World Water Resources

Guillermo Q. Tabios III

Water Resources Systems of the Philippines: Modeling Studies

World Water Resources

Volume 4

Series Editor

V. P. Singh, Department of Biological and Agricultural Engineering & Zachry Department of Civil Engineering, Texas A&M University, College Station, TX, USA

This series aims to publish books, monographs and contributed volumes on water resources in the world, with particular focus per volume on water resources of a particular country or region. With the freshwater supplies becoming an increasingly important and scarce commodity, it is important to have under one cover up to date literature published on water resources and their management, e.g. lessons learnt or details from one river basin may be quite useful for other basins. Also, it is important that national and international river basins are managed, keeping each country's interest and environment in mind. The need for dialog is being heightened by climate change and global warming. It is hoped that the Series will make a contribution to this dialog. The volumes in the series ideally would follow a "Three Part" approach as outlined below: In the chapters in the first Part Sources of Freshwater would be covered, like water resources of river basins; water resources of lake basins, including surface water and under river flow; groundwater; desalination; and snow cover/ ice caps. In the second Part the chapters would include topics like: Water Use and Consumption, e.g. irrigation, industrial, domestic, recreational etc. In the third Part in different chapters more miscellaneous items can be covered like impacts of anthropogenic effects on water resources; impact of global warning and climate change on water resources; river basin management; river compacts and treaties; lake basin management; national development and water resources management; peace and water resources; economics of water resources development; water resources and civilization; politics and water resources; water-energy-food nexus; water security and sustainability; large water resources projects; ancient water works; and challenges for the future. Authored and edited volumes are welcomed to the series. Editor or co-editors would solicit colleagues to write chapters that make up the edited book. For an edited book, it is anticipated that there would be about 12-15 chapters in a book of about 300 pages. Books in the Series could also be authored by one person or several co-authors without inviting others to prepare separate chapters. The volumes in the Series would tend to follow the "Three Part" approach as outlined above. Topics that are of current interest can be added as well.

Readership

Readers would be university researchers, governmental agencies, NGOs, research institutes, and industry. It is also envisaged that conservation groups and those interested in water resources management would find some of the books of great interest. Comments or suggestions for future volumes are welcomed.

Series Editor:

V. P. Singh, Department of Biological and Agricultural Engineering & Zachry Department of Civil Engineering, Texas A&M University, College Station, TX, USA. vsingh@tamu.edu

More information about this series at http://www.springer.com/series/15410

Guillermo Q. Tabios III

Water Resources Systems of the Philippines: Modeling Studies

Guillermo Q. Tabios III Institute of Civil Engineering and National Hydraulic Research Center University of the Philippines, Diliman Quezon City, Philippines

National Academy of Science and Technology Taguig City, Philippines

ISSN 2509-7385 ISSN 2509-7393 (electronic) World Water Resources ISBN 978-3-030-25400-1 ISBN 978-3-030-25401-8 (eBook) https://doi.org/10.1007/978-3-030-25401-8

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my papa, Nono, and mama, Nida, who kindly nurtured me and to my wife, Aida, and daughter, Gillian, who endearingly bring out the best in me

Preface

Modeling of water resources systems is essential to develop science-based information, policies, and management actions for effective water resources planning design and operations. Models have been utilized for descriptive and prescriptive purposes such as understanding the behavior of the water resources system; evaluation of strategies to restore, enhance, maintain, or control the integrity of the water resource; detection and surveillance for water resources regulation; as well as forecasting for real-time operations or prediction for possible future behavior of the water resources systems. These days, water resources models and modeling tools have become more sophisticated since one must not only consider the physical and ecological component of the water resources system but also its interaction with the socioeconomic and human systems. In linking science and public policy toward an effective integrated water resources management (IWRM), the decision support system (DSS) which essentially evolves around models and modeling tools is an integral part of IWRM process as a platform or vehicle to link science and technology advances to public policy and management decisions. Water resources planners, managers, and other specialists who are responsible for the development and operation of water resources systems as well as stakeholders can use the DSS in understanding, articulating, and building a shared vision of how the water resources system functions; how to evaluate feasible, alternative management options including their impacts or consequences; and finally how to develop consensus for its sustainable development and utilization.

In the Philippines, modeling of water resources systems for planning, design, and management is not quite a common practice especially in government agencies involved in managing the country's water resources. One of the reasons is that the Philippines still lacks investments in science-based management and decision tools. Most water-related agencies in the Philippines do not have a dedicated scientific division in their offices to employ science-based analysis or modeling tools although some agencies employ consultants to conduct water resources modeling but on project basis. Having a permanent modeling group will ensure continuous updating and adaptive master planning and operational studies of water resources system because watersheds or natural resources systems in general are evolutionary in nature due to land use change, anthropogenic activities, economic change, and climate change. Another challenge is that the country lacks investments in sustained and regular monitoring of water-related data. Thus, model development can be hardly calibrated against the observed data so that the art of modeling plays a significant role to judiciously use experience, knowledge, and insights into the physics of the process and, to some extent, imagination to validate and qualify the results of the modeling studies.

This book presents several modeling experiences and studies of water resources systems of the Philippines and advocates the use of modeling tools to ensure sciencebased, policy formulations and management decisions in water resources planning and management. The suite of water resources modeling studies includes surface and groundwater modeling for water utilization, reservoir planning and operations studies with optimization-simulation models, reservoir sedimentation studies, hydrodynamic and water quality modeling of bays and lakes, flood and dambreak modeling studies, pipe network distribution modeling with optimization, climate change studies for reliability of reservoir operations, and modeling for environmental assessment studies. The storylines of the motivation and/or purpose of the various modeling studies conducted are also presented for certain water resources systems studied.

Several models used here are available as public domain models and were designed with various optional methods that can be used for hydrologic, hydraulic, and water quality analysis. These public domain models require familiarity and hands-on experience; thus, using these models is more of an art rather than purely the science of modeling. Some models used here were also developed by the author himself and, in certain cases, with collaborators. For these latter models, the author is not only proficient in using them but also very much familiar with the theoretical basis, structure, and algorithms of these models.

The book is intended for professionals, practitioners, as well as undergraduate and graduate students to learn the art and science of modeling water resources systems, in general, and water resources systems of the Philippines, in particular. As the book contains details of model structures and solution algorithms, the various models can likewise be utilized to other water resources systems one wishes to study. With the unique settings and conditions of the Philippines with humid, maritime, tropical climatology and hydrology, as well as with its archipelagic or islandic watersheds typified by short, steep mountain-to-coast river systems, this book offers different perspectives and experiences in modeling these types of water resources systems.

Quezon City, Philippines

Guillermo Q. Tabios III

Acknowledgments

The author was a graduate student at Colorado State University (CSU) in Fort Collins at the onset of 1980, and the development of water resources models highly proliferated because personal computers (especially the iconic IBM-PC) became available right at graduate student room's desktop. Thus, doing computer work became quicker from developing, testing, and debugging computer programs, instead of the routine of going to the computer center, with decks of cards, and the turnaround time of computer jobs is several hours or a day later. The author was fortunate to be in that era, and in fact, there was a saying then that "anyone who knows how to write Fortran programs those days can finish a PhD in no time." Evidently so, many hydrologic and hydraulic computer programs were developed during that period, and until now, they still remain as the heart of major water resources computer software, significantly enhanced only with nice graphical user interfaces.

Being a PhD graduate student then at CSU, the author was exposed to several schools of thought with regard to his modeling know-how and experiences. In particular, his major influences came from his PhD adviser, Prof. Jose D. Salas, on stochastic analysis and modeling of hydrologic processes; Prof. Warren A. Hall, his initial PhD adviser on optimization and simulation models of water resources systems; and some members of his PhD guidance committee, specifically Prof. Hubert J. Morel-Seytoux on deterministic hydrology and Prof. Vujica Yevjevich on stochastic hydrology. After graduate school, he worked with Prof. Hsieh Wen Shen as postdoctoral fellow at CSU and later as research faculty at the University of California, Berkeley, on river and reservoir sediment transport processes as well as ecology-based river engineering by physical and mathematical modeling.

For the many projects and modeling works conducted at the National Hydraulic Research Center (NHRC) of the University of the Philippines at Diliman (UPD), especially those presented in this book, the author gratefully acknowledges several people that include David S. Rojas, Jr., Odyssey C. Herrera, Edmundo P. Vargas, Eugene C. Herrera, Abner M. Adraneda, Arlene B. Inocencio, Proserfina A. Mariano, Cornelio Q. Dizon, Peter Paul M. Castro, and Genandrialine L. Peralta.

Furthermore, the author is sincerely grateful to the following people:

To Springer International Publisher, Ms. Petra van Steenbergen, executive editor of Earth Sciences, Geography, and Environment, for bringing this book in form and in shape; Ms. Margaret Deignan, senior editor of Global Environmental Change, Climatic Change, Polar Science, and International Journal of Biometeorology for finally putting this book in print; and Prof. Vijay P. Singh, series editor in chief of Springer World Water Resources series.

To Luz R. Ang for carefully editing the chapters of the first draft and subsequent drafts of this book, to Odyssey C. Herrera for his valuable assistance to enhance the quality of figures in this book, and to Dr. Augustus Resurreccion and Dr. Eugene C. Herrera, both from the Institute of Civil Engineering (ICE) of UPD, for the critical reading and suggestions to improve this book.

Finally, to the late Prof. Leonardo Q. Liongson, cousin, mentor, and colleague at ICE and NHRC, who had been the greatest influence to the academic work and professional being of the author. The author certainly missed those endless talks and discourses with him.

Contents

Intro	oduction	
1.1	Purpos	e, Science, and Art of Water Resources Modeling
1.2	Status	of Modeling Water Resources Systems
	of the	Philippines
1.3	Organi	zation of this Book
Refe	rences	
Phys	ical Fea	tures and State of Water Resources and Status
of W	ater Go	vernance in the Philippines
2.1	Physic	al Features and State of Water Resources
	in the l	Philippines
	2.1.1	General Physiography, Climate, and Weather
		in the Philippines
	2.1.2	Water Resources Regions and Major River Basins
		in the Philippines
	2.1.3	Quantity and Quality of Surface and Groundwater
		Resources
	2.1.4	Water Use Demands and Water Permits
	2.1.5	Irrigation Services
	2.1.6	Flooding Issues and Concerns
	2.1.7	Design Level of Protection for Major Flood
		Control Projects
	2.1.8	Environmental Problems and Conditions
2.2	Water	Governance in the Philippines
	2.2.1	Current Water Governance and Institutional Arrangement
	2.2.2	National Water Policy
	2.2.3	Other Issues and Concerns on Water Governance
		in the Philippines
Refe	rences	

3	Scier	ice and	Art of Water Resources Modeling	
	in th	e Philip	pines	29
	3.1	Linkin	g Science, Policy, and Management Decisions	
		with D	ecision Support System	29
	3.2	Model	s and Modeling Tools in Decision Support	
		System	1	31
	3.3	Simula	tion and Optimization Models	33
	3.4	Sample	e Water Resources Optimization-Simulation	
		Model	ing Problems	34
		3.4.1	Determination of Water Supply Firm Yield	36
		3.4.2	Allowable Groundwater Withdrawal Rate	37
		3.4.3	Optimal Cropping Patterns for Effective	
			Water Use	37
	3.5	Overvi	ew of Modeling Studies and Experiences	38
	Refe	rences		40
4	Cf	and and	Croundwater Modeling for Water Utilization	41
4		Introdu		41
	4.1		Watarshad Madal	41
		4.1.1	Groundwater Model	42
	4.2	4.1.2 Dompo	nga Piver Basin	44
	4.2	1 2 1	Watershed Delineation and Surface Water	45
		4.2.1	Modeling	17
		422	Groundwater Aquifer Characteristics	47
		4.2.2	and Groundwater Modeling	40
		123	Estimation of Surface Water and Groundwater	49
		4.2.3	Demands	55
		424	Surface Water and Groundwater Model	55
		7.2.7	Simulation Studies	57
	43	Agno	River Basin and Vicinity	63
	1.5	431	Surface Water Modeling of Agno River Basin	67
		432	Groundwater Modeling of Agno River Basin	70
		4.3.3	Surface Water and Groundwater Demands	73
		4.3.4	Surface Water and Groundwater Model	
			Simulation Studies	74
	Refe	rences		93
_	_			10
5	Rese	rvoir Pl	anning and Operations Studies with	
	Opti	mization	a-Simulation Models	95
	5.1	Angat	Reservoir System	95
		5.1.1	Angat Reservoir Optimization-Simulation Model	98
		5.1.2	Optimization-Simulation Scenarios	101
		5.1.3	Results of Optimization-Simulation Studies	101

6

5.2	Angat	Reservoir Monthly Allocation with Optimization-	
	Simula	ation Model and Autoregressive Model to Forecast	
	Inflow	s	105
	5.2.1	Existing Release Policy Using Storage Rule Curve	106
	5.2.2	Reservoir Optimization-Simulation Model	107
	5.2.3	Optimization-Simulation Runs with Historical	
		Inflows	107
	5.2.4	Optimization-Simulation Runs with Forecasted	
		Inflows	109
5.3	Upper	Agno River Basin Reservoir Operations Studies	114
	5.3.1	Ambuklao, Binga, and San Roque Reservoirs	
		of the Upper Agno River Basin	116
	5.3.2	Assessment of Adequacy of Rainfall Sampling	
		Network	118
	5.3.3	Upper Agno River Watershed Model	122
	5.3.4	Upper Agno Reservoir Optimization-Simulation	
	0.011	Studies	125
	535	Reservoir Storage-Elevation Curve over the Years	127
	536	Results of Upper Agno Reservoir Optimization-	12,
	0.010	Simulation Studies	127
	537	Optimization-Simulation of San Roque Dam	127
	5.5.1	Flood Operations During Typhoon Parma	130
	538	Some Discussions on Upper Agno Reservoir	157
	5.5.0	Operations	147
54	Propos	Seed Agos Reservoir System Ontimization-Simulation	17/
5.4	Studio	s for Paliability Analysis and Project Sequencing	
	and St	aging	1/0
	5 / 1	A gos River Basin Watershed and River Network	150
	542	Agos Kivel Dashi watershed and Kivel Network	150
	5.4.2	Configurations	151
	5 1 2	A gos Diver Desin Wetershed Model	151
	5.4.5	Agos Kivel Dasili watershed Wodel	155
	3.4.4	of Droposed A gos Diver Deservoir System	150
	5 1 5	Decomposed Agos River Reservoir System	138
	5.4.5	Recommended Project Sequencing and Staging	1.00
D C		of the Agos River Reservoir System	160
Refe	rences	•••••••••••••••••••••••••••••••••••••••	163
Rese	ervoir Se	dimentation Studies	165
6.1	Balog-	Balog Reservoir Reliability and Cost-Benefit	
	Analys	sis of a Single, High Dam Versus a Multiple	
	Dam S	System	165
	6.1.1	Balog-Balog Multipurpose Project with Single,	
		High Dam	167
	6.1.2	Balog-Balog Multiple Dam System	167

		6.1.3	Reservoir Optimization-Simulation Model and	1.00
		(14	Watershed Modeling	169
		6.1.4	Comparison of Balog-Balog Multipurpose Project	
			(BBMP) with Single, High Dam, Versus	170
		a	Balog-Balog Multiple Dam System (BBMDS)	170
	6.2	San Ro	que Reservoir Sedimentation and Operations Study	
		Using a	Two-Dimensional Hydraulic Model	178
		6.2.1	Two-Dimensional Flow and Sediment Hydraulic	
			Model	181
		6.2.2	Watershed Flow and Sediment Yield Modeling	183
		6.2.3	Stochastic Rainfall Modeling	185
		6.2.4	Reservoir Simulation Scenarios	187
		6.2.5	Results of Reservoir Flow-Sediment Simulations	188
		6.2.6	Some Highlights of San Roque Flow-Sediment Modeling	
			and Simulation Studies	190
	6.3	Pulangi	Reservoir Sediment Flushing Studies with Two-	
		Dimens	ional Hydraulic Model	192
		6.3.1	Reservoir Sedimentation and Sediment Flushing	
			Operations	195
		6.3.2	Pulangi Reservoir Modeling for Sediment Flushing	
			Operations	197
		6.3.3	Reservoir Inflow and Sediment Discharge Rating	
			Curve	199
		6.3.4	Simulation Scenarios and Results of Sediment	
			Flushing Studies	200
	Refere	ences		207
7	Hydro	odynami	ic and Water Quality Modeling for Bays	
	and L	akes		211
	7.1	Introdu	ction	211
	7.2	Manila	Bay-Laguna Lake and Watershed System	212
	7.3	Brief O	bservation on Manila Bay-Laguna Lake	
		Hydrod	ynamics	214
	7.4	Manila	Bay-Laguna Lake Modeling	218
		7.4.1	Watershed Model of Manila Bay-Laguna	
			Lake System	219
		7.4.2	Hydrodynamic Model of Manila Bay	220
		7.4.3	Hydraulic Model of Laguna Lake and Bataan-Pampanga-	
			Bulacan Coastal Areas	223
		7.4.4	Advection-Dispersion Water Quality Model	
			of Manila Bay and Laguna Lake	224
	7.5	Watersh	ned Modeling and Streamflow Simulation	228
	7.6	Manila	Bay Hydrodynamic and Water Quality Modeling	
		and Sin	nulations	229
	7.7	Laguna	Lake 2-d Coupled Lake Flow-Salinity Modeling	240
		0		

	7.8	Other `	Water Quality Issues on Laguna Lake	248
		7.8.1	Lake Pollution Control and Effects on Fisheries	249
		7.8.2	Optimal Lake Use Zoning	251
	Refer	ences		251
8	Floo	d and D	am-Break Modeling Studies	253
	8.1	Influer	nce of Storm Rainfall Movement in Pasac Delta	
		Floodi	ng	253
		8.1.1	One-Dimensional, Unsteady Flow, Network	
			Modeling of Pasac Delta	254
		8.1.2	Stochastic, Space-Time Rainfall Modeling	
			of Moving Storm	257
		8.1.3	Results of Pasac Delta Flooding with Moving	
			Storm	259
		8.1.4	Brief Remarks on Pasac Delta Flooding	
			with Moving Storm	259
	8.2	Flood	Modeling of Marikina River Basin During	
		Typho	on Ketsana in September 2009	264
		8.2.1	Pasig-Marikina River Basin Flood Calculations	267
		8.2.2	Suggestions for Holistic Flood Management	
			in Pasig-Marikina River System	271
	8.3	Assess	sment of Alternative Flood Control Plans for	
		Cagay	an de Oro River	275
		8.3.1	Watershed and Flood Inundation Modeling	
			of the Cagayan de Oro River Basin	276
		8.3.2	Storm Rainfall and Computed Inflow Flood	
			Hydrograph	276
		8.3.3	Alternative Flood Mitigation Plans for the	
			Cagayan de Oro River	283
		8.3.4	Results of Flood Simulations of the Alternative	
			Flood Mitigation Plans	285
		8.3.5	Remarks on Cagayan de Oro River Flood	
			Mitigation Simulations	287
	8.4	Dam-E	Break Model Studies of a Dam Removal Problem	
		and Bu	utas Dam of Cavite Province with Flow	
		and Se	ediment Movement	288
		8.4.1	Dam Removal Problem in a Rectangular Reservoir	289
		8.4.2	Dam-Break Simulation of Butas Dam of Cavite in	
			September 2006	291
	Refer	ences		295
9	Pine	Networ	k Distribution Modeling with Ontimization	200
1	0 1	Introdu	a Distribution modeling with Optimization	200
	9.1	Descri	ntion of FPANET Model	300
	03	Enhan	cement of EPANET with COMPLEX Optimization	300
	9.5	Eman	coment of Li AIVET with COIVIT LEA Optimization	502

	9.4	Enhanc	ed Model Capabilities	304
	9.5	Applica	ation of EPANET-Optimization Model for Model	
		Calibra	tion	306
	9.6	Brief F	inal Remarks	307
	Refer	ences		310
10	Relia	hility St	udies of Reservoirs Under Climate Change	311
10	10.1	Unner	Agno Reservoir Operations with Climate Change	311
	10.1	10 1 1	2050 Climate Change Scenario	313
		10.1.1	Reliability Analysis of Unper Agno Reservoirs	515
		10.1.2	Under Climate Change	314
		10.1.3	Comparison of Hydropower Generation Between	
		10.1.5	Existing and 2050 Climate Change Scenarios	324
		1014	Other Issues and Challenges of the Upper Agno Reservoir	521
		10.1.1	Operations	326
	10.2	Angat I	Reservoir Reliability Analysis with Climate Change	520
	10.2	and Fut	ture Reservoir Sedimentation	332
		10.2.1	Angat River Basin 2050 Climate Change	002
		10.2.1	Parameters	332
		10.2.2	Angat Reservoir Sedimentation in 2050	333
		10.2.3	Results of Angat Reservoir Operations	000
			Under 2050 Climate Change and Future	
			Sedimentation	334
	Refer	ences		337
11	Mode	ling for	Environmental Accessment Studies	220
11	11 1	Subic F	Bay Hydrodynamic-Water Quality Modeling	559
	11.1		ol for Developing Integrated Coastal Management	
		Plan (I	[¬] MP)	330
		11 1 1	Subic Bay Hydrodynamic-Water Quality Model	340
		11.1.1	Major Components of the Subic Bay	540
		11.1.2	Hydrodynamic-Water Quality Model	342
		1113	Subic Bay Hydrodynamic-Water Quality	572
		11.1.5	Simulations	346
	11.2	Risk of	Polluting Novaliches Reservoir from Payatas	540
	11.2	Dumps	ite Through Groundwater Contaminant Transport	351
		11 2 1	Groundwater Flow and Contaminant Transport	551
		11.2.1	Model with FEMWATER	352
		1122	Groundwater Modeling of Novaliches Reservoir-Pavatas	552
		11.2.2	Dumpsite	353
		11 2 3	Stochastic Modeling of Reservoir Levels	555
		11.2.3	and Rainfall Sequence	355
		1124	Results of Groundwater Contaminant Transport	555
		11.2.4	Simulations	357
			Ommunul0115	551

Contents

	11.2.3	Autospheric Politition Posing a Bigger Concern then Groundwater Contamination in Novaliches
		Reservoir
Refer	ences	
Impe	ratives o	f Water Resources Modeling and Applications
in the	e Philipp	ines
12.1	Key Co	onsiderations in Modeling Water Resources Systems
	12.1.1	Modeling Approach: Scientific Versus Data
		Analytic Method
	12.1.2	Incorporating the Hydrologic, Geomorphologic,
		and Ecologic Interactions
12.2	Monito	ring and Data Needs for Future Modeling Efforts
12.3	Science	e-Based Management and Decision Tools
	and Ca	pacity Building
12.4	Need for	or Sustainability Science and Transdisciplinary
	Approa	ch for Sustainable Water Resources Development
	12.4.1	Holistic Water Resources Management
	12.4.2	Kole of Sustainability Science
	12.4.3	Management
	1244	Planning Horizon for Sustainable Development
	12.4.4	of Water Resources Systems: Case of Reservoir
		and Dam Projects
12.5	On Bui	lding Urban Resilience to Water-Related Disasters
	12.5.1	Engineering Resilience
	12.5.2	Ecological Resilience
	12.5.3	Evolutionary Resilience

List of Boxes

Box 3.1	Combined Optimization-Simulation Model with Simulation Model Embedded in the Optimization Model	35
Box 9.1	Objective Functions and Decision Variables of the EPANET- Optimization Model	304
Box 12.1	Elements of Physical, Social, and Human Systems Inherent in a Complex, Dynamic, and Uncertain Flood Problem	373
Box 12.2	Differences of Monodisciplinary, Multidisciplinary, Interdisciplinary, and Transdisciplinary Approaches	373
Box 12.3	Platform of Transdisciplinary Approach	373

Fig. 1.1	Hierarchy of the various media and constituents of the soil, water, and air environments and interactions with flora, fauna, and human settlements including the built environment. (Adapted from Nadaoka and Tabios 2009)	3
Fig. 1.2	Water resource management and related scientific and engineering disciplines. (From Mays 2001)	4
Fig. 2.1	Map of the Philippines showing political regions and provinces. (Taken from www.map-of-the-world.net)	10
Fig. 2.2	Twelve (12) water resources regions (WRR) of the Philippines designated by the National Water Resources Council in 1978 for purposes of planning, development, and water	
Fig. 2.3	Major river basins (RB) in the Philippines. (From NWRB	12
	website: www.nwrb.gov.ph)	13
Fig. 2.4	Surface water and groundwater resources of the Philippines. (Background picture taken from www.prairievers.org)	14
Fig. 2.5	Water use for various purposes based on water permit granted by the National Water Resources Board (NWRB) as of December 2010. Values shown are average annual flows (in m ³ /s), and values in parenthesis are for the total	
Fig. 2.6	water permit granted of 2727.40 m ³ /s Projected regional supply and demand situation in 1000 m ³ for 2005 and 2025 according to WRR in Fig. 2.2. (Source: JICA 1998 Master Plan Study on Water Resources Management in the Philippines submitted to NWRB)	16
Fig. 2.7	Water-related agencies in the Philippines and their functions	23
Fig. 3.1	Linking science and public policy for effective integrated water resources management. (Adapted from Georgakakos	
	2004)	30

Fig. 3.2	Components of an IWRM decision support system (DSS). (Taken from Loucks and van Beek 2017)	32
Fig. 4.1	Schematic diagram of surface water and groundwater model used in this study	42
Fig. 4.2	Watershed delineation into overland flow planes and river network. For each overland flow plane (rectangular area), the Sacramento soil-moisture accounting model which is schematically shown in Fig. 4.3 below is used	43
Fig. 4.3	Schematic of the Sacramento soil-moisture accounting model and the model components representing different hydrologic processes	44
Fig. 4.4	Spatial discretization of the groundwater aquifer in the 3-d, saturated groundwater flow, MODFLOW finite difference model. (From McDonald and Harbaugh 1984)	45
Fig. 4.5	Assembly of 1:50,000 Scale NAMRIA topographic maps	15
Fig 16	Major sub basin delineations and river network of the	40
11g. 4.0	Pampanga River Basin	48
Fig 47	Sub-basin delineations of Pantabangan River Basin	50
Fig. 4.8	Sub-basin defineations of Lower Pampanga River Basin	51
Fig. 4.9	Land cover map of Pampanga River which is used to derive	51
8	certain model parameters in the watershed model	52
Fig. 4.10	Digital elevation map of Pampanga River Basin	53
Fig. 4.11	Finite-difference grid system of groundwater model of the	
0.	Pampanga River Basin	54
Fig. 4.12	Sample three-dimensional rendering of the geologic structure of the groundwater system to create the geometry of the	
	groundwater model	54
Fig. 4.13	Map of groundwater material codes for layers -100 to -80 m, -20 to 0 m, 0 to $+20$,	
Fig. 4.14	and + 80 to +100 m for the Pampanga River basin Locations in the Pampanga River Basin with existing surface water and groundwater permits issued by the National Water	55
	Resources Board (NWRB) of the Philippines	58
Fig. 4.15	Amounts granted (in MLD) for surface water permits issued	
	by NWRB in the Pampanga River Basin	59
Fig. 4.16	Amounts granted (in MLD) for groundwater permits issued by NWRB in the Pampanga River Basin	60
Fig. 4.17	Spatially interpolated rainfall over the Pampanga River Basin for a particular 24-hour rainfall (in mm)	62
Fig. 4.18	Long-term average daily flows (m ³ /s) of Talavera River	62
Fig / 10	Long_term 80% dependable daily flows (m ³ /s) of Coronal	03
1 ig. 4 .19	River Sub-basin	64

xxii

Fig. 4.20	Schematic representation of water deficit events and surplus events below or above the demand levels, respectively	64
Fig 4 21	Average flow deficit (m^3/s) for Talavera River Sub-basin	04
1 19. 1.21	by runs analysis at a demand level equal to mean daily	
	flows (m ³ /s)	65
Fig. 4.22	Average number of days in deficit for Talavera River	
0	Sub-basin by runs analysis at a demand level equal	
	to mean daily flows (m^3/s)	66
Fig. 4.23	Simulated groundwater heads (in meters at mean sea level)	
0	of Pampanga River Basin at the end of year 2025	
	and 2050 starting in 2010 at extraction rates according	
	to NWRB existing water permits and increased every	
	5 years based on population projection	67
Fig. 4.24	Location of demand points (cities/municipalities	
	as indicated by round dots) and possible abstraction	
	points of major potential rivers (as indicated by square	
	dots) within Pampanga River Basin	68
Fig. 4.25	Potential hydropower sites and estimated capacity	
	in megawatts (MW) within Pampanga River Basin	69
Fig. 4.26	Map of Agno River Basin covering the entire Pangasinan	
	Province and portions of Benguet, Tarlac, Pampanga, and	
	Zambales. The watershed delineations into sub-basins	
	are also indicated in the figure	71
Fig. 4.27	Major rivers and river network of Agno River Basin	72
Fig. 4.28	Digital elevation map of Agno River Basin	74
Fig. 4.29	Land cover map of Agno River basin which is used	
	to derive the model parameters in the watershed model	75
Fig. 4.30	Location of rainfall stations (with round dots) within	
	and around the Agno River Basin	77
Fig. 4.31	Finite difference grid system of Agno River Basin	
	groundwater model	78
Fig. 4.32	Maps of material codes for layers 0 to +20, +60 to	
T : (22	+80, +120 to +140, and + 160 to +180	79
Fig. 4.33	Maps of material codes for layers -40 to -20 , -120	
F: 4.2.4	to -100 , -240 to -220 , and -320 to -300	80
F1g. 4.34	Locations of municipalities/cities (indicated by round dots)	
	with surface water and groundwater demands in the Agno	0.1
E. 4.25	River Basin	81
F1g. 4.35	Amounts granted (in MLD) in the existing surface water	00
E:= 4.26	A manufacture d (in MLD) in the substant drawter	82
Fig. 4.30	normits issued by NWPP. (Data undeted to 2010)	02
Fig 1 27	Projected groundwater demand (in MLD) for 2050 based	03
11g. 4.37	on avisting groundwater permits in 2010 and population	
	projection	01
		ð4

Fig. 4.39 Long-term 80% dependable daily river flows (m ³ /s) over	
the Central Agno River Sub basin	
Fig. 4.40 Average flow deficit (m ³ /s) of rivers in Lower Agno River Sub-basin by runs analysis at a demand level equal to the long-term daily mean	er e
Fig. 4.41 Average number of days in deficit for rivers in the Lowe Agno River Sub-basin by runs analysis at a demand leve	r 1 88
Fig. 4.42 Average flow deficit (m ³ /s) for rivers in the Central Agno River Sub-basin by runs analysis at a demand level equa to the 80% dependable daily flow	5 1
Fig. 4.43 Average number of days in deficit for rivers in the Centra Agno River Sub-basin by runs analysis at a demand leve equal to the 80% dependable daily flow	al 1 90
Fig. 4.44 Groundwater heads in 2025 computed from the groundw model with imposed base demands and the demands, 25' and 50% more than the base demand	vater %
Fig. 4.45 Groundwater heads in 2050 computed from the groundw model with imposed base demands and the demands, 25 ^o and 50% more than the base demand	vater %
Fig. 5.1 Watershed delineation and river network of the Angat-Ipo-Bustos-Umiray water resources system.	
 (From Tabios and David 2014; Tabios 2018) Fig. 5.2 Physical components and water demand of the multipurp Angat Multipurpose Reservoir System for domestic wate supply, irrigation water supply, hydropower generation, and flood control. (From Tabios 2016, 2018) 	
Fig. 5.3 Watershed delineation and river network of the Angat-Ipo-Bustos-Umiray water resources system. The sub-basin numbers indicated in the figure are used in watershed modeling. (From Tabios 2016)	
Fig. 5.4 Schematic of Angat-Ipo-Bustos Reservoir system indicat the nodes and links. (From Tabios 2008)	ing 100
Fig. 5.5 6-month ahead forecasts using seasonal AR(1) and seaso AR(2) models including observed data for year 1997	nal 112
Fig. 5.6 Monthly reservoir storages of cases: optimization-simula cases OS1 and OS3, existing rule curve ERC1 case, and proposed rule curve PRC1 case in 2008 with forecasted Angat River inflows from May (month 4) to October. Envelope curves are upper and lower target storage eleva of existing and proposed rule curve operating procedures	tion tions

Fig. 5.7	Assembly of 1:50,000 scale NAMRIA topographic maps covering the Upper Agno River Basin, Also shown is the	
	watershed delineation into sub-basins and the three (3) major	
	reservoirs Ambuklao, Binga, and San Roque (in the order	
	from north or upstream to south or downstream)	
	and ARIIP Dam	117
Fig. 5.8	Location of rainfall gaging stations in the Upper Agno	
C	River Basin and vicinity	119
Fig. 5.9	Observed and fitted power model of the spatial correlation	
-	function of the daily rainfall in the Upper Agno River Basin	120
Fig. 5.10	Contour map of root mean square errors of spatial	
	interpolation of daily rainfall (in mm) in the Upper	
	Agno River Basin and vicinity	121
Fig. 5.11	Digital elevation map of Upper Agno River Basin	
	using SRTM data	123
Fig. 5.12	Slope map of Upper Agno River Basin derived from	
	the digital elevation map	124
Fig. 5.13	Landcover map of Upper Agno River Basin	125
Fig. 5.14	Ambuklao Reservoir elevation-storage curve	127
Fig. 5.15	Binga Reservoir elevation-storage curve	128
Fig. 5.16	San Roque Reservoir elevation-storage curve	128
Fig. 5.17	Tract of Typhoon Parma, locally called Pepeng during	
	the period October 1–10, 2018 from PAGASA	140
Fig. 5.18	Time series plots of observed rainfall, reservoir levels,	
	inflows, and spills of San Roque Dam during Typhoon	
	Parma provided by NAPOCOR	142
Fig. 5.19	Time series plots of rainfall, inflows, power releases,	
	spillway releases, power plus spillway releases, and reservoir	
	elevations of San Roque Dam during Typhoon Parma	
	computed from the optimization-simulation model	143
Fig. 5.20	Time series plots of rainfall, inflows, power releases,	
	spillway releases, power plus spillway releases, and	
	reservoir elevations of San Roque Dam using the	
	optimization-simulation model. The top (Case 1) and	
	bottom (Case 2) figures are plots when spillway releases	
	are made after 8AM on October 5, 2009 when the	
	reservoir elevations are above 280 m and 282 m,	
	respectively	145
Fig. 5.21	Time series plots of rainfall, inflows, power releases,	
	spillway releases, power plus spillway releases, and reservoir	
	elevations of San Roque Dam using the optimization-simulation	
	model. The top (Case 3) and bottom (Case 4) figures are plots	
	when spillway releases are made after 8AM on October 6, 2009	
	when the reservoir elevations are above 280 m	
	and 282 m, respectively	146

Fig. 5.22	Kaliwa-Kanan-Agos River System watershed boundary and river network	150
Fig. 5.23	Nine (9) alternative water resources configurations or schemes denoted by WRC1 through WRC9 of the Agos	
	River Basin composed of combinations of reservoirs and/or	150
Fig. 5.24	Elevation-area-storage data for the proposed Kaliwa Low	152
	Reservoir	153
Fig. 5.25	Elevation-area-storage data for the proposed Laiban Reservoir	154
Fig. 5.26	Watershed delineation of Agos River Basin resulting in 182 sub-basins for watershed modeling. The sub-basin	
F: 5.07	numbers indicated are for purposes of watershed modeling	155
Fig. 5.27	Land cover map of Agos River Basin	156
F1g. 5.28	Basin and vicinity	157
Fig. 5.29	Time series plots of simulated daily flows from 1961 to	157
1.8.0.2	2011 at proposed Laiban Dam and Kaliwa Low Dam sites	158
Fig. 5.30	Recommended project sequencing and staging at 85%	
	reliability of the projected Metro Manila water demand	
	for years 2012–2060	162
Fig. 6.1	Map of Balog-Balog irrigation system service area	166
Fig. 6.2	Location of Balog-Balog multipurpose project (BBMP)	
	with single, high dam, and its reservoir elevation-storage	
E'. ()	curve	168
F1g. 6.3	(RPMDS) denoted by S1 through S0 and their	
	(BBMDS) denoted by S1 unough S9 and then corresponding reservoir elevation-storage curves	160
Fig. 6.4	Map of the study area showing the watershed delineation	107
1.8. 01.	and the locations of the proposed reservoirs	171
Fig. 6.5	Digital elevation map of the study area	172
Fig. 6.6	Land cover map of the study area	173
Fig. 6.7	Flood frequency curves of uncontrolled flows	
	(in m ³ /s or CMS) at S9 location for both Balog-Balog	
	single, high dam, multipurpose project (BBMP) and	
	multi-dam (BBMDS) including natural flow (without dam	1.50
$\mathbf{E} = \mathbf{C} \mathbf{P}$	project)	178
F1g. 0.8	wap snowing the Balog-Balog Irrigation System	
	O'Donnell Rio Chico, and Talayera river basing	170
		1/9

Fig. 6.9	San Roque Reservoir and watersheds. Also indicated	190
Fig. 6.10	Time series plots of simulation of rainfall input, watershed	100
	flows, and sediment yield for Ambalanga sub-basin on 29th	185
Fig. 6.11	Time series plots of stochastically generated rainfall	105
1 ig. 0.11	aggregated on a daily basis using the Poisson rectangular	
	pulse model for 70 years (first three plots) and the historical	
	daily rainfall data at Binga Dam (bottom plot)	186
Fig. 6.12	Time series plots of annual sediment inflow to San Roque	
0	Reservoir	187
Fig. 6.13	Change in bed elevations for Case 3 from year 0 to end	
U	of years 25 (left) and 70 (right). Positive values indicate	
	sediment deposition	189
Fig. 6.14	Time series plots of reservoir inflows, levels and spills	
-	for Case 1	190
Fig. 6.15	Time series plots of reservoir inflows, levels, and spills	
-	for Case 2	191
Fig. 6.16	Time series plots of reservoir releases, energy generation,	
	and power release sediment load for Case 1	192
Fig. 6.17	Time series plots of reservoir releases, energy generation	
	and power release sediment load for Case 3	193
Fig. 6.18	Pulangi River Basin and location of Pulangi Reservoir in	
	Maramag, Bukidnon, at the southern part in the map created	
	from a collage of 16, 1:50,000 scale NAMRIA maps	194
Fig. 6.19	Schematic sketch of depositional patterns in the longitudinal	
	direction. (From Fan and Morris 1992)	196
Fig. 6.20	Schematic diagram of flushing processes with deltaic	
	deposition during drawdown flushing. (From Fan	
	and Morris 1992)	197
Fig. 6.21	Schematic diagram of flushing processes with	
	wedge-shaped deposition during drawdown flushing.	
	(From Fan and Morris 1992)	197
Fig. 6.22	Pulangi Reservoir 2-d model geometry and associated	
	hydraulic structures and hydropower components	198
Fig. 6.23	Pulangi Reservoir finite volume grid system superposed	
	on the bathymetry data provided by NAPOCOR, Pulangi	
	Office, last November 2010	199
Fig. 6.24	Time series of plots of flows (m^3/s) , water elevations (m) ,	
	sediment flushed (m ³), sediment concentrations (%), and	
	hydropower (MW) generated at pertinent locations in the	
	Pulangi Reservoir system at inflow of 150 m ³ /s and gate	
	opening of (a) 0.5 m and (b) 2.0 m	204

	•		٠
XXV	1	1	1
	-	-	-

Fig. 6.25	Time series plots of sediments flushed (in cubic meters) and reservoir capacity (in million cubic meters) for 360-day simulation run with fifty-seven (57) 12-b flushing operations	205
Fig. 6.26	Areas in the reservoir with net bed deposition (in m) from (a) days 30 to 90, (b) days 30 to 180, (c) days 30 to 240, and (d) days 20 to 260	205
Fig. 6.27	Areas in the reservoir with net bed erosion (in m) from (a) days 30 to 90, (b) days 30 to 180, (c) days 30 to 240, and (d) days 30 to 360	200
Fig. 7.1	Manila Bay-Laguna Lake system and surrounding watersheds	213
Fig. 7.2	Elevation map of Manila Bay-Laguna Lake Basins generated from NASA-STRM digital elevation data	215
Fig. 7.3	Land use/cover map of Manila Bay-Laguna Lake watershed system	216
Fig. 7.4	Temporal distribution of hydrodynamic condition: (a) water elevation; (b) near surface velocity at South Channel (U northing and V easting components); (c) near bottom velocity at South Channel; (d) near surface velocity at North Channel; and (e) near bottom velocity at North Channel.	
Fig. 7.5	(Data from IMSWES, October 11–12, 2001)	217
Fig. 7.5	hydrodynamic and water quality model	219
Fig. 7.6	Schematic of dissolved oxygen model and its interactions with other chemicals and other sink/source terms or processes. (Taken from HEC-RAS User's Manual, USACE 2008)	225
Fig. 7.7	Major sub-basin delineations of the Bataan, Pampanga (including Guagua), Bulacan, Manila-Cavite, and Laguna River Basins. Also indicated are areas handled by 2-d hydraulic model and 3-d Princeton Ocean Model	229
Fig. 7.8	Location of rainfall gaging stations within and around Manila Bay-Laguna Lake watersheds	233
Fig. 7.9	Sample time series plots of daily flows calculated from the watershed modeling of two sub-basins in the Pampanga	
Fig. 7.10	River Basin Average daily flows (m ³ /s) in the Pampanga River Basin calculated from the watershed model simulation using rainfall data from 1972 to 2012	234
Fig. 7.11	Average daily flows (m^3/s) in the Bataan sub-basins calculated from the watershed model simulation using rainfall data from 1972 to 2012	235
Fig. 7.12	Average daily flows (m^3/s) in the Laguna River Basin calculated from the watershed model simulation using	230
	rainfall data from 1972 to 2012	237

Fig. 7.13	Average daily flows (m ³ /s) in the Manila-Cavite sub-basins calculated from the watershed model simulation using rainfall data from 1972 to 2012	238
Fig. 7.14	Finite difference grid of Manila Bay consisting of 16 (sigma-delta) layers of 11,967 square grids of size	230
Fig. 7.15	400 m x 400 m each together with bathymetric map Detailed 2-d model geometry and elevation map of Bataan-Pampanga-Bulacan Delta consisting of 4927 finite	239
Fig. 7.16	Detailed 2-d model geometry and bathymetric map of Laguna Lake-Pasig River composed of 3572 finite	240
Fig. 7.17	Plot of BOD and DO loadings versus discharge of Imus River	241
Fig. 7.18	Plot of BOD and DO loadings versus discharge of Orion River	243
Fig 7 19	Locations of rivers with outflows to Manila Bay	244
Fig 7 20	Population density map of the study area	245
Fig. 7.21	Time series plots of derived BOD and phosphate loadings of Pampanga River	248
Fig. 7.22	Time series plots of derived BOD and phosphate loadings of Limay River	248
Fig. 7.23	Simulated dissolved oxygen concentrations around Manila Bay using the derived BOD and phosphate loadings using the water quality model with components DO, BOD, and phosphate	249
Fig. 7.24	Typical vector plot of lake velocities (a) with spatially varying wind field and (b) with uniform wind field (taken from Tabics et al. 2000b)	240
Fig. 7.25	Salinity concentration around Laguna Lake 10, 30, 57, and 96 hours from start of simulation which is typical during the dry month of April when the freshwater inflows are low and the lake can have significant saline	249
Fig. 8.1	Pasac Delta network located northwest of Manila. [The river	250
C	reaches are denoted by the letter R (e.g., R38 is reach 38).]	255
Fig. 8.2	Maximum water stages (m) resulting from storms coming from (1) northeast, (2) east, (3) southeast, and (4) south	
Fig. 8.3	directions (all storms at speed of 20 kph) Maximum flow velocities (m/s) resulting from storms coming from (1) northeast, (2) east, (3) southeast, and	260
Fig. 8.4	 (4) south directions (all storms at speed of 20 kph) Maximum discharges (m³/s) resulting from storms coming from (1) northeast, (2) east, (3) southeast, and (4) south directions (storms at speed of 20 kph) 	261
	and (+) south uncertains (storms at speed of 20 kph)	202

Fig. 8.5	Maximum water surface elevations (m) resulting from storms coming from the south direction at speeds of	
	(1) 10 kph, (2) 20 kph, (3) 30 kph, and (4) 40 kph	263
Fig. 8.6	Time series plots of water stages (m), velocities (m/s),	
	and discharges (m ³ /s) at Guagua River (Reach 8, Sect 3 km)	
	and Pasac River (Reach 22, Sect 3.4 km) for storms coming from	
	northeast, east, and south directions (all moving at 20 kph)	264
Fig. 8.7	Empirical cumulative distribution functions (CDF) of water	
	stages (m), velocities (m/s), and discharges (m ³ /s) at Guagua	
	River (Reach 8, Sect 3 km) and Pasac River (Reach 22,	
	Sect 3.4 km) based on 50 traces of stochastic generated storms	
	coming from northeast, east, and south directions (all moving	
	at 20 kph)	265
Fig. 8.8	Map of Metro Manila showing Pasig-Marikina River system	
	with Manggahan Floodway, Laguna de Bay (Laguna Lake),	
	and Napindan River	266
Fig. 8.9	Major flood-prone areas in Metro Manila (JICA Report)	267
Fig. 8.10	Path of Tropical Storm (TS) Ketsana (international name)	
	locally called in the Philippines as Typhoon Ondoy passing	
	through Metro Manila on September 26, 2009	268
Fig. 8.11	Hourly rainfall (mm/h) during TS Ketsana at five gaging	
	stations around Marikina River Basin	269
Fig. 8.12	TS Ketsana's hourly rainfall fields (in mm) by multiquadric	
	spatial interpolation from 8 AM to 2 PM on September 26,	
	2009	269
Fig. 8.13	Laguna Lake levels at Angono station during TS Ketsana	270
Fig. 8.14	Pasig-Marikina River Basin with the unsteady flow,	
	network model geometry (mesh area)	270
Fig. 8.15	Marikina River Basin hourly flood hydrograph as upstream	
	inflow (m ³ /s) of the Pasig-Marikina River flood model and	
	associated average (composite) basin rainfall (mm/h) during	
F ' 0.16	TS Ketsana	272
Fig. 8.16	Maximum river stages (m) along the alignment	
	Pasig-Marikina River from Sto. Nino Bridge (km 34)	
	to Manila Bay (km 0) superposed on (a) left and (b)	070
E: 0.17	right river overbank ground elevations	273
F1g. 8.17	Pictures taken a day after the TS Ketsana at Marcos	
	Highway Bridge near SM Mall (km 31 in Fig. 8.16)	
	where flood heights above the overbank ground	070
F ' 0.10	elevation reached as high as 8 m	213
Fig. 8.18	Mariling City and David City good Description	
	Iviankina City and Pasig City near Kosario Weir $(km 24 \text{ to } km 27 \text{ in Fig. 8, 16})$	174
$\mathbf{E}_{\mathbf{a}} \otimes 10$	(KIII 54 10 KIII 27 III FIg. 6.10)	214
FIg. 8.19	de Ore River Regin	777
		211

Fig. 8.20	Cagayan de Oro River Basin delineation for a total of 68 sub-basins	278
Fig. 8.21	Cagavan de Oro River Basin topographic map	279
Fig. 8.22	Land use/cover map of Cagavan de Oro River Basin	280
Fig. 8.23	Finite element grid representation composed of 6092	
0	elements and 6158 nodes of the 2-d flood inundation model	
	covering the lower portion of Cagavan de Oro River Basin.	
	Shown in the inset is the location of the 2-d model geometry	
	relative to the river basin	281
Fig. 8.24	Eight flood mitigations plans or scenarios for Cagavan	-01
1.8.0.2.	de Oro River Basin	284
Fig. 8.25	Class posting of maximum water depths (m) for the eight	
0	flood simulation scenarios. Note that only depths of greater	
	than 0.5 m are posted	286
Fig. 8.26	Profiles of maximum river stage water surface elevations	
0	along the center line of the Cagavan de Oro River for	
	the eight flood simulation scenarios	287
Fig. 8.27	Sediment-filled reservoir before and after removal of	
0	dam by design or accident. (Taken from Cui et al. 2006b)	290
Fig. 8.28	Dam removal problem in a rectangular reservoir in plan	
0	view (right figure) and perspective partially showing the	
	reservoir (left figure). The finite volume mesh is 450 m by	
	60 m composed of 3000 elements, and the 13-m-high dam is	
	located at vertical ordinate 150 m in the figure. The color/	
	grayscale scale is bed elevation in meters	290
Fig. 8.29	Bed elevations (m) at time steps (a) -10 , (b) 10 , (c) 30 ,	
U	and (d) 60 min from time of dam-break of the rectangular	
	reservoir. The color scale is for bed elevations	291
Fig. 8.30	Difference between bed elevations (m) and original bed	
U	elevations at time steps (a) 10, (b) 30, (c) 60, and (d) 120 min	
	from time of dam-break of the rectangular reservoir. The color	
	scale is for differences in bed elevations, and a negative value	
	indicates scour	292
Fig. 8.31	Pictures taken at Butas Dam on October 9, 2006, about	
	2 weeks after the dam-break in which (a) looking downstream	
	into the dam that broke and (b) looking upstream from the	
	damsite	293
Fig. 8.32	Plan view of dam configuration and the finite volume grid	
	representation composed of 1140 irregular grids	293
Fig. 8.33	Velocity vectors 10 min after dam-break plotted over the	
	image of river channel and bank geometry. Note that dam	
	is approximately located at ordinates $x = 1250$ m (long side)	
	and $y = 1780$ m (short side)	294

Fig. 8.34	Bed elevations (m) at time steps (a) 0, (b) 10, (c) 20, (d) 40, (e) 60, and (f) 120 min from time of dam-break of Butas Dam. The color scale is for hed elevations	204
Fig. 8.35	Differences between bed elevations (m) and original bed elevations at time steps (a) 10, (b) 30, (c) 60, and (d) 90 min from time of dam-break of Butas Dam. The color scale is for differences in bed elevations, and a negative value indicates scour	294
Fig. 9.1 Fig. 9.2	Typical water distribution pipe network Typical time series plot of hourly main water use and non-revenue water (NRW) pilferage and leakage water (in million liters per day, mld) as well as hourly pressure head (in m) at a node	300 301
Fig. 9.3 Fig. 9.4	Flowchart of EPANET-Optimization model Water distribution concession area of Maynilad Water Service Incorporated (MWSI) which is on the west zone of Metro Manila	302
Fig. 9.5	Time series plots of observed flows and computed flows with optimization including pure simulation for gaging station 22SMA-L008	308
Fig. 9.6	Time series plots of observed flows and computed flows with optimization including pure simulation for gaging station 22SMA-L007	308
Fig. 9.7	Time series plots of observed pressures and computed pressures with optimization including pure simulation for gaging station 22SMA-4P-4O	309
Fig. 9.8	Time series plots of observed pressures and computed pressures with optimization including pure simulation for gaging station 22SMA-1G	309
Fig. 10.1	Assembly of 1:50,000 scale NAMRIA topographic maps covering the Upper Agno River Basin. Also shown is the watershed delineation into sub-basins and the three (3) major reservoirs Ambuklao, Binga, and San Roque (in the order from north or upstream to south or downstream) and the AUD Dam	210
Fig. 10.2	Ratios of 2050 future climate daily rainfall and historical daily rainfall on monthly basis based on global climate	312
Fig. 10.3	Monthly average discharges to Angat Reservoir for past (Q-past) and future (Q-future) climate change scenarios from GFDL_0 GCM including the monthly ratios (Q-future/Q-past) of monthly past and future climate	514
	inflows	333