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Foreword

This volume contains the papers presented at the 21st STAB/DGLR Symposium
held in Darmstadt, Germany (November 6–7, 2018) organized by the Institute for
Fluid Mechanics and Aerodynamics at the Technische Universität Darmstadt.
STAB is the German Aerospace Aerodynamics Association (Deutsche
Strömungsmechanische Arbeitsgemeinschaft) founded towards the end of the
1970s, and DGLR is the German Society for Aeronautics and Astronautics
(Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal Oberth e.V.).

The mission of STAB is to foster aerodynamics research and its appreciation in
Germany. This is accomplished by creating forums for scientific discussions and by
disseminating most recent research results, thereby enhancing scientific progress
and avoiding unnecessary duplication in research work.

STAB brings together German scientists and engineers from universities,
research establishments and industry. They present research and project work in
numerical and experimental fluid mechanics as well as aerodynamics for diverse
fields, such as aeronautics, space, ground transportation, wind turbines and other
applications. This format also offers an excellent opportunity for exchange about
numerous common research activities sponsored by different funding agencies.

Since 1986 the symposium takes place every two years at different locations in
Germany, all having an affinity to fluid mechanics and aerodynamics.

In addition STAB Workshops are held regularly at DLR (Deutsches Zentrum für
Luft- und Raumfahrt) in Göttingen in the intermediate years.

Both, STAB symposia and workshops provide excellent forums where new
research activities can be presented, often resulting in new jointly organized
research and technology projects.

In this volume symposium contributions are published for the twelfth time,
following a thorough peer review.

The review board, comprising also the programme committee, consisted of
P. Bahavar (Göttingen), C. Bauer (Göttingen), J. Bell (Göttingen), T. Berkefeld
(Göttingen), I. Bolgar (Neubiberg), A. Botelho e Souza (Braunschweig), M. Braune
(Göttingen), J. Breitenbach (Darmstadt), C. Breitsamter (München), C. Brückner
(Göttingen), A. Buhr (Göttingen), O. Burghardt (Kaiserslautern), M. Burnazzi
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(Göttingen), M. Costantini (Göttingen), A. Dannhauer (Göttingen), J. Delfs
(Braunschweig), R. du Puits (Ilmenau), K. Ehrenfried (Göttingen), R. Ewert
(Braunschweig), B. Faßmann (Braunschweig), M. Fehrs (Göttingen), U. Fey
(Göttingen), H. Foysi (Siegen), A. Gardner (Göttingen), D. Gatti (Karlsruhe),
N. Gauger (Kaiserslautern), R. Geisler (Göttingen), C. Grabe (Göttingen),
A. Guissart (Darmstadt), V. Hannemann (Göttingen), F. Heckmeier (München),
M. Hehner (Karlsruhe), A. Heider (Göttingen), S. Hein (Göttingen), S. Helm
(Göttingen), A. Henning (Göttingen), S. Herbst (Neubiberg), N. Herzog
(Taufkirchen), S. Herzog (Göttingen), S. Hitzel (Manching), A. Hövelmann
(Manching), A. Hübner (Braunschweig), D. Iglesias (Gilching), C. Ilic
(Braunschweig), S. Jakirlić (Darmstadt), C. Jessing (Stuttgart), C. Kästner
(Ilmenau), K. Kaufmann (Göttingen), A. Kellersmann (Braunschweig), M. Keßler
(Stuttgart), T. Kilian (Braunschweig), J. Kissing (Darmstadt), D. Klatt
(Saint-Louis), C. Klein (Göttingen), J. Klinner (Köln), M. Kloker (Stuttgart),
T. Knopp (Göttingen), R. Konrath (Göttingen), M. Konstantinov (Göttingen),
M. Kotsonis (Delft), U. Krause (Bremen), A. Krumbein (Göttingen), B. Krumbein
(Darmstadt), A. Kümmel (München), P. Kunze (Braunschweig), P. Lange
(Göttingen), R. Lechner (Otterfing), A. Lösch (Ilmenau), T. Lutz (Stuttgart),
R. Maduta (Darmstadt), J. Martinez Schramm (Göttingen), E. Mäteling (Aachen),
A. Merle (Braunschweig), B. Michels (Braunschweig), A. Mielke (Saint-Louis),
M. Mommert (Göttingen), M. Müller (Göttingen), M. M. Müller (Göttingen),
J. Nitzsche (Göttingen), E. Öngüner (Göttingen), J. Pflüger (München), S. Pfnür
(München), P. Pölzlbauer (München), A. Probst (Göttingen), D. Puckert (Stuttgart),
D. Ramaswamy (Aachen), M. Reder (Karlsruhe), A. Reeh (Taufkirchen), L. Reimer
(Braunschweig), M. Rein (Göttingen), K. Richter (Göttingen), S. Risius
(Göttingen), U. Rist (Stuttgart), M. Ritter (Göttingen), M. Rütten (Göttingen),
S. Scharnowski (Neubiberg), J. B. Schmidt (Darmstadt), O. Schmidt (San Diego),
A. Schreyer (Aachen), A. Schröder (Göttingen), E. Schülein (Göttingen), T. Schütz
(München), T. Schwarz (Braunschweig), B. Selent (Stuttgart), J. Serpieri (Delft),
L. Siegel (Göttingen), C. Stanger (Stuttgart), A. Stroh (Karlsruhe), M. Stuhlpfarrer
(München), G. Subbian, (Braunschweig), A. Suryadi (Braunschweig),
E. Tangermann (Neubiberg), J. Ullah (Stuttgart), N. van Hinsberg (Göttingen),
M. Vieweg (Köln), C. Voß (Göttingen), A. Waldmann (Stuttgart), K. Weinman
(Göttingen), M. Werner (Göttingen), A. Westhoff (Göttingen), T. Wetzel
(Göttingen), F. Wienke (Göttingen), H. Wilhelmi (Göttingen), G. Wilke
(Braunschweig), A. Winkler (Manching), M. Winter (München), Y. Wu (Stuttgart),
S. Yadala (Poitiers), Y. Zhang (Darmstadt).
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Nevertheless, the authors sign responsible for the contents of their contributions.
The editors are grateful to Prof. Dr. W. Schröder as the General Editor of the

“Notes on Numerical Fluid Mechanics and Multidisciplinary Design” series and to
the Springer publishing house for the opportunity to publish the results of the
symposium.

February 2019 A. Dillmann
G. Heller
E. Krämer
C. Wagner
C. Tropea
S. Jakirlić
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Abstract. The scalability and lightweight design of electric motors
within (hybrid-) electric propulsion systems facilitates the distribution
of propulsion. The aerodynamic interaction of a swirling propeller slip-
stream and a lifting surface can be beneficial regarding a vehicle’s propul-
sive efficiency. This report presents the implementation of a numerical
method of low computational effort based on Blade Element Momentum
Theory combined with a Vortex Lattice Method using a simple slipstream
model. Goal of the method is to determine basic effects and trends of such
aerodynamic interaction effects for conducting design studies regarding
principle parameters of propeller-wing tractor configurations. The imple-
mentation is depicted and a verification is given with experimental results
from literature.

Keywords: Propeller-Wing · Aerodynamic Interaction ·
Blade Element Momentum Theory · Vortex Lattice Method

1 Introduction

Aerodynamic effects of distributed propulsion play a key role in today’s research
concerning next generation aircraft designs. Especially the positioning of pro-
pellers within the flow field of a wing leads to an aerodynamic interaction. For
the preliminary design this topic has been investigated recently in [1,2] and [3]. In
order to approach this interaction a simple method using Blade Element Momen-
tum Theory (BEMT) and a Vortex Lattice Method (VLM) is implemented based
on [4]. The propeller calculation uses the induced velocities of a wing’s three-
dimensional (3D) flow field on the propeller disc and vice versa the wing calcu-
lation considers propeller-induced velocities. It represents a preliminary design
approach to model aerodynamic interaction effects regarding principle geometry
parameters. Thus, by approaching the complex and unsteady flow with a station-
ary and rather simple approach, this method is suited for parameter studies. The
aerodynamic interaction of an exemplary propeller-wing configuration has been
investigated experimentally in [5,6] and [7] using a wind-tunnel model, whose
results are used here for a verification of the implemented method. Figure 1
presents qualitatively the interaction problem by showing two-dimensional (2D)
streamlines of isolated and combined flow fields.
c© Springer Nature Switzerland AG 2020
A. Dillmann et al. (Eds.): DGLR 2018, NNFM 142, pp. 3–13, 2020.
https://doi.org/10.1007/978-3-030-25253-3_1
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Fig. 1. Qualitative visualization of the aerodynamic interaction of the flow fields.

2 Physical Modeling

The propeller flow is modeled using BEMT extended with azimuthal discretiza-
tion to consider arbitrary 3D inflow on the propeller disc using a quasi-steady
sector approach. This provides the forces and moments of the propeller and the
flow field input for a simple inviscid and non-deflected slipstream model. Latter
is used to transfer the propeller induced velocities of each radial and azimuthal
propeller disc position onto the collocation points of the VLM with a velocity
development which is dependent on local slipstream contraction. Local induced
velocity and Angle of Attack (AoA) at the panels are taken into account to
complement the boundary condition of no perpendicular flow. On each panel
the element-wise lift and drag force components are evaluated. This procedure
already provides good results for the verification case approached here and is
named Single Interaction Mode (SIM) as mentioned in [4]. A Full Interaction
Mode (FIM) is also implemented here, but with the use of a convergence loop
for the propeller induced velocity field at the propeller disc, as shown in the flow
chart of Fig. 2.

2.1 Blade Element Momentum Theory

The BEMT is implemented using the equations from [8] and its governing set of
non-linear equations. The equations for each blade element on non-dimensional
radial position ξ = r/R are extended for azimuthal angle θ reading

a

1 + a
=

σcy

4F sin2 φ
(1)

a′

1 − a′ =
σcx

4F cos φ sin φ
(2)

φ = arctan
u0 cos αp cos βp (1 + a)

(u0 (sin αp cos βp sin θ + sinβp cos θ) + Ωr) (1 − a′)
(3)

where a, a′ and φ = β −αi represent the axial interference factor, the tangential
interference factor and the flow angle as a difference of the blade sectional twist
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angle β and induced angle of attack αi. These three unknowns are determined
for each non-dimensional radial position ξ and azimuthal angle θ of the propeller
disc considering the local angle of attack αp and local sideslip angle βp. B repre-
sents the number of blades, c the sectional chord length, σ = Bc

2πξR the sectional
solidity ratio, u0 the inflow velocity and Ω the angular velocity of the propeller.
The section force coefficients cx = cL sin φ+ cD cos φ and cy = cL cos φ− cD sinφ
are obtained using 2D airfoil polar data. The losses induced by the flow around
the blade tips are modeled using the Prandtl tip loss factor F . The non-linear
equations are solved iteratively for each radial and azimuthal position to deter-
mine the respective incremental values for thrust and torque and induced axial
and tangential velocity components. A spatial discretization of 16 radial and
12 azimuthal elements is used. Unsteady in-plane forces and moments varying
per revolution are not taken into account within this approach.

2.2 Slipstream Model

The flow passing through the propeller disc is assumed to contract according to
a slipstream contraction factor given in [10] with the assumption of kinematic
energy conservation. The contraction is here extended for azimuthal dependency
and given by

rs

r
=

√
√
√
√
√

1 + a

1 + a

(

1 + xs√
r2+x2

s

) , (4)

where rs/r denotes the radial contraction at the axial distance xs within the
slipstream. The axial and tangential velocities us,ax and us,t at this distance
behind the propeller-disk read

us,ax =
(

r

rs

)2

up,ax and us,t =
r

rs
up,t, (5)

where up,ax and up,t denote the axial and tangential velocity components at the
propeller disc obtained from the BEMT.

2.3 Vortex Lattice Method

The VLM is implemented according to [9] and the adaption for the propeller
influence is implemented as described in [4]. The trailing vortices are aligned
with the wing’s chord direction. If a panel is located within the propeller stream-
tube, the velocity vector at this collocation point considers the propeller-induced
slipstream velocity reading ui = u0+us,i. The velocities induced by all horseshoe
vortices onto all collocation points are formulated mathematically with the Biot-
Savart law. Here the equation for discrete, straight vortex segments of finite
length is applied, given by

u =
Γ

4π

r1 × r2
|r1 × r2|2

[

r0

(
r1
r1

− r2
r2

)]

(6)
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where Γ is the circulation of the vortex segment between r1 and r2 and u the
induced velocity at r0. This law is applied for all bound and trailing vortices
to set up equations for the normal components of the induced velocities of all
horseshoe vortices onto all panel collocation points.

Fig. 2. Flow chart for the BEMT-VLM coupling within the interaction loop.

The boundary condition of zero normal flow at these points leads to the
set of linear algebraic equations for the unknown circulation strengths reading
aijΓj = −ui ·ni, where aij represents the influence coefficient of the j-th circula-
tion strength onto the i-th panel by aij = uind,ij ·ni. The boundary condition on
the right side denoted by −ui · ni is the negative value of local velocity normal
to the i-th panel surface. As the circulation values at all panels are known, the
lift of the i-th panel and per unit span is obtained by li = ρuiΓi. Here espe-
cially within the propeller slipstream the direction of the local inflow vector is
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considered tilting the lift vector compared to a panel which is not located in the
slipstream. In a next step, the induced angle of attack αind,i and thus resulting
induced drag components di are evaluated for all panels. The induced velocities
at the collocation points wind,i are calculated with influence coefficients bij , tak-
ing exclusively the trailing vortices into account. These read bij = u∗

ind,ij · ni

with u∗
ind,ij being the induced velocity vectors only by the trailing vortices.

With the original determined circulation strengths Γj , the induced velocities are
obtained reading wind,i = bijΓj . A panel’s induced angle of attack then reads
αind,i = arctan(wind,i/ui). Finally the section-wise drag components by wing
thickness and surface friction are obtained via XFoil and added to the induced
drag components.

3 Results

In order to verify the implemented BEMT-VLM method the configuration
described in [5] is modeled and aerodynamic force coefficients are compared to
the experimental results. At first the aerodynamics of the isolated propeller and
isolated wing are verified. It follows the calculation of the full propeller-wing con-
figuration at one exemplary operating point to evaluate both induced velocity
components and sectional lift and drag characteristics. Finally the configura-
tion’s force coefficients are calculated over an AoA-range with propeller-off and
four different thrust settings and inflow velocity values. The model dimensions
and airfoils used are given in [7].

3.1 Verification of BEMT and VLM

The calculated isolated propeller efficiency η = J CT

CP
is shown in Fig. 3 over

the advance ratio J = u
nD , where CT is the thrust coefficient, CP the power

coefficient, u the inflow velocity, n the rotations per second and D the propeller
diameter. Two different pitch settings β0.75R = 8◦ and β0.75R = 20◦ are applied.
The used thrust coefficients C∗

T throughout the experimental report are based
on dynamic slipstream pressure reading

C∗
T =

T

q∗
0Sprop

with q∗
0 =

ρ

2
u2 +

T

Sprop
, (7)

where T is the propeller thrust and Sprop its disc area. It is used to avoid infinite
force coefficients at zero wind-tunnel velocity. The main geometry parameters
of the propeller blades are given in terms of twist, chord and airfoil thickness
distribution. The given CLARK-Y airfoil for the propeller with a thickness of
11.7% is located only at 0.5R. Since no further geometry information is available,
the CLARK-Y geometry is assumed to be representative for all other radial
sections within this approach. Airfoil data is generated using XFoil and sectional
Reynolds number.

Furthermore propeller nacelle influence is not considered and propeller radial
elements are accounted starting at 0.2R. These are all possible reasons for large
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Fig. 3. Calculated propeller efficiency compared with experimental data.

Fig. 4. Lift coefficient over AoA and drag polar for inviscid and viscid approach.

deviations to experimental results but are accepted here since emphasis is laid
on evaluation of principle effects of the propeller-wing interaction. However the
efficiency for the propeller at the points of interest is calculated with reason-
able accuracy, as marked in Fig. 3. Within a next step the VLM results for
the clean wing of the configuration are compared to the experimental polar in
Fig. 4. NACA0015 polar data for including strip-wise the airfoil pressure and
friction drag is generated also with XFoil under sectional Reynolds number. The
α-cL-curve shows good accuracy and the linear behavior, due to the used VLM
implementation. Next to the experimental drag polar, the inviscid and viscid
results are shown on the right side of Fig. 4. The calculated drag polar shows
good agreement for the zero AoA case, but underestimates the experimental
drag values with increasing lift coefficient.

3.2 Verification of the Combined Method

In order to verify the correct implementation of propeller slipstream velocity
components onto the VLM panels, the propeller-wing configuration is calculated
at an exemplary operation point at medium thrust coefficient of C∗

T = 0.5 and
AoA = 6◦.
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Fig. 6. Prop-off vs. Prop-on case comparing effective AoA at the VLM panels.

The top-view of the semi-wing is shown in Fig. 5 with the propeller located
left to it and rotating outboard-up direction. The non-dimensional axial and tan-
gential velocity components obtained from the propeller calculation and result-
ing from the slipstream model can be seen at the respective VLM collocation
points behind the propeller. The inner blade, being here the advancing blade,
shows slightly larger axial velocity values than on the retreating blade side (left).
Considering the sign of the tangential induced velocity (right), the outboard-up
rotation of the stream-tube is verified. Moreover for this operation condition
the local effective AoA at the VLM panels is shown in Fig. 6 for the propeller-off
case (left) and with the influence of the propeller slipstream flow (right). Keeping
this in mind Fig. 7 (left) shows the sectional values for lift and drag coefficient,
compared to the isolated wing characteristics for the described condition. The
coefficient values are related to free-stream velocity. Figure 7 (right) shows a
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Fig. 7. Outboard-up (left) vs. inboard-up rotation at C∗
T = 0.5 and AoA = 6◦.

result for everything maintained but inboard-up rotation of the propeller, as a
comparison. Within the upper plots a clear increase of sectional lift coefficient
can be detected behind the upward rotating blade side combined with an increase
in local induced drag on the downward rotating blade side. The lower plots com-
pare the sectional drag coefficients also including the propeller effect against
the propeller-off case. Additionally the internal values for sectional parasitic and
sectional induced drag contributing to the total sectional drag coefficients are
shown. The effect of increased parasitic drag behind the propeller can be seen.
The induced drag coefficient may be related to the local tilt of a panel’s lift
vector resulting from the effective AoA at each panel. The shown results are
achieved with a converged interaction loop of induced propeller disc velocities
(FIM) but differ negligible from the SIM results.

3.3 Verification of the Propeller-Wing Configuration

The considered experimental results provide vertical and horizontal force coef-
ficients of the full configuration at different AoA over a velocity range with
simultaneously reducing the propeller loading. The operating conditions for each
AoA-sweep are listed in Table 1.

Table 1. Wind-tunnel velocity and isolated propeller thrust settings.

u0[m/s] J[−] β0.75[◦] C∗
T[−] CT[−] DL[N/m2] RPM

25.00 - - - - - -

22.31 0.74 20 0.20 0.0570 78.08 2936

17.65 0.30 8 0.50 0.0359 192.03 5811

13.47 0.22 8 0.71 0.0499 271.52 5887

7.49 0.13 8 0.91 0.0663 348.20 5811
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In order to compare force coefficients c∗
Y and c∗

X of the tractor configuration,
the propeller reaction forces also have to be included. The convention given in
[5] is used reading

c∗
Y =

L + T sin α

q∗
0Swing

and c∗
X =

D − T cos α

q∗
0Swing

, (8)

where L, D are the calculated lift and drag values for the blown wing, Swing

the projected wing surface and T the calculated propeller thrust. The different
propeller thrust values are achieved by iterating the propeller RPM as it was
made within the experimental campaign. For all wind-tunnel velocity and thrust
value combinations thus an equal dynamic slipstream pressure of q∗

0 = 383N/m2

is maintained. The force coefficients for the configuration are shown in Fig. 8.
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Fig. 8. Computational force coefficients c∗
X and c∗

Y (connected symbols) are compared
to experimental results (symbols only) over inflow angle.

The FIM results (blue, connected symbols) are shown and match to the SIM
results (red symbols), where these are not visible. In general there are slightly
different results by FIM and SIM. The lightest propeller loading result, repre-
senting a fast cruise state, shows the largest difference of a 1.6% lower c∗

Y at
AoA = 10◦ for the FIM compared to SIM. The experimental c∗

Y results (black,
unconnected symbols) are met with reasonable accuracy but in general the trend
is captured quite well. The horizontal force coefficients c∗

X have decreasing agree-
ment to the experimental values with increasing thrust coefficient. The drag
increase with increasing AoA is captured for all disc loading conditions. Finally
the vertical and horizontal force coefficients are compared at 6◦ and −6◦ for
the described state with C∗

T = 0.5. For the computational results these cases
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represent outboard-up and inboard-up rotation direction, since the wing airfoil
is symmetric. The quotient c∗

Y /c∗
X shows an increase of 6% for the inboard-up

rotation compared to outboard-up direction, which depicts an example of a trend
analysis for such a propeller-wing configuration.

4 Conclusion

A preliminary design tool for the aerodynamic interaction of propeller-wing trac-
tor configurations has been implemented and computational results of a refer-
ence configuration have been presented. The approach is based on Blade Element
Momentum Theory (BEMT) combined with a Vortex Lattice Method (VLM)
using a simple slipstream model and enables to capture quasi-steady interaction
of the flow fields. The BEMT and VLM match well with the available experimen-
tal data for the isolated components under the operation points of interest. The
internal results of the combined method show its capability to capture principle
interaction effects. The calculation of force coefficients of a wind-tunnel model
from literature show good agreement regarding the trend of the vertical force
coefficients. Although both a Single Interaction Mode and a Full Interaction
Mode using a convergence loop for the induced velocity field on the propeller
disc have been implemented, only the lightly loaded propeller case shows a devi-
ation in the order of 1–2% for the vertical force component. In a next step further
geometries have to be calculated and a comparison to finite-volume based meth-
ods shall be made for further verification. Although the interaction of a propeller
and a wing constitutes a highly complex interaction problem, this method of low
computational cost can be used in optimization loops to match propeller and
wing preliminary designs. The method enables sensitivity analysis to different
propeller principle designs with e.g. blade counts, tip speeds and in general the
governing individual slipstream flow field.
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Abstract. Hybrid RANS/LES simulations of the flow around the
NASA Common Research Model aircraft configuration were carried out
with the focus on understanding the interaction of the separated wake
with the tailplane in the presence of massively separated flow on the
main wing. Validation of the CFD data using PIV data obtained for the
flow conditions at α = 16◦, α = 18◦ and α = 20◦ was carried out, con-
firming the generally satisfactory performance of the DDES simulations
observed in earlier publications. As a next step, the wake characteristics
and tailplane forces were evaluated for three angles of attack in order to
investigate the flow dynamics in low speed stall. The separation charac-
teristics were found to vary over the span. The wake size and downwash
direction varied significantly with higher values of α. The altered wing
downwash influenced the tailplane inflow, with the load fluctuations on
the latter being significantly affected by the amount of turbulent kinetic
energy present in the wake.

Keywords: Aircraft aerodynamics · Wake flows · Post-stall flight

1 Introduction

Aerodynamics at the edges of the flight envelope of large civil aircraft is character-
ized by challenging flow conditions with high Reynolds numbers and, oftentimes,
separation phenomena. The understanding of such conditions involves complex
experimental or numerical investigations that are able to capture or resolve large
scale unsteadiness. This motivated works such as Lutz et al. [6] and Waldmann
et al. [12] in the context of the European project ESWIRP, which shed light onto
the flow physics of civil aircraft at high Reynolds number stall conditions.

Low speed stall describes a condition at subsonic Mach numbers and rela-
tively high angles of attack. The aircraft’s angle of attack is significantly above
α(CL,max), with the lift coefficient CL typically decreasing due to large-scale
flow separation. Such high angles of attack are encountered on a regular basis by
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