Introducing
Markdown
and Pandoc

Using Markup Language and
Document Converter

Thomas Mailund

ApPress’

Introducing
Markdown and
Pandoc

Using Markup Language and
Document Converter

Thomas Mailund

Apress’

Introducing Markdown and Pandoc: Using Markup Language and
Document Converter

Thomas Mailund
Aarhus N, Denmark

ISBN-13 (pbk): 978-1-4842-5148-5 ISBN-13 (electronic): 978-1-4842-5149-2
https://doi.org/10.1007/978-1-4842-5149-2

Copyright © 2019 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484251485.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5149-2

Table of Contents

About the AUtROrcccusmmimmminmmesmsssss - vii
About the Technical ReVIEWErccussesssessssmssssnsssassssnssssssssassssnssssssssass ix
Chapter 1: The Beginner’s Guide to Markdown and Pandoc............c.u.. 1
Chapter 2: Why Use Markdown and Pandoc.........cccuseenrnssssnnnsnssssnnnsnsns 5
Separating Semantics from Formatting..........c.cccovvririnnininnninn s 6
Preprocessing DOCUMENTSccoverrenerenerensesesese e sesss e s sessesenns 8
WHY MarKAOWN?covieericserinesseses e s se s s sessssssssssssnns 9
WHY PANAOC? ..o s ss s 11
Chapter 3: Writing Markdownccccnsemmmmnnssssnnmmssssssnmssssssssssssssnnns 13
B3 = T (0] 3L 13
0T 0] P2 TS 14
LSS ©vereirire e e p e ene e 15
BIOCK QUOTES ... e 17
VerDatim TeXt ... 18
3OS 18
IMAQGES ... e e 20
(] (0T T 20

B3 T: T 0] LT 21
EMPRASIS ..o e e s 21

LISES ettt e e e 21

iii

TABLE OF CONTENTS

BIOCK QUOTEScovieirciiirisisessse s 21
LINKS et se s e 22
IMAQES...cviirierer e e e s 22
Chapter 4: Pandoc Markdown Extensionsuuceeeeemssssssssssssssssnnnnnnas 23
I £SO 23
TaADIES ... ————————————————— 27
Smart PUNCIUALIONcovviicccirccr s 32
FOOINOTES ... 33
EXBICISES...cviereierereeree s s 34
I £ 34
TADIES .. 34
FOOTNOTES......ccceceerer e 34
Chapter 5: Translating Documentsccccusmmmsmmmssnsssssssssssssssssssnsns 35
Formatting a Markdown Document with Pandoc............ccvvmneneneneississnnnne. 35
Frequently USEful OPtioNS.......ccovververevnsenseresessssessessessssessessessssessessessessssessessens 40
Sections and Chapters ... e 40
Table of CONTENTS........ccoeeeceerer e 41
IMAJE EXLENSIONS ...c.veeeecereerie s 4
EDOOK COVEIS......oivieierreerise s s se s se s nsanes 42
USING MaKETIIES....ccceruereririrere e st ses e se s st sae s saesnen 42

Chapter 6: Math and Computer Programming Languagesc..oounensd7

iv

WHEING MALN ... s 47
Writing Code BIOCKScccourerirerirrccrire sttt sa s se e s se s 50
Code BIOCK OPLIONSccvcerericirrcre e s 52
Syntax Highlighting SIYIESccceevvrerrererrs e 54
EXBICISES...vivierrrerrssesessesesssse s s s e s s e e e 55

TABLE OF CONTENTS

COdE DIOCKS ... s 55
Code BIOCK OPLIONScccccverererecrinerere s sss et ses e ssenes 55
Syntax Highlighting ..o e 55
Chapter 7: Cross-referencingccuseusmsssssssnssssssssnssssssssssssssnsnnsssssnnnnss 57
Referencing SECHIONSc.oucvvereresernse s 58
Reference PrefiXeS. ... s 61
Referencing Figures, Tables, and EQUALONSccvvevvvenvenenenensensenesessensenaens 63
BibliOgraphi€sccocvviririirre e s 64

o CC] (01T 66
Reference SECLIONSovccvrereree e 66
Figures, Tables, and EQUAtioNsccccvirninininnnnsncnes s 66
Bibliographies........ccovvrmrererrneserese s s 66
Chapter 8: Metadata.............cccnvmmmsmmnsmmmssnmmesmmesmssnss e 67
YAML for metadata...........cocoriiienmnnnmnsssssssess s 68

Chapter 9: Using Templates.......cccusemmmnssmnnmmsssssssmmssssssssssssssssssssssssnens 13

Writing Your Own TEMPIALESccvcevveverierierererersere e sse s ssesessessessessssessessees 77
Template EXAMPIESccccoeiiiicrcrrr s s 78
EXBICISES.c.citiririuiiiss s 89
Chapter 10: PreprocesSingcccurusssssssssssssnsssssssannsssssssnnssssssnnnssssssnnnnss 91
EXAMPIES. ..ottt e e 92
INCIUAING FlBS ..ot 92
Conditional INCIUSION ..ot —————— 94
RUNNING COR ..cvevevreerererie s rere s sesse s s s e sae e s e s sae s s e s saesaesassesaesaes 96
EXBICISES.c.citiririiisissssssiis s 98

TABLE OF CONTENTS

Chapter 11: FIRErS....ccccccmrnnssnmnmmssssnsnmsssssssnsssssssssssssssssssssssssnssssssnnnnss 99
Exploring Panflute..........ccocviecncninsr s 104
Conditional Inclusion of EXercise Solutionsc.cccovererenernscrennesesesesenesenns 106
Conditional Inclusions Based on FOrmat.............ccoovevnenerenernsesensenesesesensenenns 112
Evaluating Codecoveerrenmmenernsesssesessse s s s se s s 115
NUMDEIING EXEICISES ...vvctrerrerresiriererre s s sts e s e ses e s ssessssessesaessssessessenes 119
(e (1] T 130

Conditional INCIUSIONcceererirrrccere s 130
Conditional on QUEPUL.........ccocrrinr s 130
Evaluating Code........c.cecvrererenernserescesse s s sessenens 131
NUMDEIING EXEICISES.crvveeerreserrnseressesessesessssesessesessssessssesessssessssessnsessssennns 131
Chapter 12: CONCIUSIONS.......uccusssessssssssnsssssssssssssnsssassssnssssnsssassssnsssns 133
INA@X . ciiiisssnnnnnnnnnnnsssssssssnnnnnnnnsssssssssnnnnnnnnessssssssnnnnnnnnnssssssnsnnnnnnnnnsssssnnn 135

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus
University, Denmark. He has a background in math and computer science.
For the past decade, his main focus has been on genetics and evolutionary
studies, particularly comparative genomics, speciation, and gene flow
between emerging species. He has published R Data Science Quick
Reference, The Joys of Hashing, Domain-Specific Languages in R, Beginning
Data Science in R, Functional Programming in R, and Metaprogramming
in R, all from Apress, as well as other books.

vii

About the Technical Reviewer

German Gonzalez-Morris is a polyglot software architect/engineer with
20+ years in the field, with knowledge in Java(EE), Spring, Haskell, C,
Python, and Javascript, among others. He works with web distributed
applications. Germdn loves math puzzles (including reading Knuth) and
swimming. He has tech-reviewed several books, including an application
container book (Weblogic), as well as titles covering various programming
languages (Haskell, Typescript, WebAssembly, Math for coders, and
regexp). You can find more details at his blog site (https://devwebcl.
blogspot.com/) or twitter account (@devwebcl).

ix

https://urldefense.proofpoint.com/v2/url?u=https-3A__devwebcl.blogspot.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=JBubaXpxjMKlEOaFmxdPXtt06ZW1CoYXaaEFq_1hh-o&s=sO8Vn4tmRqIE9wKH9Lreod6mn-UWXwcS36ZRZFgsdEM&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__devwebcl.blogspot.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=JBubaXpxjMKlEOaFmxdPXtt06ZW1CoYXaaEFq_1hh-o&s=sO8Vn4tmRqIE9wKH9Lreod6mn-UWXwcS36ZRZFgsdEM&e=

CHAPTER 1

The Beginner’s
Guide to Markdown
and Pandoc

Markdown is a markup language. The name is a pun, but where the humor
might be atrocious, the language is not. The Markdown language lets

you write plain text documents with a few lightweight annotations that
specify how you want the document formatted. Such annotations are the
defining characteristics of a markup language. Markup languages separate
the semantic or content part of a document from the formatting of said
document. The content of a document is the text, what should be headers,
what should be emphasized, and so on. The formatting specifies the font
and font size, whether headers should be numbered, and so on.

Markup languages have a stronger focus on semantic information
than direct formatting as you would do with WYSIWYG (what you see is
what you get) formatting. With markup languages, you might annotate
your text with information about where chapters and sections start, but
not how chapter and heading captions should be formatted. Decoupling
the structure of a text from how it is visualized makes it easier for you to
produce different kinds of output. The same text can easily be transformed
into HTML, PDF, or Word documents by tools that understand the
markup annotations. And because writing the text and formatting it are

© Thomas Mailund 2019 1
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/ 10.1007/978-1-4842-5149-2_1

CHAPTER 1 THE BEGINNER’S GUIDE TO MARKDOWN AND PANDOC

separate steps, you can apply one or more text documents to the same
transformation program to get a consistent look for related documents,

or you can transform the same document into multiple output formats

so the same document can be put on a web page or in a printed book, for
example. Most WYSIWYG editors can export to different formats, but they
usually do not let you output to the same document type with different
formatting, for example, output PDF files in A4, 6"x9", and 7" x 10" with
point size 11 in the first two and 12 in the last. With a Markup language,
this is relatively easy.

Among markup languages, Markdown is one of, if not the, simplest.
The annotations you add to a text are minimal, and most likely you will
already have seen most of them if you occasionally use plain text files.
For example, where you would use italic or boldface in Word, you would
write *italic* and **boldfaces* in Markdown, and most likely you have
seen this notation before. In my misspelled youth, I frequently used
TeX/LaTeX and HTM-L/SGML/XML. I know people who cannot
concentrate on the text body if it is full of markup information. With
Markdown, the markup annotation is almost invisible, and they have no
problem working with that. With Markdown you can generate documents
in other markup languages, so you do not need to know them. If you want
the full power to format your documents the way you want them, then
I'still recommend that you learn the other languages. You can use that
knowledge to create templates (see Chapter 9), and then you only need
to use, for example, LaTeX or HTML when writing the templates. You can
then still keep your document in Markdown. One exception, where you
still want to use LaTeX, is if you need to write math in your document.
Then you need to write it in LaTeX; see Chapter 6.

You need a program for translating Markdown into other file
formats. The tool I will use in this book is Pandoc. Pandoc supports
basic Markdown and several different extensions. It also lets you define
templates and stylesheets to customize the transformed files. Pandoc can

CHAPTER 1 THE BEGINNER’S GUIDE TO MARKDOWN AND PANDOC

do more than translate Markdown files into different output files. It can
translate from and to several different formats. I will only describe how
you translate from Markdown to other formats. If you have an existing text
in Word, for example, and you want to try out Markdown by editing that
document, then you should be able to generate a Markdown file from the
Word file, edit the Markdown format, and then translate the Markdown
document back to Word.

CHAPTER 2

Why Use Markdown
and Pandoc

Ifyou are used to WYSIWYG editors such as Microsoft Word, you might
reasonably ask why you should use Markdown files. You can write your
document and format them any way you like, and you can export your
document to different file formats if you wish. For short documents that
you only need to format once and to one file format, you do not need
Markdown. I will argue that Markdown is still an excellent choice for such
documents, but it is for more advanced applications where it really shines.

For applications that are just as easy to handle with a WYSIWYG
editor, plain text can be a better choice in situations where you need to
share documents with others. A de facto file format for this is Word files,
but not everyone has Word. I don’t. I can import Word files into Pages,
which I have, and export to Word, but I don’t know what that does to
the formatting. Everyone has an editor that can work on plain files, and
with a plain text file, you know exactly what you are editing. If the text
and the formatting are separated, then someone with more artistic skills
can handle the formatting while I can write the text. One argument for
Word might be tracking of changes. This is an important feature, but with
plain text files, you can put them under real version control, for example,
GitHub, and that is superior to version tracking.

If you need your document in different formats, for example, you might
need to include your text in a printed progress report and also have it on a
© Thomas Mailund 2019 5

T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/ 10.1007/978-1-4842-5149-2_2

CHAPTER 2 WHY USE MARKDOWN AND PANDOC

web site, then you can export the document to as many file formats as you
need. If you need different typography for the different file formats, you
might have to do substantial manual work. You might need to change all
the document styles by hand, and in the numerous occasions where you
need to make changes to your text, you need to change the styles for each
file format more than once. If you separate style and text, you avoid this
problem altogether.

Using a markup language to annotate your text makes it easier for you
to distinguish between the semantic structure of a document and how it is
formatted. In the Markdown document, you markup where headers and
lists are, for example, but not how these should be formatted in the final
output. The formatting styles are held in different files and you can easily
transform your Markdown input into all the output file formats and styles
you need. Furthermore, someone else can work on the style specification
while you concentrate on the text. Your Markdown doesn’t have to be
in a single file either. You can split it into as many as you want, and then
different authors can work on separate pieces of the text without worrying
about how to merge files afterward. With version control, you can even
work on the same file in parallel up to a point.

Separating Semantics from Formatting

Most documents have a semantic structure. Texts consist of chapters and
sections, plain text and emphasized text, figures and citations, quotes, and
lists. When we read a document, these semantic elements are visualized
by different fonts, bold and italic text, different font sizes, and we do not
directly see the semantic structure. Because we don’t immediately see the
structure, it is easy to forget that it is there.

Most word processors separate semantics from formatting. If you take
care to use the formatting section when working on a Word document,
then the semantic information needed to change styles, that is, the visual

CHAPTER2 WHY USE MARKDOWN AND PANDOC

representation of all semantic units (e.g., headings) is readily available.
Separating the semantics of a document from its formatting is not an
exclusive property of markup languages. However, when the separation

of text and semantics is not enforced, there is a potential for error. If you
decide to change the font size of level-two section headers, for example,
you can easily do this, but you can equally easy highlight a single section
header and reformat that, changing only that single header. That makes
this particular header different from all the rest, and if you later modify the
formatting of level-two headers, you won’t be changing this one header.
Great if this is on purpose; not great if this is not what you wanted.

With WYSIWYG editors, you can separate semantics from formatting,
but it is easy to break this separation. With markup languages, you can
also define some text elements as special and their format different from
related items, but you have to do this explicitly so you cannot easily do
this by mistake. Keeping the core text consisting of semantic elements and
separate from formatting is vital in many situations. If you want to translate
your text into both paper documents and web pages, you typically want the
format to be different in the two resulting documents. If the core text only
contains the semantic structure, this is quickly done, by having a different
mapping from semantic elements to formatting information, typically
called templates or stylesheets (see Chapter 9). With different stylesheets
for different output formats, the formatting is tied to the output text rather
than the input text (see Figure 2-1).

