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Rapid development of genomics, proteomics, combinatorial chemistry, and 
medical/toxicological diagnostics triggered the rapid development of various 
mass spectrometry techniques to fulfill requirements of many disciplines, such 
as biomedical sciences, toxicology, forensic research, and pharmacology. Mass 
spectrometry (MS) is a unique method that not only allows mass measurement 
but also provides detailed identification of molecules and traces the fate of 
compounds in vivo and in vitro. Among others, mass spectrometry may, at 
least partially, identify amino acid sequence of peptides and proteins, assign 
sites of posttranslational modifications, identify bacterial strains, and verify 
structures of organic compounds. The latter is particularly useful for detection 
of novel drugs of abuse, explosives, etc. A yet another challenge is rapid selec-
tion of combinatorial libraries, containing vast number of elements, and a 
novel place of mass spectrometry in nanomedicine, being a combination of 
diagnostics and therapy (theranostics).

MS has been proven as an efficient tool to analyze complex biological mix-
tures by applying hyphenated techniques, such as GC/MS, LC/MS, CE/MS, 
and TLC/MS, where mass spectrometer acts as a sensitive and highly specific 
detector. Such approaches may find their applications in, e.g. genomics, 
functional proteomics to reveal the role of entire pathways in biological sys-
tems (systems biology). Another interesting capability of MS is identification 
of the low molecular mass compounds that are not coded by genes. This 
aspect is a basis of metabolomics and remains, together with proteomics, a 
complementary way to study functions of the genes (transcriptomics).

Our goal was to offer you a book, which is written in an understandable 
language, avoiding complex equations and advanced physics, bearing in mind 
that the most important aspect for the readers are practical aspects, potential 
applications, and selection of proper methodologies to solve their analytical 
and scientific problems.

Preface
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Mass spectrometry underwent a rapid and dynamic development during recent 
years. Innovative solutions brought highly advanced instruments that fulfill 
user demands with respect to sensitivity, speed, and simplicity of operation.

Mass spectrometer, independently on its construction, measures the ratio of 
mass of a molecule to its charge, m/z. While interpreting data obtained during 
analysis, it should be carefully noted that not always the m/z value can be 
directly related to the molecular mass of the analyzed compound. This happens 
when multiple charges are being attached to the molecule (multiple ioniza-
tion), which results from the attachment or depletion of a proton or several 
protons. Even a popular electron impact ionization generates radicals, depleted 
of one electron. Typically, we tend to neglect this electron while analyzing 
spectra at low resolution. However, this lack of one electron will be clearly seen 
during high‐resolution analysis using Fourier transform ion cyclotron reso-
nance (FT‐ICR) instrument. The multiplicity of ionization depends on the ion 
source used and their different types. These are described in the following 
chapters of this book.

The principle of operation of the apparatus can be compared to the sensitive 
balance, by which we weigh mass of molecules. Another association implies a 
comparison of a mass spectrometer with electrophoresis in a vacuum because 
the analyzed molecules, in the form of ions, are accelerated in the device under 
the influence of applied potential.

Until recently, the mass spectrometer consisted of elements traditionally 
associated with various ionization methods. For example, matrix‐assisted laser 
desorption/ionization (MALDI) was combined with the time‐of‐flight (TOF) 
analyzer, and electron impact/chemical ionization (EI/CI) was typically used 
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with quadrupole or magnetic and electrostatic analyzers. Today’s construc-
tions are built of “blocks” that can create combinations not yet very common, 
such as MALDI with ion trap, electron ionization with TOF, inductively 
coupled plasma (ICP) with TOF, and electrospray with TOF (qTOF). New 
constructions like Orbitrap are relatively cheap and affordable by many 
laboratories.

The mass spectrometer consists of several basic elements, presented sche-
matically in Figure 1.1.

The basic requirement for a substance to be analyzed in a mass spectrometer 
is its ability to ionize. Ions can move in a vacuum under the influence of an 
applied electric field. It is important to note that vacuum is necessary inside 
mass spectrometer, where ions are analyzed. Ion sources, in many cases, do not 
require vacuum at all. The heterogeneous ion beam is separated in the analyzer 
depending on the m/z values for the individual ions. Separated ions are then 
introduced into a detector that converts quantum ion current into electrical 
current. The system control software transcribes the intensity of these signals 
as a function of the m/z value and presents these data as a mass spectrum, as 
shown in Figure 1.2.

Spectra are derived from the substances that are present in the sample. The 
mass spectrometer can simultaneously analyze the mixture (to some extent), 
which is extremely important in the study of complex biological material or 
other unknown samples. It is also possible to analyze selected substances only 
in the mixture. This saves analysis time, reduces the amount of data on the 
hard drive, and improves the signal‐to‐noise ratio. This method is referred to 
as the single ion monitoring (SIM) or multiple ion monitoring (MIM) and is 
mainly used for quantitative analysis of compounds and their fragment ions.

The main advantages of a mass spectrometer, compared with other 
techniques, are as follows:

●● Speed of analysis.
●● High sensitivity, reaching femto‐/attomolar level.
●● Simultaneous analysis of many components of mixtures.
●● Ability to obtain information on the structure of the compounds (including 

amino acid sequence) and posttranslational modifications.
●● Possibility of combining with separation techniques (e.g. gas and liquid 

chromatography, capillary electrophoresis, isotachophoresis).
●● Quantitative analysis.

Inlet
system

Data
system

Ion
source

Ion
detector

Mass
analyzer

Figure 1.1  Components of the mass spectrometer.
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●● Analysis of the elemental composition.
●● Analysis of isotopic composition.
●● Unambiguous identification of the substance.

This latter feature distinguishes mass spectrometry from other detection tech-
niques encountered in chromatographic or electrophoretic methods. It is 
worth emphasizing here that the chromatogram obtained by ultraviolet–visible 
(UV/Vis) detection, electrochemical or other, generates only the signal inten-
sity for the eluted fraction and the retention time. However, this is insufficient 
to obtain detailed information about the nature of the substance eluted from 
the column. The overlap of several components additionally complicates such 
analysis. Simply put, retention time is not a sufficient method of identification 
even if standards are provided. We cannot assume in such case that there is no 
other component in the mixture having the same retention time. The mass 
spectrometer, used as a detector, gives the exact mass of the substance, together 
with the information on its structure, hence eliminating the above problems. 
By analogy to the UV/Vis chromatogram, the mass spectrometer generates a 
mass chromatogram (Figure 1.3) having several features:

●● It provides the relationship between the retention time of the substance and 
the intensity of the peaks on the spectrum (quantitative analysis).

●● It also provides information on substances eluted from the column at the 
same time.

●● It moreover provides detailed information about the structure of the com-
pounds (identification of unknown components).

Figure 1.3 shows the retention time on the horizontal axis and the absolute 
intensity of the signals (a.i.) on the vertical axis. Individual components eluted 
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Figure 1.2  Exemplary mass spectrum of caffeine obtained by electrospray ionization mass 
spectrometry (ESI‐MS) technique. Signal at m/z 195.0 corresponds to the protonated 
molecule of caffeine.
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from the chromatographic column are recorded by a mass spectrometer. Each 
of the detected substances is simultaneously characterized by mass spectrum 
and fragmentation spectrum. Surface under the peaks on a mass chromato-
gram is a measure of the concentration of individual elements in a sample.

An important feature of modern equipment is also very high accuracy in 
determining the weight of the substance, reaching the sixth decimal place. This 
allows to perform measurements with a resolution much higher than that 
necessary to determine the loss of one electron by a molecule! The following 
chapters of this book describe, in more details, the variety of techniques used 
in mass spectrometry and their applications in various areas of our life.
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Figure 1.3  Mass chromatogram of several designer drugs separated by the reversed‐phase 
liquid chromatography (LC)‐ESI‐MS.
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Mass spectrometry (MS) is almost 120 years old, but despite its age, it is still an 
extremely attractive technique. Let us compare here its birth and development 
to the fate of the title character of the novel The Curious Case of Benjamin 
Button by F.S. Fitzgerald. The main character becomes younger and younger 
over time. This is somehow similar to MS, still showing new faces and 
possibilities.

The origin of development of this technique is considered to be 1897, when 
the British physicist J.J. Thomson conducted research on tubular radiation 
and, at that time, he experimentally confirmed the existence of an electron by 
estimating its m/z value. This resulted in the construction, in 1912, of a device 
called the parabola spectrograph for spectra measurements of O2, N2, CO, and 
CO2. F.W. Aston, Thomson’s assistant, applied this technique for studying iso-
topic compositions and, in 1919, presented another construction called a mass 
spectrograph. From this time, there was a significant increase in the awareness 
of the equipment, which can quickly determine isotopic composition of the 
elements. The breakthrough in MS dates back to the Second World War. In 
1939, the Manhattan Project management asked A. Nier for help to solve an 
important issue: which uranium isotope is responsible for the fission reaction 
and how to gather the necessary material for further work. The answer to this 
question was crucial to enable a possibility to construct the atomic bomb. Nier 
had a machine built by E. Lawrence, which was based on a magnetic analyzer, 
a technique that was not efficient in separation of isotopes for military 
purposes. Around the same time, MS was used in petrochemical industry to 
evaluate the components of crude oil. This branch of industry had a lot of 
money, which was always driving the advancement of technology. The first 

A Brief History of Mass Spectrometry
Marek Smoluch1 and Jerzy Silberring1,2

1 Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, 
 AGH University of Science and Technology, Kraków, Poland
2 Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland



Mass Spectrometry6

spectrometers offered relatively small measuring capacities, the m/z range was 
about 70, and the spectrum recording time was about 20 minutes. During this 
period, the instruments were complicated, and only the chosen were able to 
manage those “black boxes.” With the development of computers driven by the 
very complex operating systems (e.g. UNIX), they became increasingly incom-
prehensible to scientists. The basis for further and rapid development became 
commercialization of the production. The apparatus no longer had to be built 
on its own, but it could simply be purchased.

Postwar applications of MS were focused on the analysis of the low molecu-
lar weight compounds due to the lack of ionization techniques suitable for the 
studies of higher molecular masses, predominantly peptides and proteins. The 
primary source of ions was electron ionization (EI). However, it is worth men-
tioning here that gas chromatography–mass spectrometry (GC‐MS) systems 
were also utilized to analyze amino acids and peptides.

The breakthrough came in 1981 when Michael Barber from Manchester 
developed the fast atom bombardment (FAB). For the first time, scientists 
could analyze biological compounds (including peptides and lipids) in solu-
tions and not only in the gas phase. An additional advantage of this technique 
was the spontaneous fragmentation leading to assignment of the amino acid 
sequence. The problem was the presence of glycerol, effectively contaminating 
the ion source that had to be thoroughly cleaned at least once a week, and in 
the case of a source connected to the liquid chromatography (LC) (continu-
ous‐flow FAB), cleaning routine had to be carried out daily. In parallel, the 
analysts had at their disposal the thermospray ionization, the protoplast of the 
electrospray method, but the source was operated under high vacuum.

Another breakthrough in the development of ionization techniques was 
made in the mid‐1980s of the previous century by the introduction of electro-
spray technique (J. B. Fenn with the team, 1984) and matrix‐assisted laser 
desorption/ionization (MALDI) in 1985, with the name given by the creators 
of the source (M. Karas and F. Hillenkamp). It was further developed by K. 
Tanaka, who applied it to the analysis of higher molecular compounds and 
obtained the Nobel Prize for his achievements, together with J.B. Fenn (for 
electrospray ionization [ESI]) and K. Wüthrich (for NMR). ESI and MALDI are 
complementary techniques, and their main advantage is the ability to analyze 
compounds in a very wide range of masses. ESI was the first method operating 
at atmospheric pressure, enabling direct coupling of separation techniques and 
introduction of the sample in solution.

Initially, quadrupole or sector analyzers were used, and ion traps were intro-
duced in 1983. Ion traps were unwillingly accepted by the world of scientists, 
because of the very low resolution, which then reached the value of only 
50–100! The promising designs included the time‐of‐flight (TOF) analyzers 
most commonly linked to the MALDI source. The initial TOF constructions 
were also characterized by a low resolution on the order of 50; however, the 


