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Foreword

In 1964, Kenkichi Iwasawa gave a course of lectures at Princeton University on the
adelic approach to Hecke’s L-functions. The present book carefully reproduces
Iwasawa’s own beautifully handwritten notes used for the course, and follows
faithfully his terminology.

Hecke’s proof, for any number field, of the analytic continuation and functional
equation of the abelian L-series, and more generally of his L-functions with Hecke
characters, is of fundamental importance in algebraic number theory. Moreover,
thanks to the theory of complex multiplication, it also establishes the analytic
continuation and functional equation of the complex L-series of abelian varieties
with complex multiplication. The modern adelic approach to Hecke’s complicated
classical theory was discovered independently by Iwasawa and Tate around 1950,
and marked the beginning of the whole modern adelic approach to automorphic
forms and L-series. While Tate’s thesis at Princeton University in 1950 was finally
published in 1967 in the volume Algebraic Number Theory edited by Cassels and
Fröhlich, no detailed account of Iwasawa’s work has previously appeared, beyond a
very brief note in the Proceedings of the International Congress of Mathematicians
in 1950, and a short letter to Dieudonné (in Adv. Studies Pure Math. 21, 1992). The
lectures presented in this volume at last provide a detailed account of Iwasawa’s
work.

After two preliminary chapters on the basic local and global theory of number
fields, and the theory of Haar measure on the group of idèles, Chap. 3 of the book
establishes the basic expression, due to Iwasawa and Tate, for the complex L-series
of the Hecke L-series Lðs; vÞ attached to an arbitrary Hecke character v of a number
field F as an integral over the idèle group J of F of an idelic theta function (see
Sect. 3.4). Iwasawa then goes on to prove the analytic continuation and functional
equation from this expression. Not only are his proofs both beautiful and fully
detailed, but he also carefully explains the method in the simplest case of the
Riemann zeta function. He then goes on to establish Dirichlet’s formula for the
residue at s ¼ 1 of the complex zeta function of F, pointing out that an elegant
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argument involving the compactness of the idèle class group of F also gives a
non-classical proof of the finiteness of the class number and the unit theorem.

In the final chapter, Iwasawa succinctly explains the link between the adelic
approach and the classical theory. He then goes on to give detailed proofs of key
classical results on the distribution of prime ideals, and on the class number for-
mulae for cyclotomic fields.

This volume provides an elegant and detailed account of questions which are of
seminal importance for modern number theory, and it covers material which is not
treated as fully or as elegantly in other basic texts on algebraic number theory. We
believe that it will provide an ideal text for future courses on this central part of
number theory. Finally, we warmly thank Takahiro Kitajima for his accurate
conversion of Iwasawa’s handwritten notes into LATEX, and Rei Otsuki for his help
with proofreading.

Cambridge, UK John Coates
Yokohama, Japan Masato Kurihara
February 2019
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