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1.1 Introduction

Food security for a burgeoning human population in a sustainable ecosystem is an
important goal. However, the threat from climate change and unpredictable envi-
ronmental extremes (Abberton et al. 2016) to plant growth and productivity (Lobell
and Gourdji 2012; Gray and Brady 2016; Tripathi et al. 2016a) is increasing. Climate
change-driven effects, especially from erratic environmental fluctuations, can result
in increased prevalence of abiotic stresses and, pests and pathogens in crop plants
(Chakraborty and Newton 2011; Batley and Edwards 2016). Various abiotic stresses
such as drought, salinity, temperature, and heavy metals have been shown to diminish
average yields by more than 50% for major crops (Wang et al. 2003; Pereira 2016;
Tripathi et al. 2016c).

Over the years, considerable information has become available on the stress-related
genetic repertoire of genes, quantitative trait loci and molecular networks governing
plant responses to drought, salinity, heat, and other abiotic stresses (Krasensky and
Jonak 2012; Liu et al. 2018). This knowhow about genes and their regulation will enable
improvements in stress tolerance in crops, in the face of the imminent threat of cli-
mate change, impacting crop genetic diversity and the productivity of staple food crops.
Global temperature rises of 2–3 ∘C are predicted to push crops toward extinction and
even wild species that have so far been considered valuable genetic resource may also be
affected. This will have negative consequences locally as well as globally, because the key
traits for adaptiveness to climate change and variability adaptation may be lost forever.
It is hence desirable that additional genetic variability should be introduced through
mutagenesis or other approaches. Over the past few decades, great success has been
achieved through selection, breeding, hybridization, recombination, and mutation to
broaden genetic variability for important traits conferring adaptation of many species
to changing biotic, climatic, and environmental pressures.

Crop plants are susceptible to climate-driven abiotic (elevated CO2, heat, drought,
salinity, flooding) and biotic effects (Chapman et al. 2012). Several reviews have criti-
cally discussed the impact of climate change on various crop systems (Ahuja et al. 2010;
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Yadav et al. 2011; Tripathi et al. 2016a). Abiotic stresses elicit a plethora of
morphological, physiological, biochemical, and molecular alterations (Singh et al.
2015a,b; Tripathi et al. 2016b, 2017; Singh et al. 2017; Suprasanna et al. 2018). The
impact of stress has been shown to induce modulated gene function of structural
genes, regulatory genes, and other master regulators (Zhu 2016; Patel et al. 2018). Plant
defenses are endowed with molecular components of stress signal perception, osmotic
and ionic homeostasis, hormone signaling, reactive oxygen species (ROS) scavenging
systems, metabolic pathways, etc. (Figure 1.1). There are specific responses that are
osmotic, hormonal, ionic, signal transduction, and transcription factor based, and there

ENVIRONMENTAL

STRESS FACTORS

Salinity, Cold, Drought,

Heat, etc.,
Stress Response:

Osmotic, Ionic, Oxidative

Damage and/or Disruption of Ionic And

Osmotic Homeostasis, Membrane, Proteins

Osmosensors, phospholipid-cleaving

enzymes, second messengers, MAP

kinases, Ca2+ sensors, calcium-

dependent protein kinases

TRANSCRIPTION FACTORS

STRESS

RESPONSIVE

MECHANISMS

Revival of cellular homeostasis,

functional and structural protection of

proteins and membranes

TOLERANCE/ADAPTATION

DETOXIFICATION
OSMOPROTECTION

CHAPERONES WATER, IONMOVEMENT

PERCEPTION OF

SIGNAL AND

TRANSMITTAL

Figure 1.1 Abiotic stress impact and plant responses (Lokhande et al. 2012).
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are also nonspecific responses that are activated by ROS (Mittler and Blumwald 2010,
Muchate et al. 2016). Despite tremendous knowledge that has been generated in
understanding abiotic stress responses, an integrated information gateway is needed
to combine all of the genomics, proteomics, and metabolomics data concerning field
conditions to achieve plant tolerance of environmental change (Roychoudhury et al.
2011, Edwards 2016). This has become a challenge that requires concerted effort.
Hirayama and Shinozaki (2010) outlined some considerations (see Box 1.1) which
should pave the way toward achieving this goal.

Box 1.1

• Sensor(s) and signaling pathways – perception and transduction of local stress signals
under single and combined stresses.

• Molecular basis of interaction among biotic and abiotic stresses.
• Key factors in the crosstalk between abiotic stress responses and other plant develop-

mental pathways.
• Long-term stress-associated responses under multiple abiotic stress conditions.
• Experimental conditions that simulate natural field conditions for testing and func-

tional validation.

Modified after Hirayama and Shinozaki (2010).

Research into plant abiotic stress biology has two dimensions: the first, is the need
to develop a detailed mechanistic view of plant responses to single and/or combined
stresses to create a resource of gene targets and regulatory circuits for the improvement
of stress-tolerant crop plants; and the second is the translation of research outcome into
environmentally challenging field conditions. Physiological, biochemical, and molecu-
lar studies have generated data and great understanding of the mechanisms of how a
plant will respond to a given stress or combined stress factors. Transcriptomic stud-
ies have demonstrated that the adaptation or responses are controlled by either up-
or down-regulation of several genetic pathways and processes associated with stress
perception and signaling (Munns and Tester 2008; Roychoudhury and Banerjee 2015).
Transgenic approaches are available as the existing strategies for crop improvement pro-
grams based on biotechnology (Jewell et al. 2010). Genetic engineering for improved
stress tolerance has been made possible through the manipulation of a single or a few
effector genes or regulatory genes (Wang et al. 2016) or those that encode osmolytes,
antioxidants, chaperones, water, and ion transporters (Chen et al. 2014; Paul and Roy-
choudhury 2018; Suprasanna et al. 2018). Various genes involved in the synthesis of
osmoprotectants have been explored for their potential in improving abiotic stress toler-
ance (Reguera et al. 2012). In this article, we have reviewed the progress made in genetic
engineering for abiotic stress tolerance, especially drought, salinity and cold, and high-
light the potential areas for translational research in this field.

1.2 Drought Tolerance

Paucity of water is the most important environmental stress affecting crop plants,
accounting for ∼70% loss of potential yield worldwide (Shiferaw et al. 2014). Daryanto
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et al. (2016) investigated the data published from 1980 to 2015 that reported up to
21% and 40% yield reductions in wheat and maize, respectively, owing to drought
worldwide. With changing climatic conditions and limited water supply, it is necessary
to develop crop plants that can sustain drought conditions without reduced yield.
Moreover, much lands are left barren due to poor water supply. Generating plants
that can withstand drought stress will improve the food security for the growing
population. Understanding of the physiological and biochemical basis of drought
response and the gene regulatory networks relating to drought tolerance in plants
is necessary. Remarkable studies have been carried out that identify the key regula-
tors of drought response at different stages. These can be classified as: (i) drought
induced transcriptional factors such as dehydration-responsive-element-bindings
(DREBs), abscisic acid responsive element binding proteins (AREBs)/abscisic acid
responsive element binding factors (ABFs), nuclear factor Y-B subunits (NF-YB), and
tryptophan–arginine–lysine–tyrosine (WRKY) (Oh et al. 2005; Nelson et al. 2007; Xiao
et al. 2009; Wu et al. 2009; Banerjee and Roychoudhury 2015); (ii) posttranscriptional
and/or posttranslational modifications (Wang et al. 2008; Xiang et al. 2007; Kim
et al. 2017); and (iii) production of osmoprotectant and molecular chaperones (Xiao
et al. 2009; Bhaskara et al. 2015; Liu et al. 2015). Overexpressing or downregulating
drought-responsive genes has yielded success in the laboratory. However, field studies
demonstrating drought tolerance in plants are required to confirm the results.

Drought stress induces the synthesis or transportation of the phytohormone
abscisic acid (ABA), which is a key molecule regulating signal events during drought
impact (Fang and Xiong 2015). The initial perception of accumulation of ABA is
through a complex of PYR (pyrabactin resistance)/PYL (PYR1-like)/RCARb (regulatory
component of abscisic acid response), PP2C (protein phosphatase 2C), and SnRK2
(sucrose nonfermenting1-related protein kinase 2), which induces the expression of
transcription factors NF-YA, SNAC (stress and abscisic acid-Inducible NAC), and
AREBs (Roychoudhury and Paul 2012). These proteins further regulate the opening and
closing of stomata to reduce transpirational water loss. Drought stress is also perceived
by another regulatory loop through calcium-dependent protein kinase (CDPK) and
calcineurin B-like protein-interacting protein kinase (CIPK), which activates AREB and
DREBs that bind to the dehydration responsive element and abscisic acid responsive
element cis-elements of downstream genes to produce the effector proteins such
as late embryogenesis abundant protein (LEA), heat-shock protein (HSP), proline,
glycine betaine, sugars, and polyamines (Yang et al. 2010). The overexpression of
these transcription factors in drought-sensitive plants has improved tolerance of
water-deficit conditions (Table 1.1). Moreover, some plants constitutively expressing
drought-responsive transcription factors displayed growth retardation (Suo et al.
2012). To lessen this undesirable effect, researchers have employed stress-inducible
promoters such as HVA22P to drive the expression of these transgenes in transgenic
plants (Bhatnagar-Mathur et al. 2007; Xiao et al. 2009). However, when the drought
stress is extended, it induces continuous expression of these genes in the transgenic
plants, resulting in growth anomalies. To circumvent this problem, researchers have
used stress-inducible tissue-specific promoters such as Responsive To Dehydration
29A (RD29A) for expressing these transgenes (Ito et al. 2006; Kasuga 2004). RD29A
promoter is expressed only in the root tissues of rice plants under abiotic stress
conditions. However, a small problem in root development could circumvent its use.



Table 1.1 List of genes used to generate drought-tolerant transgenic plants.

Target gene Source of gene Target plant Evaluation Functional change References

AtABF3 Arabidopsis
thaliana

Oryza sativa cv.
Nakdong

Greenhouse No visible growth abnormality, increased
drought tolerance

Oh et al. 2005

SNAC1 Rice IRAT109 Rice (japonica) Greenhouse, field No growth anomaly, drought tolerance Hu et al. 2006
OsNAC6 Rice cv.

Nipponbare
Rice cv.
Nipponbare

Greenhouse Growth retardation, poor reproductive
yields, increased tolerance to dehydration
and enhanced resistance to blast disease

Nakashima et al. 2007

DREB1A Arabidopsis
thaliana

Triticum
aestivum

Greenhouse Delayed drought symptoms Pellegrineschi et al. 2004

Arabidopsis
thaliana

Arachis
hypogaea L. cv.
JL 24

Greenhouse 40% higher transpiration efficiency than the
untransformed controls

Bhatnagar-Mathur et al. 2007

OsDREB1G Oryza sativa L.
ssp. japonica cv.
Zhonghua 11

Oryza sativa L.
ssp. japonica cv.
Zhonghua 11

Greenhouse Improved tolerance to drought stress Chen et al. 2008

OsDREB2B Oryza sativa L.
ssp. japonica cv.
Zhonghua 11

Oryza sativa L.
ssp. japonica cv.
Zhonghua 11

Greenhouse Improved tolerance to water deficit stress Chen et al. 2008

OsDREB1F Oryza sativa Oryza sativa
and Arabidopsis

Greenhouse Enhanced tolerance to salt, drought, and
low temperature

Wang et al. 2008

GhDREB Gossypium
hirsutum

Triticum
aestivum L.

Greenhouse Improved tolerance to drought, salt, and
freezing stresses, increased accumulation of
soluble sugar and chlorophyll in leaves
under stress conditions

Gao et al. 2009

HhDREB2 Halimodendron-
halodendron

Arabidopsis Greenhouse Increased tolerance to salt and drought
stresses

Ma et al. 2015

GmDREB2 Glycine max L. Arabidopsis and
tobacco

Greenhouse Enhanced tolerance to drought and
high-salt stresses, high proline levels

AtDREB2A-CA Arabidopsis
thaliana

Gossypium
hirsutum L.

Greenhouse Improved shoot development, improved
morphometrics roots traits under water
deficit

Lisei-de-Sá et al. 2017

(continued)



Table 1.1 (Continued)

Target gene Source of gene Target plant Evaluation Functional change References

HARDY Arabidopsis O. sativa ssp.
Japonica cv.
Nipponbare

Greenhouse Increased leaf biomass and bundle sheath
cells, enhanced photosynthesis assimilation

Karaba et al. 2007

Arabidopsis Trifolium
alexandrinum L.

Greenhouse, field Thicker stems and more xylem rows per
vascular bundle, resistant to lodging in the
field, drought tolerance

Abogadallah et al. 2011

ZFP252 Oryza sativa L.
cv. Zhonghua 11

Oryza sativa L.
cv. Zhonghua 11

Greenhouse Increased amount of free proline and
soluble sugars, high-level expression of
stress defense genes and enhanced rice
tolerance to salt and drought stresses

Xu et al. 2008

ZFP182 Oryza sativa L.
subs. Japonica
cv. Zhonghua 11

Oryza sativa L.
subs. Japonica
cv. Zhonghua 11

Greenhouse Increased accumulation of free proline and
soluble sugars

Huang et al. 2012

DST Oryza sativa L.
cv. Zhonghua 11

Oryza sativa L.
cv. Zhonghua 11

Greenhouse Enhanced drought and salt tolerance in rice Huang et al. 2009

ZAT10 Arabidopsis
thaliana

Oryza sativa L.
ssp. Japonica

Greenhouse, field High spikelet fertility and high yield under
drought stress

Xiao et al. 2009

NHX1 Arabidopsis
thaliana

Oryza sativa L.
ssp. Japonica

Greenhouse, field High spikelet fertility and high yield under
drought stress

Xiao et al. 2009

LOS5 Arabidopsis
thaliana

Oryza sativa L.
ssp. Japonica

Greenhouse, field High spikelet fertility and high yield under
drought stress

Xiao et al. 2009

Arabidopsis
thaliana

Nicotiana
tabacum

Greenhouse Higher water content, better cellular
membrane integrity, accumulated higher
quantities of ABA and proline, and higher
levels of antioxidant enzymes

Yue et al. 2011

Arabidopsis
thaliana

Maize Greenhouse Reductions in stomatal aperture, higher
relative water content and leaf water
potential, lower leaf wilting, less electrolyte
leakage, less malondialdehyde and H2O2
content, and higher levels of antioxidative
enzymes and proline content

Lu et al. 2013



NPK1 Arabidopsis
thaliana

Oryza sativa L.
ssp. Japonica

Greenhouse, field High spikelet fertility and high yield under
drought stress

Xiao et al. 2009

LeNCED1 Tomato Petunia Greenhouse Elevated leaf ABA concentrations,
increased concentrations of proline, and
increase in drought resistance.

Estrada-Melo et al. 2015

AtNF-YB1 Arabidopsis
thaliana

Arabidopsis
thaliana

Greenhouse Higher water potential and photosynthesis
rate

Nelson et al. 2007

ZmNF-YB2 Zea mays Maize Greenhouse, field Increased chlorophyll content, stomatal
conductance, leaf temperature, reduced
wilting, and maintenance of photosynthesis
under stress conditions

Nelson et al. 2007

TaNF-YB3 Triticum
aestivum

Tobacco cv.
Wisconsin 35

Greenhouse Improved growth under drought, enhanced
leaf water retention capacity, and increased
antioxidant enzyme activities and osmolyte
accumulation.

Yang et al. 2017

GmNFYB1 Glycine max Arabidopsis Greenhouse Higher seed germination rate, longer root
lengths, increased proline accumulation in
leaves and decreased water loss under
drought and salt stress conditions

Li et al. 2016

Cdt-NF-YC1 Bermuda grass
(Cynodon
dactylon 9
Cynodon
transvaalensis)

Oryza sativa L.
ssp. japonica cv.
Zhonghua 11

Greenhouse Increased tolerance to drought and salt
stress and increased sensitivity to ABA

Chen et al. 2015a,b

OsWRKY11 Oryza sativa L. Oryza sativa cv.
Sasanishiki

Greenhouse Slower leaf wilting and less impaired
survival rate

Wu et al. 2009

PdNF-YB7 Populus nigra ×
(Populus
deltoides ×
Populus nigra)

Arabidopsis Greenhouse Increased seed germination rate and root
length and decrease in water loss, and
displayed higher photosynthetic rate

Han et al. 2013

(continued)



Table 1.1 (Continued)

Target gene Source of gene Target plant Evaluation Functional change References

DnWRKY11 Dendrobium
nobile

Nicotiana
tabacum cv.
Huangmiaoyu

Greenhouse Higher germination rate, longer root length,
higher fresh weight, higher activities of
antioxidant enzymes, and lower content of
malonidialdehyde

Xu et al. 2014

FcWRKY70 Fortunella
crassifolia

Nicotiana
nudicaulis and
Citrus lemon

Greenhouse Higher expression levels of arginine
decarboxylase and accumulated larger
amount of putrescine

Gong et al. 2015

TaWRKY33 T. aestivum cv.
Xiaobaimai

Arabidopsis Greenhouse Increased germination rates, promoted root
growth and reduced water loss

He et al. 2016

FtbHLH3 Fagopyrum
tataricum

Arabidopsis Greenhouse Lower malondialdehyde, ion leakage, and
reactive oxygen species, higher proline
content, activities of antioxidant enzymes,
and increased photosynthetic efficiency

Yao et al. 2017

Musa DHN-1 Musa spp. Musa spp. Greenhouse Improved tolerance to drought and
salt-stress, increased accumulation of
proline and reduced malondialdehyde levels

Shekhawat et al. 2011

AnnSp2 Solanum
pennellii

Solanum
lycopersicum

Greenhouse Induced stomatal closure and reduced
water loss, improved scavenging of ROS,
higher total chlorophyll content, lower lipid
peroxidation levels, increased peroxidase
activities and higher levels of proline

Ijaz et al. 2017

SbPIP1 Salicornia
bigelovii

Nicotiana
tabacum

Greenhouse Higher relative water content and proline
content, but lower levels of
malondialdehyde and less ion leakage

Sun et al. 2017a,b

DRIR Arabidopsis
thaliana

Arabidopsis
thaliana

Greenhouse Increased tolerance to drought and salt
stress

Qin et al. 2017

Sly-miR169c Solanum
lycopersicum

Solanum
lycopersicum

Greenhouse Reduced stomatal opening and
transpiration rate, lowered leaf water loss,
and enhanced drought tolerance

Zhang et al. 2011

miR408 Arabidopsis
thaliana

Chickpea Greenhouse Stunted growth, regulation of DREB genes Hajyzadeh et al. 2015


