Govind Singh Saharan · Naresh K. Mehta Prabhu Dayal Meena

Powdery Mildew Disease of Crucifers: Biology, Ecology and Disease Management

Powdery Mildew Disease of Crucifers: Biology, Ecology and Disease Management Govind Singh Saharan • Naresh K. Mehta Prabhu Dayal Meena

Powdery Mildew Disease of Crucifers: Biology, Ecology and Disease Management

Govind Singh Saharan Department of Plant Pathology CCS Haryana Agricultural University Hisar, Haryana, India

Prabhu Dayal Meena Crop Protection Unit, ICAR-Directorate of Rapeseed-Mustard Research Bharatpur, Rajasthan, India Naresh K. Mehta Department of Plant Pathology CCS Haryana Agricultural University Hisar, Haryana, India

ISBN 978-981-13-9852-0 ISBN 978-981-13-9853-7 (eBook) https://doi.org/10.1007/978-981-13-9853-7

© Springer Nature Singapore Pte Ltd. 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Foreword

Crucifers are crops grown all over the world in temperate, cool temperate, continental, and sub-tropical regions. Economically important crucifers include oil yielding, vegetable, fodder, and horticultural Brassica crops. Several weeds also belong to family Cruciferae. The crucifer Brassica vegetables constitute major source of vitamins, fiber, minerals, and proteins in human diet, while *Brassica* oilseeds are major source of quality vegetable oil and cake for animal feed. The demand for Brassica vegetables and oil is consistently increasing every year all over the globe. Crucifer crops are threatened by several biotic and abiotic stresses under variable and changing climatic conditions wherever these are cultivated. Out of biotic stresses, powdery mildew (belonging to Erysiphales) is the most widespread and devastating disease causing yield losses both quantitatively and qualitatively. It has been reported that it is capable of causing up to 90 percent loss in oil quality and up to 7 percent in quantity. Powdery mildew being a favorable host-pathogen system has been largely exploited as model for basic research on host-parasite interactions, developmental morphology, cytology, and molecular biology to detect effective proteins/genes governing different biological functions. Arabidopsis thaliana has been widely used as a tool for molecular and genetic studies. This book *Powdery Mildew Disease of Crucifers: Biology, Ecology and Disease Management* is a comprehensive treatise on important disease of crucifers encompassing most of the published information. The information in this book has been arranged in 11 different chapters with appropriate headings and subheadings. Photographs, graphs, figures, tables, and references stimulate interest and better comprehension of the description on the disease. This book provides much needed background and current information projecting future priorities, areas of research, and methodologies. It ensures its place as a central document necessary for the Brassicalogists of the world for further investigations on this host parasite system.

The book has been crafted as the most useful document with a wide range of logically organized and easily accessible information. The authors have already contributed books on Sclerotinia diseases, White rust disease, *Alternaria* diseases, and downy mildew diseases of crucifers published by Springer. I congratulate Drs. G. S. Saharan, Naresh Mehta, and P. D. Meena for bringing out this publication which is an addition to the series and outcome of their lifelong professional interest and expertise. I am sure it will be useful for researchers, teachers, students, extension experts, industrialists, and farmers.

Honorary Professor Panjab University Chandigarh, India S.S. Chehr

S. S. Chahal

Former Vice-Chancellor MPUA&T Udaipur, Rajasthan, India

Preface

Powdery mildews are one of the world's most frequently encountered pathogenic fungi causing quantitative and qualitative yield losses in all kinds of annual and perennial, horticultural and ornamental, cash, and industrial crops, forest trees, shrubs, grasses, and all kinds of vegetation in tropical, sub-tropical, and temperate regions of the world. It is fourth most widespread and devastating disease on cruciferous crops causing yield losses up to 90 percent with loss in oil quality and up to 7 percent in rapeseed-mustard quantity. Powdery mildews are often very conspicuous owing to their profuse production of conidia on the host surface in the form of white granular coating giving them their common name. Powdery mildews are also favorable host-pathogen system as model for basic research on host-parasite interactions, developmental morphology, cytology, and molecular biology to dissect effector proteins/genes governing different biological functions. This book *Powdery* Mildew Disease of Crucifers: Biology, Ecology and Disease Management is a comprehensive treatise on the fourth most important disease of crucifers encompassing all the published information which will be useful for researchers, teachers, students, extension experts, industrialists, and farmers. The information has been arranged in 11 chapters with appropriate headings and subheadings, illustrations, photographs, graphs, figures, tables, histogram, colored plates of micrographs, electron micrographs, and flow charts for effective and stimulating comprehension by the readers. The different chapters of the book include detailed information on the status of disease and pathogen; the disease, its distribution, symptomatology, host range, yield losses, and disease assessment; pathogen, its taxonomy, morphology, phylogeny, variability, sporulation, survival, and perpetuation; spore germination, infection, pathogenesis, disease cycle, epidemiology, forecasting, and fine structures; mechanisms of host resistance, biochemical, histological, genetic, and molecular including cloning and mapping of R genes; sources of resistance, disease resistance breeding strategies, and genetics of host-parasite interactions; disease management through cultural, chemical, biological, host resistance, and integrated approach; and standardized reproducible techniques. Although we have taken every

care to seek permission from the authors/publishers to include their valuable contributions in this book, nevertheless inadvertently for any error, we humbly request to excuse us. All sources have been duly acknowledged. We owe the responsibility for any error or omission and are open to include your suggestions in the revised editions.

Hisar, Haryana, India Hisar, Haryana, India Bharatpur, Rajasthan, India Govind Singh Saharan Naresh K. Mehta Prabhu Dayal Meena

Acknowledgments

Authors are very grateful to the following persons/scientists/publishers/societies/ journals/institutes/websites and all others whose valuable materials such as photographs (macroscopic, microscopic, electron micrographs, scanning electron micrographs), drawings, figures, histograms, graphs, tables, flow charts, etc. have been used through reproduction in the present document. The details of the author(s)/ source(s) from where the material was adopted can be obtained from the reference section of the book.

A. Persons/Scientists

Acevedo-Garcia Johanna Adam L. Agrawal Ranjana Ali Sajad Alkooranee Jawadayn Talib Allen R.L. Ausubel F. Barbetti M. Braun U. Chattopadhyay C. Choi Hyong Woo Ciola Victoria Lyn Cook R.T.A. Dange S.R.S. Desai A.G. Frye Catherine A. Gollner K. Griffiths Phillip D. Hirata T. Hoewing Timo Innes Roger W. Koch E.

Kohire O.D. Kuhn Hannah Kumar A. Lipka Ulrike Liu Simu Lomate C.B. Mert-Turk Figen Micali C.O. Pandey S.P. Panstruga Ralph Petkova M. Plotnikova Julia M. **Ouentin Michaël** Ramonell K.M. Reuber T.L. Slusarenko A.J. Somerville S. Somssich I. Uloth M.B. Vellios Evangelos Vogel John P. Weis Corina Weßling Ralf Xiao Shunyuan Yarwood C.E.

B. Journals

Agricultural Science and Technology Botanica Helvetica **CBS** Biodiversity Series Cellular Microbiology **Crop** Protection Current Opinion in Plant Biology Frontiers in Plant Science International Journal of Advanced Research International Journal of Plant Protection Journal of Experimental Botany Journal of Oilseed Brassica Journal of Plant Diseases and Protection Mausam Molecular Plant-Microbe Interactions Molecular Plant Pathology Mycological Research Mycological Society of America **Mycopathologia**

New Phytologist Nova Hedwigia Plant Breeding The Plant Cell Plant Disease Research Plant Methods Plant Pathology Plant Pathology Journal PLOS One Proceedings of the National Academy of Sciences of the United States of America Scientific Reports The Arabidopsis Book The Plant Journal Trends in Biosciences Journal World Applied Sciences Journal

Websites

http://www.ncbi.nl.nih.gov/ www.genevestigator.com https://www.genevestigator.ethz.ch/andATGenExpress (http://www.arabidopsis. org/info/ expression/ATGenExpress.jsp)

Publishers

Academic Journals Blackwell Science Ltd CABI CSIRO Publishing Elsevier John Wiley & Sons Inc. Kluwer Academic Publishers Oxford Academic Springer Taylor & Francis Group

Institutions

Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Canada Canadian Phytopathological Society CCS Haryana Agricultural University, Hisar, India Global Council for Innovation in Rapeseed and Canola (GCIRC) ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, India Indian Council of Agricultural Research, India Indian Phytopathological Society Indian Society of Mycology and Plant Pathology International Development Research Centre, Ottawa, Ontario, Canada Mycological Society of America University of Arizona, School of Plant Sciences, USA Society for Rapeseed-Mustard Research The American Phytopathological Society The Australasian Plant Pathology Society The British Society for Plant Pathology The Korean Society of Plant Pathology

Databases

MycoBank, International Mycological Association

Systematic Mycology and Microbiology Laboratory Fungal Database, US Department of Agriculture

Contents

1	Powd	lery Mildew Perspective	1	
	1.1	Introduction	1	
	1.2	Status of Powdery Mildews	2	
	1.3	Powdery Mildew of Crucifers	3	
	1.4	Economic Importance	4	
	1.5	Concepts for Names in Powdery Mildews	5	
	1.6	Discontinuation of Dual Nomenclature of Pleomorphic Fungi	6	
	1.7	Powdery Mildew as Biocontrol Agent	7	
	1.8	Hyperparasites of Powdery Mildews		
	1.9	Impact of Climate Change on Powdery Mildews	9	
	1.10	Genetical and Molecular Mechanisms of Crucifer's		
		Powdery Mildew Pathogenesis and Host Resistance	9	
	1.11	Exploitation of Non-host Resistance (NHR) to Powdery		
		Mildews	12	
	Refer	ences	12	
2				
2	The I	Disease: Powdery Mildew	17	
2	The I 2.1			
2		Introduction	17	
2	2.1	Introduction	17 17	
2	2.1	Introduction Symptomatology 2.2.1 Rapeseed–Mustard	17 17	
2	2.1	Introduction Symptomatology 2.2.1 Rapeseed–Mustard 2.2.2 Crucifer Vegetables	17 17 18	
2	2.1	Introduction Symptomatology 2.2.1 Rapeseed–Mustard 2.2.2 Crucifer Vegetables 2.2.3 Chinese Cabbage	17 17 18 21 21	
2	2.1	Introduction Symptomatology 2.2.1 Rapeseed–Mustard 2.2.2 Crucifer Vegetables 2.2.3 Chinese Cabbage 2.2.4 Taramira (Eruca sativa)	17 17 18 21 21 23	
2	2.1	IntroductionSymptomatology2.2.1Rapeseed–Mustard2.2.2Crucifer Vegetables2.2.3Chinese Cabbage2.2.4Taramira (Eruca sativa)2.2.5Thale Cress Weed (Arabidopsis thaliana)	17 17 18 21 21 23 23	
2	2.1	IntroductionSymptomatology2.2.1Rapeseed–Mustard2.2.2Crucifer Vegetables2.2.3Chinese Cabbage2.2.4Taramira (Eruca sativa)2.2.5Thale Cress Weed (Arabidopsis thaliana)2.2.6African Mustard (Malcolmia africana)	17 17 18 21 21 23 23 24	
2	2.1	IntroductionSymptomatology2.2.1Rapeseed–Mustard2.2.2Crucifer Vegetables2.2.3Chinese Cabbage2.2.4Taramira (Eruca sativa)2.2.5Thale Cress Weed (Arabidopsis thaliana)2.2.6African Mustard (Malcolmia africana)2.2.7Gold of Pleasure (Camelina sativa)	17 17 18 21 23 23 24 24	
2	2.1	IntroductionSymptomatology2.2.1Rapeseed–Mustard2.2.2Crucifer Vegetables2.2.3Chinese Cabbage2.2.4Taramira (Eruca sativa)2.2.5Thale Cress Weed (Arabidopsis thaliana)2.2.6African Mustard (Malcolmia africana)2.2.7Gold of Pleasure (Camelina sativa)2.2.8Rutabagas (<i>Brassica napus ssp. rapifera</i>)	17 17 18 21 23 23 24 24 26	
2	2.1 2.2	IntroductionSymptomatology2.2.1Rapeseed–Mustard2.2.2Crucifer Vegetables2.2.3Chinese Cabbage2.2.4Taramira (Eruca sativa)2.2.5Thale Cress Weed (Arabidopsis thaliana)2.2.6African Mustard (Malcolmia africana)2.2.7Gold of Pleasure (Camelina sativa)2.2.8Rutabagas (<i>Brassica napus ssp. rapifera</i>)	17 17 18 21 23 23 24 24 26	
2	2.1 2.2	IntroductionSymptomatology2.2.1Rapeseed–Mustard.2.2.2Crucifer Vegetables2.2.3Chinese Cabbage.2.2.4Taramira (Eruca sativa)2.2.5Thale Cress Weed (Arabidopsis thaliana)2.2.6African Mustard (Malcolmia africana)2.2.7Gold of Pleasure (Camelina sativa)2.2.8Rutabagas (<i>Brassica napus ssp. rapifera</i>)Geographical Distribution2.3.1Geographical Distribution of Rapeseed–Mustard		

	2.5	Yield I	Losses
	2.6	Diseas	e Assessment
	Refe	rences	
3	The	Pathoge	n
5	3.1	-	uction
	3.2		Organisms
	3.3		fication
	3.4		omy and Nomenclature
	5.4	3.4.1	Delimitation of the Genus <i>Erysiphe</i>
		3.4.2	The Position of <i>Erysiphe graminis</i> (Sect. <i>Blumeria</i>)
		3.4.3	Erysiphe emend. nov.
		3.4.4	Generic Structure of <i>Erysiphe</i>
		3.4.5	Sect. Erysiphe
		3.4.5	Sect. <i>Erystphe</i>
		3.4.0	Erysiphaceae: A Survey of the Genera
		3.4.7	The Relationships Within the Family: A Hypothesis
	3.5		al Morphology
	5.5	3.5.1	Morphology of the Pathogen on <i>Brassica</i> Species
		3.5.2	Morphological Characteristics of the Asexual State
		5.5.2	of Powdery Mildew Isolates on <i>Arabidopsis</i>
		3.5.3	Conidial Germination
	3.6		genetics
	5.0	3.6.1	Sequence Analysis of the ITS rDNA
		3.6.2	Sequence Comparison of DNA Encoding the 5.8S
		5.0.2	rRNA, ITS1, and ITS2
	3.7	Powde	ry Mildew Pathogen Genomics and Transcriptomes
	3.8		enic Variability
		-	
4			thogenesis, and Disease Cycle
	4.1		uction
	4.2		on and Pathogenesis
		4.2.1	Infection and Pathogenesis of Arabidopsis Powdery
			Mildew
		4.2.2	Genetic Factors (Genes) Affecting Arabidopsis
			Powdery Mildew Pathogenesis
		4.2.3	Role of MLO Proteins (Genes) in Arabidopsis
			Powdery Mildew Pathogenesis
		4.2.4	Host Transcriptional Changes as an Indicator
			to Powdery Mildew Pathogenesis
		4.2.5	Transcriptional Programming of Powdery Mildew
			Pathogenesis
		4.2.6	Genes Governing Powdery Mildew Pathogenesis
			of Host

Contents

		4.2.7 Function of Lifeguard Protein (<i>LGP</i>) in Powdery	
		Mildew Pathogenesis	113
		4.2.8 Gene Expression Levels of Healthy Crucifers	
		and Powdery Mildew-Infected Plants	114
		4.2.9 Regulation and Expression of Genes in Response	
			116
	4.3		116
		4.3.1 General Powdery Mildew Disease Cycle	116
			119
			120
	4.4	Determinant Factors for Crucifer's Powdery Mildew	
		Infection and Pathogenesis	124
	Refe	0	124
_	D !	Characterization I Electron MC-management	101
5			131
	5.1		131
	5.2	Pathogenesis of <i>Erysiphe cruciferarum</i> Observed	100
	5.2	-	132
	5.3	Pathogenesis of <i>Erysiphe orontii</i> Observed Through	104
	5 4	0 1	134
	5.4	Pathogenesis of <i>E. cichoracearum</i> Observed Through	107
			137
	5.5	Location and Amount of Chitin in Powdery Mildew	1.40
	D.C	8 8	142
	Refe	rences	142
6	Epid	lemiology and Disease Forecasting	145
	6.1		145
	6.2	Disease Development in Relation to Environmental	
		Conditions	146
		6.2.1 Influence of Weather Variables on Cleistothecial	
		Formation	147
	6.3	Disease Development in Relation to Host Age	
			148
	6.4	Disease Development in Relation to Date of Sowing	
			151
	6.5	Disease Development in Relation to Crop Growth Stage	161
	6.6		161
	6.7	Congenial and Critical Factors for Crucifers Powdery	
			168
	6.8		168
			169
		6.8.2 Multilayer Perception (MLP) and Radial Basis	
		Function (RBF) Architecture-Based Neural	
			170

		6.8.3	Performance Measure	170
		6.8.4	The Forms of Two Indices	173
	Refe	rences		174
7	Host	Resistan	nce	177
	7.1		ction	177
	7.2	Structur	ral and Functional Components of Host Resistance	178
	7.3		netration Resistance Mechanisms	181
		7.3.1	Role of Papilla Formation	181
		7.3.2	Role of Callose Deposition	182
		7.3.3	Role of Extracellular Deposition of Proteins	
			into Papillae	184
		7.3.4	Role of Silicon-Mediated Resistance	185
	7.4	Post-pe	netration Resistance Mechanisms	185
		7.4.1	Role of Enhanced Disease Resistance (EDR) Genes	189
		7.4.2	Role of Powdery Mildew-Resistant Mutant (PMR)	
			Genes	190
		7.4.3	Role of Powdery Mildew-Resistant Genes	191
		7.4.4	Role of R Genes in Pre- and Post-pathogenesis	
			Resistance	192
		7.4.5	Role of Powdery Mildew R Genes Through Altered	
			Cell Wall Composition of Hosts	194
		7.4.6	Roles of Salicylate, NPR1, PAD4, and EDS5 in	
			Powdery Mildew Resistance to Arabidopsis	196
		7.4.7	Role of Chitin Gene to Powdery Mildew Resistance	199
		7.4.8	Role of Arabidopsis Powdery Mildew-Resistant	
			Genes in Hypersensitivity	201
		7.4.9	Role of NPR1 Gene in Resistance to Powdery	
			Mildew	204
		7.4.10	Role of MAP65-3 Gene in Powdery Mildew	
			Resistance	209
		7.4.11	Role of Receptor-Like Cytoplasmic Kinases	
			in Powdery Mildew Resistance	211
		7.4.12	Arabidopsis Triple Mutants (mlo2 , mlo6 , and mlo12)	
			Mechanism of Resistance to Powdery Mildew	213
		7.4.13	Role of KDEL (At CEP1) in Arabidopsis	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	to Powdery Mildew Resistance	216
		7.4.14	Expression of Genes for Camalexin Synthesis	
			for Powdery Mildew Resistance	218
	7.5	Molecu	iles (Phytohormone) Related to Defense Signaling	210
			VS	222
		7.5.1	Role of Salicylic Acid-Mediated Signaling	
			to Powdery Mildew Resistance	222

Contents

	7.5.2	Role of Jasmonic Acid (JA)- and Ethylene	
		(ET)-Mediated Signaling to Powdery	
		Mildew Resistance	225
	7.5.3	Role of WRKY Transcription Factors to Powdery	
		Mildew Resistance: Expression of Resistance	
		Genes or Defense-Related Genes	226
7.6	Molecu	Ile (Hormone) Signaling-Induced Transcriptional	
		ramming During R to Powdery Mildew	227
	7.6.1	Harmonious Coordination Between Transcriptional	
		Regulation and R to Powdery Mildew	229
	7.6.2	Transcription Factors and Gene Regulation	
		for Powdery Mildew Resistance	231
	7.6.3	Transcriptional (Genes) Regulation and Expression	-01
	1.0.5	in Response to Powdery Mildew Infection	232
7.7	Role of	<i>Trichoderma</i> in Systemic Resistance to Powdery	202
/./			235
7.8		nisms of Non-host Resistance in Crucifers	233
7.0		dery Mildew	236
	7.8.1	Arabidopsis NHR and Compatibility to Powdery	250
	7.0.1	Mildews.	239
	7.8.2	Mechanisms of Powdery Mildew Penetration	239
	7.0.2	Control	240
	7.8.3	Mechanism of Post-penetration Defense	240
	7.8.3	Components of Non-host Resistance	244
7.9		components of Non-nost Resistance	243 247
1.9		Inheritance of Resistance in <i>Brassica</i> to Powdery	247
	7.9.1	· · · · · · · · · · · · · · · · · · ·	247
	702	Mildew	247
	7.9.2	Evaluation of Different Families of Plant Progenies	240
	702	for Resistance to Powdery Mildew	248
	7.9.3	Inheritance of Resistance in <i>Arabidopsis</i> to Powdery	2.40
		Mildew	249
	7.9.4	Inheritance of Enhanced R in Arabidopsis	255
	7.9.5	Inheritance of Resistance in Arabidopsis Mutants	
		to Powdery Mildew	256
7.10		enic Resistance	259
7.11		mical Basis of Resistance	261
	7.11.1	Induction of Biochemical Metabolites	264
	7.11.2	Role of Camalexin in Powdery Mildew Resistance	265
7.12		er of Powdery Mildew Resistance Through Embryo	
			267
7.13	Sources	s of Powdery Mildew Resistance	268
	7.13.1	Sources of Slow Mildewing Resistance	270
	7.15.1	Sources of Slow Mildewing Resistance	272

8	Disea	se Management	297
	8.1	Introduction	297
	8.2	Chemical (Fungicidal) Control	297
	8.3	Effect of Nitrogen and Fungicides on Quality	
		of Oilseed Rape	309
	8.4	Cultural Control	310
	8.5	Biological Control	317
	8.6	Host Resistance	318
	8.7	Integrated Disease Management	318
	Refer	ences	319
9	Techi	niques	323
	9.1	Introduction	323
	9.2	Collection, Preservation, and Cultivation of Crucifer's	
		Powdery Mildew	323
	9.3	Artificial Inoculation	324
	9.4	Molecular Identification of Anamorphic Powdery	
		Mildews (Erysiphales)	324
		9.4.1 Primer Design and Test Specimen Methods	325
		9.4.2 DNA Extraction and PCR	325
		9.4.3 Anamorph–Teleomorph Connection	326
	9.5	Light and Scanning Electron Microscopy	326
		9.5.1 Examination of Fungal Development	327
		9.5.2 Light Microscopy	327
		9.5.3 Scanning Electron Microscopy	328
	9.6	DNA Sequence Analysis	328
	9.7	Use of qPCR and Spore Count Assays to Quantify	
		Powdery Mildew	328
		9.7.1 Plant Material and Inoculation Methods	333
		9.7.2 Staining and Microscopy	334
		9.7.3 Genomic DNA Extraction	334
		9.7.4 Quantitative Real-Time PCR	334
		9.7.5 Spore Counts	335
	9.8	Embryo Rescue Technique to Transfer Powdery Mildew	
		Resistance	335
	9.9		335
	9.10	Histological Assessment of <i>E. cruciferarum</i> Growth	336
	9.11	Maintenance of Erysiphe cruciferarum Isolates	338
	9.12	Characterization of the Disease Reaction Phenotypes	339
	9.13	Disease Scoring Scales	339
	References		
10	Powd	ery Mildew Epilog	341
	10.1	Introduction	341
	10.1	The Disease: Powdery Mildew	342
		· · · · · · · · · · · · · · · · · · ·	

	10.3	The Pathogen	342
	10.4	Infection, Pathogenesis, and Disease Cycle	343
	10.5	Fine Structures and Electron Microscopy	344
	10.6	Epidemiology and Disease Forecasting	345
	10.7	Host Resistance	345
	10.8	Disease Management	346
		Techniques	347
		Research Gaps	347
		ence	347
11	Futur	re Research Priorities of Crucifer's Powdery Mildew	349
Ind	ex		353

About the Authors

Prof. (Dr.) Govind Singh Saharan, former Professor and Head, Department of Plant Pathology, retired from the active service in 2002. He did his B.Sc. Agriculture (1965) and M.Sc. Agriculture (1967) from SKN College of Agriculture, Jobner, University of Udaipur, and Ph.D. (1977) from Himachal Pradesh University, Palampur, India. He served as Lecturer (1967–1976) and Assistant Professor (1976-1980) at HPKV, Palampur, and as Associate Professor (1980–1988), Professor (1988–2002), and Professor and Head (2002) at the Department of Plant Pathology, CCS Haryana Agricultural University, Hisar. He has been a Visiting Professor at the Department of Plant Sciences, University of Alberta, Edmonton, Canada (1991 and 1994); Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Canada (1991, 1994, 1997); and Rothamsted Research, IACR, Harpenden, UK (1994 and 1997).

Dr. Saharan has more than 250 research publications in journals of national and international repute. He has been Editor of books, such as Diseases of Oilseed Crops. Annual Review of Plant Pathology, Phytopathological Techniques, Plant Pathology at a Glance, and Plant Pathological Research Problems and Progress, and Author of books such as Diseases of Oilseed Crops (in Hindi); Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management; White Rust of Crucifers: Biology, Ecology and Management; Alternaria Diseases of Crucifers: Biology, Ecology and Disease Management; and Downy Mildew Disease of Crucifers: Biology, Ecology

and Disease Management. He has authored monographs on white rust, *Alternaria* blight, and downy mildew diseases of rapeseed-mustard, including 5 bibliographies and 40 review articles in books. He is on the Panel of Experts of State Agricultural Universities, Indian Council of Agricultural Research, Central Scientific and Industrial Research, University Grant Commission, and Department of Biotechnology in India. He has contributed immensely in the preparation and release of Crop Protection Compendium (2002), CAB International, UK. He has guided three M.Sc. and eight Ph.D. students who are well-established scientists at different universities and research organizations in India and abroad.

Dr. Saharan has conducted research in diverse fields of plant pathology including standardization of artificial inoculation techniques, identification of sources of resistance, determination of pathogenic variability, genetics of host-parasite interaction, epidemiology, and management of several diseases. He has been President (North Zone) of the Indian Phytopathological Society (2001), Editor-in-Chief of the Journal of Mycology and Plant Pathology (1999–2000) and Journal of Oilseed Brassica (2012 to date), and President of the Indian Society of Mycology and Plant Pathology (2009). He has also played a major role in the organization of the global and Asian congress by the leading Phytopathological Societies of India. He has been Member of ORT, ICAR, New Delhi, for the Soybean (2010) and Rapeseed-Mustard (2015). He has been awarded with Y. L. Nene Outstanding Plant Pathology Teacher Award (2015) by the Indian Society of Mycology and Plant Pathology, Udaipur, India. He has been bestowed with Life Time Achievement Award (2017) for his outstanding research leadership and expertise in Oilseed Brassica Research by the Society for Rapeseed-Mustard Research, Bharatpur, India.

Prof. (Dr.) Naresh Kumar Mehta completed his B.Sc. Agriculture (Hons.) in 1978 and M.Sc. Plant Pathology in 1980 from Haryana Agricultural University, Hisar. He obtained his Ph.D. degree in 1993 in Plant Pathology from CCS HAU, Hisar, under the guidance of Dr. G. S. Saharan. During his study, he attained his first position in elective Plant Protection at Bachelor's degree level. He is the recipient of Excel Industries Ltd., Bombay, India, Award as Research Fellowship for Master's degree program and "Senior Research Fellowship" (SRF) Award to pursue his Ph.D. program by the Council of Scientific and Industrial Research (CSIR), New Delhi. He was awarded Ms. Manju Utereja Memorial Gold Medal for best Ph.D. thesis (1993–1994).

Dr. Mehta joined as Assistant Scientist (Plant Pathology) in 1981, Scientist/Associate Professor in 1994, and Professor in 2002 at CCS, HAU, Hisar. He was Co-Principle Investigator in the scheme "Pathogenic variability and epidemiology of Alternaria Brassicae" funded by ICAR, New Delhi.

He has been teaching Plant Pathology courses to undergraduate and postgraduate students. He has guided five M.Sc. (Plant Pathology) and two Ph.D. students and was Member of many students' advisory committees. He is the Recipient of Best Poster Paper Award for the year 2005 by the INSOPP and Indian Phytopathological Society (NZ). His students have been awarded P.R. Verma M. Sc. Student Thesis Award for the year 2009 by the Indian Society of Mycology and Plant Pathology and M.J. Narasimhan Academic Awards (NZ) by Indian Phytopathological Society, New Delhi, for the year 2010.

He has conducted research in diverse fields of plant pathology covering pathogenic variability, genetics of host-pathogen interaction, epidemiological studies, identification of resistant sources, biochemical/genetic basis for resistance, residual analysis of fungicides, and disease management.

Dr. Mehta was Member of Expert Committee, UGC, New Delhi, for 12 B status for The Gandhigram Rural Institute-Deemed University, Gandhigram, Tamil Nadu.

Dr. Mehta is one of the editors of the book entitled Diseases of Oilseed Crops published by Indus Publishing Co., New Delhi, and one of the authors of three books, i.e., *Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management, Alternaria Diseases of Crucifers: Biology, Ecology and Disease Management*, and *Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management* published by Springer. He has published more than 100 research papers in the journals of national and international repute. In addition, 11 review articles, 20 book chapters, 10 practical manuals, 26 lead lectures in the conferences, 91 research paper presentations in the conferences, 35 popular articles, and 13 radio/TV talks are to his credit.

Dr. Mehta is Fellow of the Indian Phytopathological Society (FPSI), New Delhi; the Indian Society of Plant Pathologist (FINSOPP), Ludhiana; and the Indian Society of Mycology and Plant Pathology (FISMPP), Udaipur. He has been on the editorial board of the Indian Phytopathological Society (2012–2013; 2017–2019), Councilor (North Zone) of ISMPP (2005, 2011), Member of the editorial board (2012–2014), and Editor-in-Chief during 2014. He is also Member of the editorial board of the Indian Society of Plant Pathologist, Ludhiana (2017–2018).

Dr. Mehta has been a Visiting Scientist at the University of Alberta, Edmonton, Canada, in 1999 and as a FAO Fellow and presented a research paper in 8th International Congress of Plant Pathology at Christchurch, New Zealand, in 2002. He was invited to deliver lectures in the 9th International Congress of Plant Pathology at Torino, Italy, in 2008, and in the 5th International Conference on Plant Pathology "Plant Pathology in the Globalized Era," New Delhi, in 2009. He has delivered lead lecture in the 3rd Global Conference "Plant Pathology for Food Security" during 2012 with several lead lectures in the national conferences held from time to time.

Dr. Prabhu Daval Meena is working as Principal Scientist (Plant Pathology) at the ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India. He started his carrier in the Indian Council of Agricultural Research in 1989 as a Senior Technical Assistant at Central Soil and Water Conservation Research and Training Institute, Dehradun. He obtained his B.Sc. Agriculture (1987) from the University of Rajasthan, Jaipur; M.Sc. Agriculture and Plant Pathology (1997) from Rajasthan Agricultural University, Bikaner; and Ph.D. in Botany (2005) from the University of Rajasthan, Jaipur. He has developed garlic bulb aqueous extract (2 % w/v) as botanical product for control of Sclerotinia rot and Alternaria blight diseases of mustard. He has identified, namely, white rust resistance genotypes NRCDR 515, DRMR 2019, DRMR 2035 and involved in the development of NRCDR-02, NRCHB-506, NRCHB-101, NRCDR-601 cultivars of Brassica juncea, and NRCYS-05-2 of B. rapa ssp. yellow sarson. He developed weather-based forecasting models for rapeseedmustard diseases. He has also developed screening methods for different diseases of oilseed Brassica. Dr. Meena published more than 85 research papers, 5 reviews, and 13 book chapters in international and national reputed refereed journals and is also one of the authors of the 6 books entitled Principles of Plant Breeding, White rust of crucifers: Biology, Ecology and Management; Alternaria blight of crucifers: Biology, Ecology and Management; Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management; Brassica Oilseeds Breeding and Management; and Climate Change and Sustainable Agriculture. He has been a Member of Monitoring Team for All India Coordinated Research Project on Rapeseed Mustard during 2004–2019.

Dr. Meena honored as a Fellow of the Indian Society of Mycology and Plant Pathology and Fellow of the Plant Protection Association of India and has also been awarded with Dr. P.R. Kumar Outstanding Brassica Scientist Award in 2011, Brassica Gold Medal 2019 by the Society for Rapeseed-Mustard Research. He has served as Councilor of the Plant Protection Association of India, the Founder Secretary of the Society for Rapeseed-Mustard Research since 2008, and Managing Editor (2012–2019) for the *Journal of Oilseed Brassica*.

Dr. Meena has been a Principal Investigator (PI) and Co-PI for ICAR-Outreach Programme on Diagnosis and Management of Leaf Spot Diseases in Field and Horticultural Crops (2009–2013), ICAR-Network Project on Transgenics in Crops (Functional Genomics Component for *Alternaria* and Drought), and National Network for Management of *Alternaria* blight in *Brassica juncea* and Vegetable Crops (2004–2008), All India Coordinated Research Project on Rapeseed-Mustard (2017 to continue).

He undertook 3 months of research attachment training (2007) at the Rothamsted Research, Harpenden, UK, under Indo-UK Collaborative Research on Oilseed Brassica crops. He has supervised nine M.Sc. students and co-supervised one Ph.D. student.

Abbreviations

%	Percent
/	Per
@	At the rate of
~	Tilde
<	Less than
=	Is equal to
>	More than
\geq	Greater than or equal to
μl	Microliter
μm	Micrometer
μmol	Micromoles
4M13G	4-methoxy-indol-3-ylmethyl-glucosinolate
a.i.	Active ingredient
AAA- ATpase	ATpase associated with diverse cellular activities
ABA	Abscisic acid
ABC	ATP-binding cassette
ADFs	Actin depolymerizing factors
AICRPRM	All India Coordinated Research Project on Rapeseed and
	Mustard
ALD	Aminotransferase AGD2-like defense response protein
AM fungi	Arbuscular mycorrhizal fungi
ANN	Artificial neural network
ARF-GAP	ARF-GTPase-activating protein
ARF-GEF	ADP ribosylation factor-GTP exchange factor
At	Arabidopsis thaliana
At STP	Arabidopsis sugar transport protein
ATAF	Arabidopsis thaliana activating factor
ATG	Autophagy-related gene
ATL	Arabidopsis toxicos en levadura
AUDPC	Area under the disease progress curve
Avp. E	Evaporation evening

Avp. M	Evaporation morning
Avp. M Avr	Avirulence
BC	Backcross
BC/Ratio	Benefit-cost ratio
BDM	2,3-butanedione monoxime
BEC	Bgh effector candidate
Bgh	Blumeria graminis f. sp. hordei
bHLH	Basic helix-loop-helix
BI-1	Bax inhibitor -1-(endoplasmic reticulum-resident cell death
ממענים	suppressor)
BjNPR	Brassica juncea NPR
CA	Constitutively activated
CAM	Calmodulin
CAPS	Cleaved amplified polymorphic sequence
CCaMKs	Calcium/calmodulin-dependent protein kinases
CD	Critical difference
CDC	Cell division control protein
cDNA	Complementary DNA
CDPK	Calcium-dependent protein kinase
CEP	Constitutive expression of protein
CEP	Cysteine endopeptidase
CERK	Chitin elicitor receptor kinase gene
CESA	Cellulose synthase
CEV	Constitutive expression of VSP
CF	Culture filtrate
CFU	Colony-forming unit
CH_4	Methane
CHI	Chitinase
CHIP	Chromatin immunoprecipitation
cm	Centimeter
CML	Calmodulin-like
CO_2	Carbon dioxide
COI	Coronation-insensitive protein
Conc.	Concentration
CPR	Constitutive expression of PR genes
CV	Coefficient of variation
CV.	Cultivar
CVS.	Cultivars
CWAs	Cell wall apposition
CY	Cytochrome
Cys EPs	Cysteine endopeptidases
DA	Ubiquitin receptor (DA is Chinese for large)
dai	Days after inoculation
DAMPs	Damage-associated molecular patterns
DAPG	2-4-Diacetyl-phloroglucinol

DAR	DA-related
DAR Dec.	December
DEL1	Loss of function mutation of DP-E2F-like 1
diam	Diameter
dpi	Days post-inoculation
DR	Disease reaction
DSI	Disease severity index
e.g.	For example
EC	Emulsifiable concentrate
EDR	Enhanced disease resistance
eds	Enhanced disease susceptibility
EHM	Extra-haustorial membrane
EIN	Ethylene-insensitive
ER	Endoplasmic reticulum
ERF	Ethylene response factor
ET	Ethylene
et al	<i>et</i> alia
ETI	Effector-triggered immunity
ETL	Economic threshold level
ETR	Encoding a transmembrane protein kinase with a LRR domain
f. sp.	Fungal forma specialis
F1 GHs	Family-1 glycoside hydrolases
FLS	Flagellin-triggered signaling
FS	Foliar spray
FYM	Farmyard manure
GAAP	Golgi anti-apoptotic protein
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GBP	Glutamate-binding protein
Gc	Golovinomyces (Syn. Erysiphe) cichoracearum
GFP	Green fluorescent protein
GHGs	Greenhouse gases
gm	Gram
Go	Golovinomyces (Syn. Erysiphe) orontii
GRX/ROX	TGA-interacting glutaredoxin
GSL	Glucosinolate
GSL	Glucan synthase-like
GSNOR	S-nitrosoglutathione reductase
Gy	Gyro
ha	Hectare
hpi	Hours post-inoculation
hr	Hours
HR	Hypersensitive response
HS	Highly susceptible
i.e.	That is
	Indole-3-acetic acid
IAA	חונטוב-ג-מכנוני מכוע

TAN	In dala 2 acetanitrila
IAN	Indole-3-acetonitrile
IAOx	Indole-3-acetaldoxime
ICM	Integrated crop management
ICN	International Code of Nomenclature for algae, fungi, and plants
ICS	Isochorismate synthase
IDM	Integrated disease management
INR	Indian Rupees
IPM	Integrated pest management
IR	Induced resistance
ISR	Induced systemic resistance
ITS	Internal transcribed spacer
JA	Jasmonic acid
JAZ	Jasmonate ZIM-domain protein
kb	Kilobyte
KDEL-CysEPs	C-terminal KDL endoplasmic reticulum retention signal with
HDEE CysErs	cysteine endopeptidases from Castor bean
KEG	Keep on going
km	Kilometer
L.s.d.	Least significant difference
LFG	Life guard proteins
LIN	Lesion initiation
LM	Light microscopy
LYK	Lysine motif receptor-like kinase
LYK LysM RLK	Receptor-like kinase gene
M	Mutant
MAPKK	Mitogen-activated protein kinase kinase
MAMPs	Microbe-associated molecular patterns
MAPE	Mean absolute percentage error
MAPK	Mitogen-activated protein kinase
MAPs	Microtubule-associated proteins
Max.	Maximum
Mbp	Genome size megabase pair
MGH	Massachusetts General Hospital isolate of powdery mildew
min	Minute
Min.	Minimum
ml	Milliliter
MLO	Mildew resistance locus
MLOs	Mycoplasma-like organisms
MLP	Multilayer perception
mm	Millimeter
MR	Moderately resistant
MS	Moderately susceptible
MT	Microtubule
MYB	Myeloblastosis
N/A	Not available

N_2O	Nitrous oxide
NB-LRRs	Nucleotide binding site-leucine-rich repeats
NDR	Non-race-specific disease resistance
NEM	<i>N</i> -ethylmaleimide
ng	Nanogram
NHR	Nonhost resistance
NNM	Neural network models
Nov.	November
NPR	Non-expression of PR genes
NS	Nonsignificant
°C	Degree Celsius
Oct.	October
OECs	Go effector candidates
ORA	Octadecanoid-responsive Arabidopsis
OXLP	Oxalate oxidase-like protein
PAD	Phytoalexin-deficient
PAMPs	Pathogen-associated molecular patterns
PAPP	Phytochrome-associated protein phosphatase
PCD	Programmed cell death
PCR	Polymerase chain reaction
PDF	Plant defensin factor
PDI	Per cent disease intensity
PDI	Percentage disease incidence
PDR	Pleiotropic drug resistance
PEN	Penetration gene
PLT	Pyoluteorin
PM	Powdery mildew
PMR	
PR	Powdery mildew-resistant
	Pathogenesis-related Pathogenesis related (PP) proteins
PR proteins PRRs	Pathogenesis-related (PR) proteins
PKKS PTI	Pattern recognition receptors
	Pattern-triggered immunity
PUB	Peptide-N-glycanase/UBA- or UBX-containing protein
PUX	Plant UBX domain-containing protein
Pv.	Pathovar
q	Quintal
qPCR	Quantitative PCR
R P ²	Resistant
R ²	Coefficient of determination
Rab	Ras-related to brain
RAPD	Random amplification of polymorphic DNA
RAR	Encoding a protein with two zinc finger-like domains required
DDE	for accumulation of many proteins
RBF	Radial basis function
rDNA	Ribosomal DNA