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Preface 

Minerals, organic matter and microorganisms are the major solid components 
in soil systems. These three constituents do not function independently but 
rather interact with each other constantly at all times and everywhere in the 
soil ecosystem. The interactions profoundly affect a series of physical, 
chemical and biological processes of soils including the behavior, 
transformation and fate of various nutrients and pollutants. The research on 
these interactions should, thus, be an important issue for Soil and 
Environmental Scientists. Therefore, the International Society of Soil 
Science established the Working Group MO in 1990, which was promoted 
to a new Commission 2.5 Soil Physical/Chemical/Biological Interfacial 
Interactions of the International Union of Soil Sciences (IUSS) in 2004. To 
date, the Working Group has sponsored four international symposia and 
these conferences were held in Edmonton (Canada, 1992), Nancy (France, 
1996), Naples (Italy, 2000) and Wuhan (China, 2004), respectively. 

The 4th International Symposium on Interactions of Soil Minerals with 
Organic Components and Microorganisms (ISMOM2004) was the first 
Inter-Congress Symposium of IUSS Commission 2.5. The conference was 
cosponsored by the International Union of Pure and Applied Chemistry 
(IUPAC). Doctors P.M. Huang (Canada), A. Violante (Italy), J. -M. Bollag 
(USA), J. Berthelin (France), J. Zhou (China) and Q. Huang (China) served 
in the Symposium Organizing Committee. The meeting attracted 135 
delegates from 22 countries and regions in the world including Canada, 
Chile, China, France, Germany, Hong Kong SAR, India, Indonesia, Iran, 
Italy, Japan, Kenya, Korea, Malaysia, New Zealand, Russia, South Africa, 
Thailand, The Netherlands, USA, Venezuela and Zimbabwe. The theme of 
ISMOM2004 was “Environmental Significance of Mineral-Organic 

conference program was divided into the following six sessions: 
(1) Transformation and Dynamics of Pollutants in Soil Environments, 
(2) Chemical, Biological and Biochemical Processes in the Rhizosphere, 
(3) Bioavailability of Metals, Nonmetals and Xenobiotics Immobilized on 
Soil Components, (4) Distribution and Activity of Biomolecules in 
Terrestrial Systems, (5) Interactions between Soil Microbial Biomass and 
Organic Matter/Nutrient Transformations, and (6) Impact of Interactions 
among Soil Mineral Colloids, Organic Matter and Biota on Risk Assessment 
and Restoration of Terrestrial Ecosystems. There were 2 plenary lectures, 
9 invited speakers, 36 oral presentations and 45 posters. Dr. N. Senesi from 
University of Bari, Italy, presented an IUPAC lecture entitled Metal-Humic 

Component-Microorganism Interactions in Terrestrial Systems”. The 
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Substance Complexes in Soil. Dr. P. M. Huang from University of 
Saskatchewan, Canada, who was the founder of Working Group MO and the 
founding Chair of Commission 2.5 of IUSS, gave a plenary lecture on 
Physical-Chemical-Biological Interfacial Interactions in Soil Environments. 

The 13 chapters in this book are mainly the papers from the plenary and 
invited speakers of ISMOM2004. They address the state-of-the-art on the 
theories and applications of the interactions of minerals with organic 
components and microorganisms in soil environments. The book presents a 
variety of issues on the fundamental interactions among soil minerals, 
organic components and microorganisms and their impacts on soil 
ecosystems. Part I (Chaps. 1–7) addresses the fundamentals of physical- 
chemical-biological interfacial reactions, the binding and transformation 
mechanisms of metals, metalloids, biomolecules and organic pollutants as 
affected by soil organic, inorganic and microbial components. Part II (Chaps. 
8–13) deals with the impacts of the interactions of soil components on the 
dynamics of soil carbon and biomass, the bioavailability of chemicals, and 
on soil and environmental quality. These chapters present a variety of topics 
that address issues of the cutting edges of science of the subject matter. We 
believe that the publication of this ISMOM2004 special book would 
promote in-depth studies in this field for years to come. The book should be 
useful for research scientists, professors, graduate students, and consultants 
working in soil, microbial ecology and environmental sciences. 

We wish to extend our gratitude to the many sponsors including the 
National Natural Science Foundation of China (NSFC) and Organization for 
the Prohibition of Chemical Weapons (OPCW). We also acknowledge the 
contributions from many of the Chinese Institutions such as Huazhong 
Agricultural University, Institute of Soil Science of the Chinese Academy of 
Sciences, State Key Laboratory of Agricultural Microbiology, and the Key 
Laboratory of Subtropical Agricultural Resources and Environment. 

In addition to this book, volunteered papers presented at ISMOM2004 
and accepted after rigorous external review was published as a special issue 
by the international journal Biology and Fertility of Soils. This special issue 
serves a companion volume of this IUSS- and IUPAC-sponsored book 
published by Springer-Verlag. 
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1 Introduction 
 
Soil is the central organizer of the terrestrial ecosystem and its physical, 
chemical, and biological processes have enormous impacts on ecosystem 
productivity, services, integrity, and human welfare. On April 21, 2000, 
the Council of the International Union of Soil Sciences (IUSS) approved 
the organization of the IUSS scientific structure: D1. Soil in Space and 
Time, D2. Soil Properties and Processes, D3. Soil Use and Management, 

1 Soil Physical-Chemical-Biological Interfacial 



4      P.M. Huang 

 

and D4. The Role of Soils in Sustaining Society and the Environment. 
There are four commissions in Division D2: C2.1 Soil Physics, C2.2 Soil 
Chemistry, C2.3 Soil Biology, and C2.4 Soil Mineralogy. However, physi-
cal, chemical, and biological processes are not independent processes but 
interactive within the soil environment. Soils can be defined as complex 
interactive biogeochemical reactors, reservoirs of organisms, and a major 
compartment of the terrestrial ecosystem under the influence of anthropo-
genic activities.  

To improve our scientific knowledge of soil resources and its 
application to remediation and long-term management, it is of major im-
portance and interest to study soil organization and function, not only 
through the traditional subdisciplines of soil science but also through inter-
active approaches. The study of soil physical, chemical, and biological 
interfacial interactions has to be considered at different scales, namely, 
from molecular level to field/landscape systems and this approach is essen-
tial to stimulating further research to uncover the dynamics and mecha-
nisms of soil processes. Therefore, a new Commission C2.5 Soil Physical/ 
Chemical/Biological Interfacial Reactions was established in Division D2 
Soil Properties and Processes within the IUSS structure. Major research 
thrusts of this new commission include: (1) mineral and biological cataly-
sis and enzyme-mineral interactions leading to humus and organo-mineral 
complex formation; (2) surface reactions of micro- and macro-biota and 
biomolecules with soil particles; (3) the effect of soil abiotic and biotic in-
teractive processes on the structure, dynamics, and activities of microbial 
communities; and (4) ecological impacts of soil abiotic and biotic inter-
active processes. This last research thrust contains two major topics: 
(a) porosity formation by structure or organization development; and 
(b) biogeochemical transformation and transport of chemical and biologi-
cal components at different temporal and spatial scales.  

This paper presents an overview on soil physical-chemical-biological 
interfacial interactions and the impacts on the terrestrial ecosystem.  

2 Role of Organic Substances in the Transformation 
of Metal Oxides  

Metal oxides have a significant role in influencing physical, chemical, and 
biological properties of soils. They may exist as crystalline minerals, as 
short-range ordered (SRO) mineral colloids, or as surface coatings on clay 
minerals and organic matter. Organic compounds influence the formation, 
transformation, and surface properties of these metal oxides. The SRO Al 



and Fe oxides are among the most reactive mineral colloids in acidic and 
neutral soils (Huang et al. 2002; Bigham et al. 2002).  

The hydrolysis and polymerization of Al and the subsequent trans-
formation into crystalline phases are strongly influenced by the nature and 
concentration of natural organics (Huang and Violante 1986; Huang 1988; 
Krishnamurti et al. 1999, 2004). The influence of organic acids on Al 
transformation has been studied extensively, with most of the focus on the 
particular solid phases that form as a result of the perturbation of organic 
acids (Huang et al. 2002). The influence of a particular organic acid is 
generally related to the stability constant of the complex that forms with Al 
(Table 1). Therefore, p-hydroxybenzoic acid, which forms the least stable 
complex with Al, does not inhibit the crystallization of Al hydroxides. On 
the other hand, aspartic, tannic, malic, and citric acids increasingly retard 
crystallization (Fig. 1). In addition to the stability constant of the complex, 
the concentration of the organic acid is important. At certain low concen-
trations, which vary with the kinds of organic acids, the presence of some 
organic acids actually promotes the crystallization of particular Al(OH)3
polymorphs, but above the critical concentration, it disrupts crystallization 
(Huang and Violante 1986). This is because organic acids replace water 
molecules that would otherwise coordinate with the Al3+ ion. The extent to 
which this occurs depends on the chemical affinity of the organic acid for 
the Al, i.e., the stability constant, and its concentration relative to Al. Hu-
mic substances also influence the transformation of Al by promoting the 
formation of microcrystalline boehmite and hampering the formation of 
more crystalline phases (Kodama and Schnitzer 1980; Singer and Huang 
1990). Fulvic acids (FA) and humic acid (HA) resemble aliphatic acids, 
such as citric and malic acids, in that they contain COOH and aliphatic OH 
groups. They also resemble tannic acid and quercetin, because they contain 
phenolic hydroxyl and ketonic C=O groups. Through these functional 
groups, FA and HA form stable complexes with Al and inhibit the crystal-
lization of Al hydroxides. Through perturbation of crystallization, organic 
substances have a significant impact on the surface properties of Al trans-
formation products. The presence of organic acids during aging of Al hy-
droxide gels increases the specific surface of the products up to 30-fold 
over that of the control, and higher organic acid concentrations result in 
higher specific surface (Kwong and Huang 1978, 1981). The surface 
charge characteristics of the products also dramatically change. These in-
termediate transformation products are the most reactive Al species in influ-
encing physical, chemical, and biological processes of soils and associated 
environments (Huang et al. 2002).  

1 Soil Physical-Chemical-Biological Interfacial Interactions      5 



6      P.M. Huang 

Table 1. Stability constants of the complexes formed between Al and five organic 
acids at 25°C (Kwong and Huang 1979a)  

Organic acids  Stability constants of the complexes 
 log K1  log K2
p-hydroxybenzoic acid  1.66  – 
Aspartic acid  2.60  –
Tannic acid  3.78  – 
Malic acid  5.14  8.52 
Citric acid  7.37  13.90 

Fig. 1. The x-ray diffraction patterns of hydrolytic precipitation products of Al, 
showing how four different organic acids influence the transformation to more 
crystalline phases. The initial Al concentration was 1.1  × 10–3M at an OH/Al mo-
lar ratio of 3 and the solution was aged for 40 d at room temperature in the pres-
ence of 10–4M organic acid (Kwong and Huang 1979b). 

Organic substances also play a very important role in the forma-
tion and transformation of Fe oxides in soils (Fig. 2). In soil environments 
where the amount of organic matter is low, the Fe supplied will form goe-
thite and hematite depending on environmental factors (Schwertmann 
1985). As the organic matter content increases, more of the Fe will be 
complexed with organics resulting in the decrease in Fe activity. The activ-
ity of Fe(III) ions is so low that only the solubility product of goethite  
(10–41–10–42), but not the solubility product of ferrihydrite (10–37–10–39),
is exceeded. Consequently, goethite but not the ferrihydrite may form. 



  

Therefore, no hematite will form in an environment where the organic 
matter is high, since ferrihydrite is deemed a necessary precursor for 
hematite. This trend is observed generally in soils in the temperate and 
cool regions as well as in wet depression and surface soils of the subtropi-
cal and tropical regions. At a higher content of organic matter, the rate of 
Fe supply is high and ferrihydrite will form and may survive for pedogenic 
times. If the content of organic matter is even higher, such as occurs in 
O horizons or in peaty environments, all of the Fe may be in the form of 
Fe-organic complexes. The interaction of organic matter with Fe, thus, 
plays a vital role in influencing the crystallization and speciation of 
Fe oxides in soil environments (Schwertmann et al. 1986; Cornell and 
Schwertmann 1996). Furthermore, the fine scale morphology, mean sur-
face roughness, fractal dimension, specific surface, and microporosity of 
the Fe oxides depend on the concentration of low-molecular-weight or-
ganic acids, e.g., citric acid in the solution in which the Fe oxides are 
formed (Liu and Huang 1999). Surface properties of Fe oxides formed un-
der the influence of organic substances deserve close attention in advanc-
ing our understanding of their surface chemistry pertaining to dynamics 
and transformations of chemical and biological components in soil and re-
lated environments (Huang 2004).  

3 Influences of Mineral Colloids on Soil Organic Matter 
Stabilization and Turnover  

Soil minerals play a stabilizing role in organic matter. The Al and Fe that 
complex and stabilize organic matter against microbial decomposition are 
released from soil minerals during soil formation. The supply rates appar-
ently control the content of soil organic matter to a great extent. This is 
demonstrated by the relationship between pyrophosphate-extractable C and 
pyrophosphate-extractable Al plus Fe (Wada 1995).  
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Fig. 2. Tentative schematic representation of the effect of organic matter content 
and rate of soluble Fe supply on the formation of various Fe forms in soils 
(Schwertmann et al. 1986). 

Torn et al. (1997) investigated interactions between mineralogy 
and organic C along two natural gradients – of age and of climate – in vol-
canic soil environments. The total stock of organic C in soil increased with 
substrate age up to 150 kyr when it was 60 kg m–2, and then decreased to 
31 kg m–2 over the next four million years (Fig. 3a). Most of the decrease 
in soil organic C stored in older substrates is attributed to an increase in the 
turnover of soil organic C, rather than to a decrease in plant productivity. 
The Δ14C (‰), which is the turnover time of soil organic matter (i.e., the 
reciprocal of the decomposition rate), shows that the surface horizons are 
dominated by fast-cycling organic matter (Fig. 3b). The Δ14C (‰) values 
also confirm what is stated above. During the first 150 kyr of soil devel-
opment, the volcanic parent material weathers to metastable noncrystalline 
minerals. The amount of noncrystalline minerals increases up to 150 kyr 
and then declines with greater age (Fig. 3c). In contrast, the amount of 
more stable crystalline minerals remains low until 150 kyr, then increases 
steeply (Fig. 3d). Soil organic carbon content follows a similar trend, ac-
cumulation to a maximum after 150 kyr, and then decreasing by 50% over 
the next four millions years (Fig. 3a). The abundance of noncrystalline  



Fig. 3. Soil inventory of carbon in soil organic matter (SOM) (a), Δ14C of SOM 
(b), noncrystalline minerals (c), and crystalline minerals (d) versus age of soil 
substrate. Filled circles, total profiles; filled triangle, surface (O and A) horizons 
(Torn et al. 1997).  

minerals accounts for >40% of the variation in organic C content across all 
the mineral horizons, substrate age, and soil orders. Noncrystalline miner-
als also strongly influence turnover of soil organic matter. Organic matter 
Δ14C is highly and negatively correlated with abundance of noncrystalline 
minerals (R2=0.62) except in the oldest site, which has <10% noncrystal-
line minerals. In contrast, there is no discernible correlation between the 
abundance of crystalline minerals and C content or turnover time across 
sites. A positive relationship between noncrystalline minerals and organic 
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C also exists in soils through the climate gradient. Rasmussen et al. (2005) 
recently reported significant correlations between Al-humus complexes, 
and SRO Al mineral species and soil C content, suggesting a chemical pro-
tection of organic materials, in addition to the observed physical protection 
of plant-like material within aggregates. Their results suggest aggregate 
protection and soil mineral assemblage (namely SRO Al-OH mineral con-
tent and Al-humus complex content) significantly control soil C dynamics 
in the conifer ecosystems. Therefore, soil mineral-organic matter interac-
tions are important in determining the quantity of organic matter stored in 
soil, its turnover time, and atmosphere-ecosystem carbon fluxes during 
long-term soil formation.  

4 Soil Mineral Catalysis and the Formation of Humic 
Substances  

Humic substances can be synthesized through biotic and abiotic processes. 
A variety of organic components, such as phenolic compounds, carbohy-
drates, aldehydes, and nitrogenous substances can participate as starting 
materials. Soil minerals have the ability to catalyze the abiotic polymeriza-
tion of phenolic compounds and the polycondensation of phenolic com-
pounds and amino acids and the subsequent formation of humic substances. 
Kumada and Kato (1970), Wang and Li (1977), and Filip et al. (1977) are 
among the pioneers in the study of the catalysis of layer silicates on abiotic 
formation of humic substances through oxidative polymerization of pheno-
lic compounds. Since the early 1980s, Huang and co-workers have studied 
the sequence of catalytic power of layer silicates and the reaction sites in 
the polymerization of phenolic compounds and the subsequent formation 
of humic substances (Shindo and Huang 1985a; Wang and Huang 1986, 
1988). Among metal oxides, hydroxides, and oxyhydroxides, Mn oxides 
are the most powerful catalysts in the transformation of phenolic com-
pounds (Shindo and Huang 1982, 1984). Manganese oxides, which are 
common in soils, act as Lewis acids that accept electrons from phenolic 
compounds, leading to their formation of semiquinone and their oxidative 
polymerization and formation of humic substances. Poorly crystalline alumi-
nosilicates, such as allophane, are common in soils. Allophane has the ability 
to catalyze the polymerization of polyphenols (Kyuma and Kawaguchi 1964). 
Even primary minerals have the ability to catalyze the abiotic polymeriza-
tion of hydroquinone which is a phenolic compound. The sequence of the 
catalytic power of primary minerals is tephroite > actinolite > hornblende > 
fayalite > augite > biotite > muscovite  albite  orthoclase  microcline  
quartz (Shindo and Huang 1985b).  



  

The Maillard reaction (Maillard 1913) is perceived to be a major 
pathway in humification because of significant similarities between humic 
substances and melanoidins (often synthesised de novo in microbial cell 
walls) formed through this pathway involving sugar-amino acid condensa-
tions (Ikan et al. 1996). Evershed et al. (1997) reported the presence of 
characteristic products of the Maillard reaction (alkyl pyrazines) in ar-
chaeological plant remains up to 1500 years from Egypt. In spite of the 
significance of the Maillard reaction, the rates and mechanisms of poly-
condensation of sugars and amino compounds in nature remains obscure 
(Ikan et al. 1996). Jokic et al. (2001) reported that birnessite (δ-MnO2) sig-
nificantly increases the extent of humification of the glucose-glycine sys-
tem over the pH range of 6–8 (Fig. 4). The chemical shifts of FA formed in 
the Maillard reaction systems (Jokic et al. 2001) resemble those of natural 
humic substances such as soil and stream FAs (Malcolm 1989; Schnitzer 
2000). In nature, it is most likely that the polyphenol and Maillard reaction 
pathways do not occur separately but rather interact with each other. Jokic 
et al. (2004a) reported that δ-MnO2, a ubiquitous soil mineral, significantly 
accelerates humification processes in a system containing glucose, glycine, 
and catechol at temperatures and pH typical of natural environments. Their 
data indicate the signicance of linking the polyphenol and Maillard reac-
tions, as promoted by mineral colloids such as δ-MnO2, into an integrated 
humification pathway.  

5 Interactions of Enzymes with Soil Mineral and Humic 
Colloids and Impacts on Enzymatic Activity  

Extracellular enzymes are rapidly sorbed at mineral and humic colloids in 
soils and sediments. Mineral colloids have a high affinity for enzymes al-
though that is not always synonymous with the retention of their catalytic abil-
ity. On the other hand, humic substances have the ability to sorb and sequester 
enzymes in such a way as to retain their catalytic activity; they could also 
strongly inactivate enzyme activity depending on interaction mechanisms.  

Mineral colloid-enzyme interactions have been documented (e.g., 
Theng 1979; Burns 1986; Naidja et al. 2000; Burns and Dick 2002). Be-
sides cation-exchange reactions, adsorption of enzymes by mineral col-
loids may proceed through ionic, covalent, hydrophobic, hydrogen bond-
ing, and van der Waals forces. When enzymes are adsorbed on mineral 
colloids, changes in the tertiary structures (i.e., the folding of the helix or  
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Fig. 4. Absorbance versus wavelength plots in the Maillard reaction between glu-
cose and glycine as influenced by birnessite catalysis. (a), (b), and (c): 30 d reac-
tion period. (d), (e), and (f): 15 d reaction period (Jokic et al. 2001). 

coil into a compact, globular molecule stabilized by interfold hydrogen 
bonding, van der Waals, and hydrophobic interactions) of the enzymes and 
their active sites decrease the activity of the enzyme or eliminate it alto-
gether (Burns 1986). However, there are notable exceptions to the adsorp-
tion-decline in activity rule. Various supports differ in their ability to im-
mobilize enzymes (Table 2). The residual specific activities of laccase and 
peroxidase immobilized on and/or within all supports including glass 
beads, montmorillonite, kaolinite, and soil are high. Furthermore, laccase 
immobilized on montmorillonite shows specific activities that are higher 
than those of the free enzyme (Table 2). This may be attributed to steric 
modification of the immobilized enzymes such that the active site becomes 
more exposed to substrates. Although mineral sorption often stabilizes en-
zymes against degradation (Tietjen and Wetzel 2003; Kelleher et al. 2004), 
mineral-bound compounds are unable to diffuse, thereby reducing the en-
counter rates between enzymes and substrates. Even if some substrates do 
diffuse to bound enzymes, the active sites may be partially blocked so that 
enzymatic catalysis is reduced, as evidenced by reductions in the activity 
of some mineral-sorbed enzymes (Gianfreda et al. 1992). Conversely, 
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mineral-bound C substrates may be physically prevented from entering the 
active sites of mobile enzymes (Sollins et al. 1996). In addition to the large 
surface areas of mineral colloids that facilitate sorption, many mineral col-
loids also contain micropores (Yu et al. 2006) or mesopores or physical 
structures that can help trap small organic compounds and exclude degra-

more, in extreme cases, substrates, enzymes, and microbes may all be pre-
sent in soils but so strongly bound to mineral surfaces and physically 
protected that substrate degradation is minimal and enzymatic products are 
unlikely to reach microbes (Allison 2006a). This scenario may help to ex-
plain why the C associated with reactive mineral colloids can be tens of 
thousands of years old (Torn et al. 1997). The performance of enzymes in 
the terrestrial ecosystem is, thus, substantially influenced by mineral col-
loids. The role of SRO oxides, hydroxides, and oxyhydroxides of Al, Fe, 
and Mn (as well as non soil supports) in influencing enzymatic activity 
pertaining to the transformation of natural and anthropogenic organics 
merits increasing attention (Huang 1990, 2004; Naidja et al. 2000; 
Violante and Gianfreda 2000).  

Table 2. Immobilization of a laccase (from Trametes versicolor) and a peroxidase 
(from horseradish) on different supports (Gianfreda and Bollag 1994)  

Enzymatic activity Enzyme and 
support Protein adsorbeda 

(mg/%) 
Units 

 adsorbedb 
Specific 
activityc 

Residual specific 
activityd 

Laccase  
Glass beads  0.452/56  28.8  63.7  236  
Montmorillonite  0.622/71  19.8  31.8  118  
Kaolinite  0.566/64  13.1  23.1  85.5  
Soil  0.644/73  15.7  24.4  90.4  

Peroxidase  
Glass beads  0.092/17  8.4  91.6  93.8  
Montmorillonite  0.224/43  23  102.8  105.2  
Kaolinite  0.120/23  9.5  78.9  80.7  
Soil  0.162/31  15  92.6  94.8  

a Difference between proteins initially added to 200 mg of support (0.88 mg laccase and 
0.52 mg of peroxidase) and those recovered in the supernatant and washings.  
b Expressed as μmol O2 consumed min–1 for laccase and mol guaiacol transformed min –1 
for peroxidase.  
c Units adsorbed/protein adsorbed  
d Calculated as percentage of the specific activity (sa) of the free enzyme (laccase, sa = 27 

mol min–1
 
mg–1; peroxidase, sa = 97.7 mol min–1

 
mg–1).  

dative enzymes (Mayer et al. 2004; Zimmerman et al. 2004a,b). Further-
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It has been reported that soil organic matter can inhibit enzymes 
(Vuorinen and Saharinen 1996) and enzyme activity may be reduced by 
adsorption on humic polymers (Gianfreda et al. 1998). Enzyme inhibition 
by humic substances has been well demonstrated for an oxidoreductase 
(Pflug 1980; Sarkar and Bollag 1987), a protease (Ladd and Butler 1969), 
an invertase and a phosphatase (Malcolm and Vaughan 1979). On the 
other hand, Kang et al. (2002) and Park et al. (2000) reported that, al-
though high concentrations of humic-like polymers tend to inhibit laccase-
mediated transformation of xenobiotics (including catechol), low concen-
trations of humic acid might enhance the enzymatic transformation of phe-
nolic compounds. Furthermore, it has been reported that enzymes can be 
stabilized against all sorts of impacts (e.g. temperature, solvents, pH, pro-
teases) by soil organic matter (Conrad 1942; Burns 1986; Nannipieri and 
Gianfreda 1999). Mechanisms proposed to account for the stability of en-
zymes by soil organic matter include ion exchange, H-bonding, covalent 
bonding, lipophylic reactions, and entrapment within three-dimensional 
micelles during organic matter genesis. Enzyme-humic complexes can also 
be bound to mineral colloids and this may further enhance enzyme stability.  

Recent research data of Allison (2006b) suggest that enzyme activ-
ity measured in the laboratory represents the sum of active and stabilized 
enzyme pools. Common soil minerals such as allophane and ferrihydrite, 
partially determine the size of the stabilized pool. In contrast, humic acid, 
which is among the most abundant organic components in soil, strongly 
inactivate enzyme activity, although enzymes incorporated into humics 
during humic polymer synthesis may be more stable. The functional im-
portance of stabilized enzymes still remains uncertain, and evidence from 
the literature suggests that the active enzyme pool is more strongly associ-
ated with biogeochemical process (Allison 2006b). Future research should 
address the relative contributions of different enzyme pools to ecosystem 
function (e.g., Stemmer et al. 1999). Studies measuring bulk enzyme ac-
tivities in soil should recognize that a large pool of stabilized enzymes 
could make changes in the active pool more difficult to detect. Compared 
with bulk soil enzymes, active enzymes probably correlate more closely 
with soil quality mineralization rates, or disturbance. Therefore, ecosystem 
models should incorporate multiple pools of enzymes to improve predic-
tions of organic matter decomposition, especially if stabilized enzymes 
have reduced catalytic efficiency.  
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6 Influence of Mineral Colloids on the Structure, 
Dynamics, and Activities of Microbial Communities  

Soil is a habitat for myriads of microbes. The microbial biomass 
constitutes only a very small proportion (<3% of the total organic C in 
soil). However, it is the most active and dynamic fraction of the living 
organic pool. Mineral colloids are the most reactive fraction of inorganic 
components of soils because of their large specific surface areas and high 
charge density characteristics. Being enriched in ions, water, and organic 
matter relative to the bulk soil, the surface of mineral colloids serves as a 
preferred habitat for soil microbes (Theng and Orchard 1995).  

The surface of bacterial cells and crystalline clay minerals are both 
negatively charged. However, bacteria have the propensity for producing 
extracellular polysaccharides (EPS) which bind simultaneously to cell and 
clay surfaces through cation bridging involving polyvalent cations (Fig. 5). 
EPS production aids the retention of bacterial cells within comparatively 
active biofilm communities at clay (or root) surfaces (Lunsdorf et al. 2000). 
The predominantly negatively charged mineral colloids in soils are largely 
coated with hydroxy Al (or Fe) polymers. As a consequence, these coated 
minerals behave as a positively charged species or display amphoteric 
characteristics. Therefore, mineral colloids can strongly interact with nega-
tively charged microbial cells in soils. This type of chemical bonding, 
which is much stronger than cation bridging, is also expected to occur with 
Al and Fe oxides over the pH range of soils. Microbial cell wall charge 
characteristics are indeed pH dependent according to the dissociation con-
stants of their exposed cell wall functional groups. The attachment of mi-
crobes to SRO mineral colloids and the crystal edges of layer silicates 
through electrostatic interactions would also be predicted to occur when 
the soil pH falls below 6 because the net charge of all of these mineral sur-
faces would then be positive and the surface of all bacteria and fungi 
would be virtually negatively charged (Theng and Orchard 1995).  

In the majority of cases, minerals in topsoils are partially covered 
with organic materials, especially humic substances, which are to a large 
extent microbially resistant. The most common mode of mineral colloid-
organic material-microorganism interactions may be depicted as follows 
(Theng and Orchard 1995):  

[Mineral colloid ⎯HS] 
– 
… M

n+ 
… [EPS-B] 

where HS is humic substances, M is divalent/polyvalent metal cation, EPS 
extracellular polysaccarides, and B microbes and/or biofilm.  
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Fig. 5. Diagram illustrating the interaction of bacteria and fungi with mineral par-
ticles in a soil aggregate (Theng and Orchard 1995). Bacterial cells with a coat of 
extracellular polysaccharides (EPS) are enveloped by clay particles. The pore 
space where clays and bacteria interact, bounded by silt- and sand-size particles, is 
relatively enriched in organic matter including EPS residues. Fungal hyphae are 
attached to the outside surface of an aggregate. Inset shows an enlarged view of a 
bacterial cell with its complement of EPS. At normal soil pH conditions, the cell 
has a net negative surface charge. Most clay particles adhere to the cell surface by 
bridging through polyvalent cations, represented by Mn+ (a) although some may be 
attached directly by electrostatic interactions, either in face-to-face (b), or edge-to-
face (c) association. 

In humic-rich calcareous Mollisols, Ca would be the predominant 
bridging cation. In Andisols, Oxisols, Ultisols and the B horizon of Spo-
dosols, HS largely occur as complexes with Al and Fe, or their respective 
SRO oxides (Theng et al. 1989; Oades et al. 1989). In soils with little or-
ganic matter and in subsoils, mineral colloid-microorganism interactions 
are largely influenced by the mineralogical composition and pH of the soil. 
Besides the existing literature (Stotzky 1986, 2002; Theng and Orchard 
1995; Huang and Bollag 1999; Huang 2004; Huang et al. 2005) much 
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more research is needed to further understand the mechanisms of surface 
interactions of mineral colloids with microorganisms.  

Mineral colloids can directly or indirectly influence the activity of 
microorganisms in their immediate vicinity (Stotzky and Burns 1982; 
Stotzky 1986). The effect of mineral colloids may be positive, negative, or 
sometimes so small as to escape detection. Mineral colloids have a stimu-
lating effect on the activity of adhering bacteria by keeping the pH of mi-
crohabitats within the optimum physiological range for growth. The con-
tent and type of mineral colloids are influential in determining the balance 
between microbial populations in soil. A well-known example is the fail-
ure of some fungi to thrive and spread in certain soils (Stotzky 1986). This 
is largely attributed to the presence of montmorillonite in the suppressive 
soils. Montmorillonite can serve as a proton sink and is thus able to pro-
mote the growth of acid-sensitive bacteria in these soils. This gives bacte-
ria a selective advantage over fungi in competing for available nutrients. 
Fungal growth and proliferation are, thus, effectively suppressed.  

Microbial activity can also be stimulated by mineral colloids 
through their ability to sorb metabolites that would otherwise have an ad-
verse effect on microbial growth (Filip et al. 1972; Filip and Hattori 1984) 
This may be due to the toxicity of metabolites, and their feed back repres-
sion and, encouraging competitors. Predictably, montmorillonite (CEC 
~100 cmol kg–1 and specific surface of ~800 m g–1) is more effective than 
kaolinite and finely ground quarts. Other substances, such as antibiotics 
and pesticides that are toxic to some microorganisms, can also be adsorbed 
by the surfaces of mineral colloids (Theng and Orchard 1995; Dec et al. 
2002).  

Furthermore, adhering microorganisms may benefit from being 
close to nutrients adsorbed on the surface of mineral colloids (including 
those concentrated in a cloud in the diffuse double layer). However, the 
potential substrates may not be readily available or physically accessible 
(Fletcher 1991) especially if intercalated. Moreover, the addition of min-
eral colloids to the system beyond a certain concentration may result in a 
reduction in microbial activity due to restricted diffusion of oxygen and 
nutrients to microbial cells (Marshall 1971). This is attributable to the pro-
gressive enveloping of microbial cells by minerals colloids. Timmis and 
his co-workers reported a novel interaction between bacteria and clay min-
erals (Lunsdorf et al. 2000). The biofilms that developed consist of a dense 
lawn of clay aggregates, each one of which contains one or more bacteria, 
phyllosilicates, and grains of iron oxides, all held together by bacterial EPS. 
The clay leaflets are arranged in the form of ‘houses of cards’ and give the 
aggregates the appearance of ‘hutches’ housing the bacteria. The ‘clay 
hutches’ may represent a ‘soil microhabit’, a ‘mineral nutrition sphere’, 
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