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Preface

The use of biomolecular systems for processing information, performing logic
operations, computational operations, and even automata performance is a
rapidly developing research area. The entire field was named with the general
buzzwords, “biomolecular computing” or “biocomputing.” Exciting advances
in the area include the use of various biomolecular systems including pro-
teins/enzymes, DNA, RNA, DNAzymes, antigens/antibodies, and even whole
biological (usually microbial) cells operating as “hardware” for unconventional
computing. The present book concentrates on enzymatic systems, which involve
biocatalytic reactions utilized for information processing (biocomputing). Exten-
sive ongoing research in the enzyme-based biocomputing, mimicking Boolean
logic gates, has been motivated by potential applications in biotechnology and
medicine. Furthermore, novel biosensor concepts have been contemplated
with multiple inputs processed biochemically before the final output is coupled
to transducing electronic or optical systems. These applications have war-
ranted recent emphasis on networking of enzyme logic gates. First few gate
networks have been experimentally realized, including coupling, for instance,
to signal-responsive electrodes for signal readout. In order to achieve scalable,
stable network design and functioning, considerations of noise propagation
and control have been initiated as a new research direction. Optimization of
single enzyme-based gates for avoiding analog noise amplification has been
explored, as were certain network optimization concepts. The book reviews
and exemplifies these developments, as well as offers an outlook for possible
future research foci. The latter include design and uses of non-Boolean network
elements, e.g., filters, as well as other developments motivated by potential
novel biosensor and biotechnology applications. The most important feature of
the enzyme biocomputing systems is their operation in biochemical and even
biological environment. Many different applications of these systems, in addition
to unconventional computation, are feasible, while their biosensor/biomedical
use is obviously one of the most important applications. Interfacing of biological
systems with biosensors, “smart” signal-responsive materials, and bioelec-
tronic devices is of highest importance for future developments in the area of
biomolecular computing.

The various topics covered highlight key aspects and the future perspectives
of the enzyme-based computing. The different topics addressed in this book
will be of high interest to the interdisciplinary community active in the area of
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unconventional biocomputing. The readers can find additional complementary
material on molecular [1] and biomolecular [2] computing published recently
by Wiley-VCH. It is hoped that the book will be important and beneficial
for researchers and students working in various areas related to biochemical
computing, including biochemistry, materials science, computer science, and
so on. Furthermore, the book is aimed to attract young scientists and introduce
them to the field while providing newcomers with an enormous collection of
literature references. I, indeed, hope that the book will spark the imagination of
scientists to further develop the topic.

The text was carefully proofread, and the figures were meticulously redrawn
and checked to eliminate possible typos, mistakes, and unclear meaning. Still
because of the large volume and big number (230) figures, some problems may
appear. If this happens, the readers are advised to go to the original publications
following the references provided.

A significant amount of the discussed material has originated from the stud-
ies to which I have personally contributed. I am very grateful to all scientists,
researchers, and students who have participated in this research and have made
the achieved results possible.

I would like to conclude this preface by thanking my wife Nina for her support
in every respect in the past 47 years. Without her help and support, it would not
have been possible to complete this work.

Evgeny Katz Potsdam, NY, USA
January 2019
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xxiii

List of Abbreviations

αAmy α-amylase (enzyme)
βAmy β-amylase (enzyme)
α-KTG α-ketoglutaric acid
Δf oscillation frequency change measured by QCM
𝜆 wavelength
𝜆max wavelength of maximum absorbance in optical spectra
Θ angle of incident light beam (in SPR measurements)
2-OG 2-oxoglutarate
2-PGA 2-phosphoglyceric acid (or salt form)
3-oxo-C12-HSL 3-oxododecanoyl homoserine lactone (QS signaling

molecule)
AA African American (ethnic origin)
Abs optical absorbance
ABT abdominal trauma
ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

(chromogenic substrate used to follow peroxidase activity)
ABTSox oxidized ABTS (colored product)
Ac acetic acid
AChE acetylcholinesterase (enzyme)
AcP acetyl phosphate
AcidP acid phosphatase (enzyme)
ADH alcohol dehydrogenase (enzyme)
ADP adenosine 5′-diphosphate
AFM atomic force microscope (microscopy)
Ala alanine (amino acid)
Ald acetaldehyde
ALT alanine transaminase (enzyme)
AMG amyloglucosidase (enzyme)
AND AND Boolean logic gate
anti-DNP anti-dinitrophenyl IgG polyclonal antibody
anti-NT anti-nitrotyrosine IgG polyclonal antibody
AOx alcohol oxidase (enzyme)
AP alkaline phosphatase (enzyme)
APTES (3-aminopropyl)triethoxysilane (silanizing agent for

modification of electrodes and nanoparticles)



xxiv List of Abbreviations

ArNHOH oxidizable hydroxylamine (product of TNT biocatalytic
reduction)

ArNO nitroso compound (product of ArNHOH biocatalytic
oxidation)

Asc ascorbate
ASCII American Standard Code for Information Interchange
ATM automated teller machine (as an example of an electronic

device with a keypad lock system)
ATP adenosine 5′-triphosphate
BHQ2 Black Hole Quencher® (fluorescence quencher)
Bo borrow digit (output signal in a half-subtractor)
BSA bovine serum albumin
Bu butyric acid
Bu-O-Et ethyl butyrate ester
Bu-O-Me methyl butyrate ester
C carry digit (output signal in a half-adder)
C4-HSL N-butanoyl-l-homoserine lactone (QS signaling molecule)
CA Caucasian (ethnic origin)
CA chronoamperometry
CaM calmodulin
cAMP cyclic adenosine monophosphate (a second messenger

important in biological processes)
ChOx choline oxidase (enzyme)
CK creatine kinase (enzyme)
CoA coenzyme A
CN 4-chloro-1-naphthol
CNOT Controlled NOT (reversible logic gate)
CN-ox CN insoluble oxidized product
CNT(s) carbon nanotube(s)
Crt creatine
CrtP creatine phosphate
CSWAP Controlled-Swap (logic gate)
D delay (flip-flop memory)
D difference digit (output signal in a half-subtractor)
DC direct current
DCPIP dichlorophenolindophenol (DCPIPred and DCPIPox are

reduced and oxidized forms of DCPIP, respectively;
DCPIP also corresponds to the oxidized form)

DDC diethyldithiocarbamate (product of DS reduction)
DFG double Feynman gate (reversible logic gate)
DHA dehydroascorbate (product of Asc oxidation)
Diaph diaphorase (enzyme)
dmo-bpy 4,4′-dimethoxy-2,2′-bipyridine (ligand in the redox active

complex: Os(dmo-bpy)2Cl)
DNA deoxyribonucleic acid
DNAzyme deoxyribozyme (catalytically active DNA)
DNP 2,4-dinitrophenyl (used as an antigen for anti-DNP)



List of Abbreviations xxv

DNT 2,4-dinitrotoluene
DS disulfiram
DTT dithiothreitol
Dz another abbreviation for DNAzyme
E potential applied or measured in electrochemical

experiments
E∘ standard redox potential (derived from electrochemically

reversible cyclic voltammogram)
EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

(carbodiimide coupling reagent)
EIS electrolyte–insulator–semiconductor
ELISA enzyme-linked immunosorbent assay
EN enolase (enzyme)
Est esterase (enzyme)
Et-O-Ac ethyl acetate ester
EtOH ethanol
f oscillation frequency measured with QCM
FAM fluorescein derivative used for labeling biomolecules
FET field-effect transistor
FITC fluorescein isothiocyanate (fluorescent label)
Frc fructose
G6PDH glucose 6-phosphate dehydrogenase (enzyme)
GDH glucose dehydrogenase (enzyme)
Glc glucose
Glc1P glucose-1-phosphate
Glc6P glucose-6-phosphate
Glc6PA gluconate-6-phosphate acid (product of Glc6P oxidation)
GlcA gluconic acid (product of glucose oxidation)
Glu glutamate (amino acid, salt form)
GluOx glutamate oxidase (enzyme)
GlutOx glutathione oxidase (enzyme)
GOx glucose oxidase (enzyme)
GR glutathione reductase (enzyme)
GSH glutathione (reduced form)
GSSG glutathione (dimeric oxidized form)
HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)

(buffer)
HK hexokinase (enzyme)
HPLC high-performance liquid chromatography
HRP horseradish peroxidase (enzyme)
HRP-Ab antibody labeled with HRP enzyme
HS hemorrhagic shock
HAS human serum albumin
i current density produced by a biofuel cell on an external

ohmic resistance
ID Identity (YES) gate
INHIB Inhibited Boolean logic gate



xxvi List of Abbreviations

Inv invertase (enzyme)
INV Inverter (logic element)
Ip peak current (measured with cyclic voltammetry)
IPTG isopropyl β-D-thiogalactoside (artificial inducer in cellular

regulating processes).
IR infrared (light)
isc short circuit current density produced by a biofuel cell on

an external ohmic resistance
ITO indium tin oxide (electrode)
JK Jack Kilby (flip-flop memory)
Lac lactate
LDH lactate dehydrogenase (enzyme)
LI liver injury
LOx lactate oxidase (enzyme)
LSPR localized surface plasmon resonance
Luc luciferase (enzyme)
Lucif luciferin
M13 calmodulin-binding peptide
Maj majority logic gate
Mal malate
Malt maltose
MB methylene blue (electron transfer mediator operating with

GOx); MBox and MBred are oxidized and reduced forms of
MB, respectively

MDH malate dehydrogenase (enzyme)
MHC I MHC class I molecules are one of two primary classes of

major histocompatibility complex molecules and are
found on the cell surface of all nucleated cells in the bodies
of jawed vertebrates

Min minority logic gate
MMP2 and MMP7 matrix metalloproteinases (cancer biomarkers)
MNP(s) magnetic nanoparticle(s)
MP-11 microperoxidase-11
MPh maltose phosphorylase (enzyme)
MPAX methyl paraoxon (acetylcholinesterase inhibitor; model

nerve agent)
MWCNT(s) multiwalled carbon nanotube(s)
NAD+ nicotinamide adenine dinucleotide (oxidized form)
NADH nicotinamide adenine dinucleotide (reduced form)
NADH-POx NADH peroxidase (enzyme)
NADP+ β-nicotinamide adenine dinucleotide phosphate oxidized
NADPH β-nicotinamide adenine dinucleotide phosphate reduced
NAD(P)H represent either NADH or NADPH
NAND NOT–AND Boolean logic gate
NE norepinephrine (catecholamine hormone

neurotransmitter)
NHS N-hydroxysuccinimide



List of Abbreviations xxvii

NOR NOT–OR Boolean logic gate
NOT Inverted Identity Boolean logic gate
NP(s) nanoparticle(s)
NRd nitroreductase (enzyme)
NT 3-nitro-l-tyrosine (used as an antigen for anti-NT)
NXOR NOT-Exclusive-OR Boolean logic gate
O.D. optical density (in optical absorbance measurements)
QCM quartz crystal microbalance
Q-F oligonucleotide labeled with a fluorescent dye at one end

and with a quencher at another end; F is a fluorescent dye;
Q is a quencher

QS quorum sensing
OPH organophosphorous hydrolase (enzyme)
OR OR Boolean logic gate
OS oxidative stress
Qt initial (present) state of a flip-flop device
Qt+1 next state of a flip-flop device
Qt+2 next, next state of a flip-flop device
OxAc oxaloacetate
O/W oil-in-water Pickering emulsion
Qz6 Quasar 670 (fluorescent dye)
P2VP poly(2-vinyl pyridine)
P4VP poly(4-vinyl pyridine)
PAX paraoxon (acetylcholinesterase inhibitor; model nerve

agent)
PB Prussian blue
PBSE 1-pyrenebutanoic acid succinimidyl ester

(heterobifunctional reagent)
P.D. power density produced by a biofuel cell on an external

ohmic resistance
P.D.max maximum power density produced by a biofuel cell on an

external optimized ohmic resistance
PDH pyruvate dehydrogenase (enzyme)
PDI protein disulfide-isomerase (enzyme)
PEI polyethyleneimine
PEO poly(ethylene oxide)
PEP phospho(enol)pyruvic acid (or phosphoenol pyruvate in

the form of salt)
Pi inorganic phosphate
PK pyruvate kinase (enzyme)
pK a acid dissociation constant
PNP p-nitrophenol
PNPP p-nitrophenyl phosphate
POx pyruvate oxidase (enzyme)
Ppy polypyrrole
Ppy-ox polypyrrole oxidized state
Ppy-red polypyrrole reduced state



xxviii List of Abbreviations

PQQ pyrroloquinoline quinone
PQQ-GDH PQQ-dependent glucose dehydrogenase (enzyme)
PS polystyrene
Pyr pyruvate
R reset signal
R reflectance measured by SPR
R external load resistance connected to a biofuel cell
Rcell ohmic resistance measured in a bulk solution in an

electrochemical cell
RE reference electrode
Ret electron transfer resistance (measured by Faradaic

impedance spectroscopy)
RI radiation injury
RNA ribonucleic acid
RNS reactive nitrogen species
ROC receiver operating characteristic
ROS reactive oxygen species
S set signal
S sum digit (output signal in a half-adder)
SAND single inversion AND (logic gate equivalent to

NOT–AND operation, where inversion NOT is applied to
one of the inputs)

SEM scanning electron microscopy
SPE screen-printed electrode
SPR surface plasmon resonance
SR set/reset (flip-flop memory)
STI soft tissue injury
SWV square wave voltammetry
T toggle (flip-flop memory)
TBI traumatic brain injury
tg gate time (time of reaction after which the gate response is

measured)
TMB 3,3′,5,5′-tetramethylbenzidine (chromogenic substrate

used to follow peroxidase activity)
TMBdox TMB double-oxidized product
TMBox oxidized colored form of TMB
TMBred TMB reduced original state (the same as TMB)
TMBsox TMB single-oxidized product (the same as TMBox)
TNT trinitrotoluene (explosive)
Tris 2-amino-2-(hydroxymethyl)propane-1,3-diol (buffer)
UV ultraviolet (light)
Ure urease (enzyme)
V voltage produced by a biofuel cell on an external ohmic

resistance
V a alternative voltage applied between the conducting

support and reference electrode of the EIS devise


