multiplicative variables.

Note that, by definition, for any u and u′ in [αi+1, . . . ,αn], we have

{xi+1, . . . , xn} ∩ MultUJ (u) = {xi+1, . . . , xn} ∩ MultUJ (u′).

Accordingly, we will denote this set of multiplicative variables byMultUJ ([αi+1, . . . ,

αn]).
3.1.10 Example. Consider the subset U = {x2x3, x22 , x1} of M(x1, x2, x3) with the
order
x3 > x2 > x1. We have deg3(U) = 1; hence, the variable x3 is J -multiplicative
for x3x2 and not J -multiplicative for x22 and x1.

For α ∈ N, we have [α] = {u ∈ U | deg3(u) = α}, hence

[0] = {x22 , x1}, [1] = {x2x3}.

We have deg2(x
2
2 ) = deg2([0]), deg2(x1) �= deg2([0]) and deg2(x2x3) = deg2([1]),

so the variable x2 is J -multiplicative for x22 and x2x3 and not J -multiplicative for
x1. Further,

[0, 0] = {x1}, [0, 2] = {x22 }, [1, 1] = {x2x3},


