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Preface

The 9th International Workshop on Spoken Dialog Systems (IWSDS’18) was held
on April 18–20, 2018, in Singapore; being the southernmost IWSDS ever, just one
degree north of the Equator! The conference allowed participants to keep track
of the state-of-the-art in spoken dialogue systems, while enjoying the year-round
summer paradise island that is Singapore.

The IWSDS conference series brings together, on a yearly basis, international
researchers working in the field of spoken dialogue systems and associated tech-
nologies. It provides an international forum for the presentation of current research,
applications, technological challenges, and discussions among researchers and
industrialists. The IWSDS’18 edition built over the success of the previous 8th
editions:

• IWSDS’09 (Irsee, Germany),
• IWSDS’10 (Gotemba Kogen Resort, Japan),
• IWSDS’11 (Granada, Spain),
• IWSDS’12 (Paris, France),
• IWSDS’14 (Napa, USA),
• IWSDS’15 (Busan, Korea),
• IWSDS’16 (Saariselkä, Finland), and
• IWSDS’17 (Farmington, PA, USA).

IWSDS’18 conference theme was “Towards creating more human-like conversa-
tional agent technologies”, inviting and receiving paper submissions on the fol-
lowing topics:

• Engagement and emotion in human–robot interactions.
• Digital resources for interactive applications.
• Multi-modal and machine learning methods.
• Companions, personal assistants, and dialogue systems.
• Proactive and anticipatory interactions.
• Educational and healthcare robot applications.
• Dialogue systems and reasoning.
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• Big data and large-scale spoken dialogue systems.
• Multi-lingual dialogue systems.
• Spoken dialog systems for low-resource languages.
• Domain transfer and adaptation techniques for spoken dialog systems.

However, submissions were not limited to these topics, and submission of papers in
all areas of spoken dialogue systems was encouraged. In particular, IWSDS’18
welcomed also papers that could be illustrated by a demonstrator, organizing the
conference to best accommodate these papers whatever their category.

The program of IWSDS’18 included three keynotes by renowned international
authorities in dialogue system research:

• Prof. Tatsuya Kawahara from Kyoto University in Japan,
• Prof. Alex Waibel from Carnegie Mellon University in USA and Karlsruhe

Institute of Technology in Germany, and
• Prof. David Traum from University of Southern California in USA.

The keynote speech by Prof. Tatsuya Kawahara was entitled: “Spoken dialogue for
a human-like conversational robot ERICA”. He described a symbiotic human–robot
interaction project, which aims at an autonomous android who behaves and inter-
acts just like a human. This conversational android called ERICA is designed to
conduct several social roles focused on spoken dialogue, such as attentive listening
(similar to counseling) and job interview. Finally, he described the design princi-
ples, problems, and current solutions when developing the different spoken dia-
logue modules included in ERICA.

The keynote speech by Prof. Alex Waibel was entitled: “M3 Dialogs—
Multimodal, Multilingual, Multiparty”. He started describing that even though great
progress has been made in building and deploying speech dialog systems, they are
still rather siloed and limited in scope, domain, style, language, and participants.
Most systems are strictly human–machine, one language, one request at a time,
usually with a clear on–off signal and identification of who wants what from whom.
Even though existing systems do this now rather well, they fall far short of the ease,
breadth, and robustness with which humans can communicate. During his talk,
Prof. Waibel claimed that a dialog is not only human–machine, but also human–
human, human–machine–human, and machine–machine–human, and preferably all
of the above in purposeful integration. Then, he outlined the flexibility we are
missing in modern dialog systems, review several of efforts aimed at addressing
them, and finished speculating on future directions for the research community.

The keynote speech by Prof. David Traum was entitled: “Beyond Dialogue
System Dichotomies: Principles for Human-Like Dialogue”. He started describing
how many researchers have proposed related dichotomies contrasting two different
kinds and aims of dialogue systems. One of the issues is whether human–system
dialogue should even be human-like at all or humans should adapt themselves to the
constraints given by the system. Then, he explored these dichotomies and presented
“role-play dialogue” as a place where these dichotomies can find a commonality of
purpose and where being human-like is important even simply for effective task
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performance. After that, he defined “Human-like Dialogue” (HLD) as distinct from
purely human dialogue and also distinct from instrumental dialogue. Then, he
finished giving some guideline principles on how we should create and evaluate the
new generation of agents.

In addition, the IWSDS’18 included three special sessions:

• EMPATHIC: Empathic Dialog Systems for Elderly Assistance,
• HUMIC-DIAL: Designing Humor in HCI with Focus on Dialogue Technology,
• WOCHAT: Workshop on Chatbots and Conversational Agent Technologies.

The EMPATHIC session was organized by Prof. María Inés Torres, Universidad
del País Vasco UPV/EHU (Spain), Prof. Kristiina Jokinen, AIRC-AIST (Japan),
Prof. Gérard Chollet, Intelligent Voice (UK), and Prof. Marilyn Walker, University
of California-Santa Cruz (USA). This session focused on the problem of generating
Empathic Dialog Systems for Elderly Assistance. One of the more important
applications of spoken dialog systems (SDS) is the development of personal
assistants for elderly people. These kinds of systems are intended to provide per-
sonalized advice guidance through a spoken dialogue system to improve the quality
of life and independency living status of the people as they aged. To this end, SDS
has to deal not only with user goals but also implement health goals through
negotiation strategies to convince the user to develop healthy habits. Such SDS
should also include perceived user affective status to support the dialog manager
decisions. This session also welcomed papers focused on affective computing in
SDS, user-centered design, policies dealing with shared user-coach goals, man-
agement strategies to keep the user engagement, personalization and adaptation,
ontologies, and knowledge representation.

The HUMIC-DIAL session was organized by Dr. Andreea I. Niculescu, Institute
for Infocomm Research (I2R, Singapore), Dr. Rafael E. Banchs, Nanyang
Technological University (Singapore), Dr. Bimlesh Wadhwa, National University
of Singapore (NUS, Singapore), Prof. Dr. Anton Nijholt, University of Twente (The
Netherlands), and Dr. Alessandro Valitutti, Università di Bari (Italy). After a suc-
cessful first edition of HUMIC (HUMor in InteraCtion) at INTERACT 2017, for
IWSDS’18, the organizers focused on humorous verbal dialogue interactions
between humans and machines. Humor embracing various types of expression can
be used to enhance the interaction outcome while being socially and culturally
appropriate. Therefore, during this session the presented papers explored challenges
in designing, implementing, and evaluating humorous interactions in spoken and
written dialogues with artificial entities, as well as benefits and downsides of using
humor in such interactive tasks.

The WOCHAT session was organized by Dr. Ryuichiro Higashinaka, Nippon
Telegraph and Telephone Corporation (Japan), Prof. Ron Artstein, University of
Southern California (USA), Prof. Rafael E. Banchs, Nanyang Technological
University (Singapore), Prof. Wolfgang Minker, Ulm University (Germany), and
Prof. Verena Rieser, Heriot-Watt University (UK). The session included a Shared
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Task organized by Prof. Bayan Abu Shawar, Arab Open University (Jordan), Prof.
Luis Fernando D’Haro, Universidad Politécnica de Madrid, Spain, and Prof. Zhou
Yu, University of California, Davis (USA). This was the fifth event of a “Workshop
and Special Session Series on Chatbots and Conversational Agents”. WOCHAT
aims at bringing together researchers working on problems related to chat-oriented
dialogue with the objective of promoting discussion and knowledge sharing about
the state-of-the-art and approaches in this field, as well as coordinating a collabo-
rative effort to collect/generate data, resources, and evaluation protocols for future
research in this area. The WOCHAT series also accommodated a Shared Task on
Data Collection and Annotation for generating resources that can be made publicly
available to the rest of the research community for further research and experi-
mentation. In this shared task, human–machine dialogues are generated by using
different online and offline chat engines, and annotations are generated following
some basic provided guidelines.

IWSDS’18 received a total of 52 submissions, where each submission was
reviewed by at least two program committee members. The committee decided to
accept a total of 37 papers: 13 long papers, 6 short papers, 4 demo papers, 4 papers
for the Empathic session, 7 papers for the WOCHAT session, 2 papers for the
Humic session, and 1 invited paper.

Finally, we would like to take this opportunity to thank the IWSDS Steering
Committee and the members of the IWSDS’18 Scientific Committee for their
timely and efficient contributions and for completing the review process on time. In
addition, we would like to express our gratitude to the members of the Local
Committee who highly contributed to the success of the workshop, making it an
unforgettable experience for all participants. Last, but not least, we want also to
thank our sponsors: the Special Group on Discourse and Dialogue (SIGDial) and
Chinese and Oriental Languages Information Processing Society (COLIPS) for
their economical and logistic support; without it we and participants could not have
such a remarkable conference.

With our highest appreciation,

Madrid, Spain Luis Fernando D’Haro
Singapore Rafael E. Banchs
Singapore Haizhou Li
April 2019
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Attention Based Joint Model with
Negative Sampling for New Slot Values
Recognition

Mulan Hou, Xiaojie Wang, Caixia Yuan, Guohua Yang, Shuo Hu
and Yuanyuan Shi

Abstract Natural Language Understanding (NLU) is an important component of
a task oriented dialogue system, which obtains slot values in user utterances. NLU
module is often required to return standard slot values and recognize new slot values
at the same time in many real world dialogue such as restaurant booking. Neither
previous sequence labeling models nor classifiers can satisfy both requirements by
themselves. To address the problem, the paper proposes an attention based joint
model with negative sampling. It combines a sequence tagger with a classifier by
an attention mechanism. The tagger helps in identifying slot values in raw texts and
the classifier simultaneously maps them into standard slot values or the symbol of
new values. Negative sampling is used for constructing negative samples of existing
values to train the model. Experimental results on two datasets show that our model
outperforms the previousmethods. Thenegative samples contribute to newslot values
identification, and the attention mechanism discovers important information and
boosts the performance.
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1 Introduction

Task oriented dialogue system, which has been widely used in a variety of different
applications, is designed to accomplish a specific task through natural language inter-
actions. One of its most important components is Natural Language Understanding
(NLU). NLU aims at collecting information related to the task.

Semantic frames are commonly applied in NLU [11], each of which contains
different slots. One of the goals of NLU is to fill in the slots with values extracted
from the user utterances. In previouswork, sequence labelingmodels are usually used
for slot values recognition. For example, Tur et al. [10] used Conditional Random
Field (CRF) with domain-specific features for the task. With the success of deep
neural networks, Yao et al. [14] proposed a RNN model with Named Entities (NER)
as features. They also used Long Short-Term Memory (LSTM) [13] and some other
deepermodels.Ma et al. [4] combinedConvolutionalNeural Network (CNN), LSTM
andCRF in a hierarchical way, where features extracted by a CNN are fed to a LSTM,
a CRF in top level is used to label slot values.

Nevertheless, only the labeling of the slot values is not enough in some applica-
tions. The slot values labeled in utterances should be normalized to some standard
values for database search. For example, in a restaurant booking system, there are
standard values of slot ‘food’ like ‘Asian oriented’. If a user wondered a restaurant
which serves ‘pan Asian’ food, the system should normalize the ‘pan Asian’ in utter-
ance into the standard value of ‘Asian oriented’ in database. There were two different
ways for addressing this problem. One is two-stage methods. Lefvévre [3] proposed
a 2+1 model. It used a generative model consisted of two parts, namely semantic
prior model and lexicalization model, to determine the best semantic structure and
then treated the normalized slot values as hidden variables to figure it out. Yeh [15]
employed fuzzy matching in Apache Solr system for the normalization. Two-stage
methods are either prone to accumulating errors or too complicated to compute. The
other way is directly mapping an utterance to one of the standard values instead
of identifying the values in raw texts. A lot of classifiers were used for building
the mappings. Bhagat et al. [1] tried several different models including Vote model,
Maximum Entropy, Support Vector Machine (SVM). Mairesse et al. [5] proposed
a two-step method: a binary classifiers was first used to determine if a slot appears
in the utterance or not, and then a series classifiers were used to map the utterance
to standard values of that slot. Mota et al. [7] built different classifiers for different
slots respectively.

There is an important problem in above classification based methods however.
Thesemodels failed in dealingwith the situationwhere a slot value out of the standard
value set is mentioned in an utterance. This value should not be classified into any
existing standard values and should be recognized as a new value. To our knowledge,
there is no research on this problem in classification based NLU.

The problem might be thought as one type of zero-shot problems in word sense
or text classification and others. But there is a significant difference between new
slot values and other zero-shot problems. The sense of a new word might be very
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different from that of other known words. But a new slot value is still a value of
the same slot. It should share some important similarities with other known slot
values. That is the starting point for us to construct training samples for unknown
new values. We first distinguish two different types of samples of the standard values
of a specific slot S. Utterances including any known standard value or its variants of
the slot S are positive samples, and the others are negative ones. We further divide
the negative samples into two types, the first is negative samples of S, i.e. samples
including values of other slots or including no value of any slot, and the second is
negative samples of any known standard values of S. The latter is therefore can be
used to build a classifier (together with positive samples of the standard values of S)
for identifying if an utterance includes a known standard value or a new value of S.
The paper proposes a negative sampling based method to construct samples of the
latter.

Meanwhile, sequence labeling is able to locate slot values in original utter-
ances even if they are unseen in standard value set. The slot values themselves
are also important information for classification. The paper proposes a joint model
of sequence labeling and classification by attention mechanism, which focuses on
important information automatically and takes advantage of the raw texts at the same
time. Sequence labeling here aims at slot-value detection and classification is used
to obtain the standard values directly.

Overall, we propose an attention based joint model with negative sampling. Our
contributions in this work are two-fold: (1) negative sampling for existing values for
a certain slot S enables our model to effectively recognize new slot values; (2) joint
model collaborated by attention mechanism promotes the performance. We evaluate
our work on a public dataset DSTC and a dataset Service from an enterprise. All the
results demonstrate that our model achieves impressive improvements on new slot
values with less damage on other sub-datasets. The F1 score evaluated on new slot
values raises up to 0.8621 in DSTC and 0.7759 in Service respectively.

This paper is organized as follows: Sect. 2 details on our attention based joint
model with negative sampling. We explain experiment settings in Sect. 3, then eval-
uate and analyse our model in Sect. 4. In Sect. 5 we will conclude our work.

2 Attention Based Joint Model with Negative Sampling
(AJM_NS)

We assume that slots are independent of each other so they can be handled separately.
Avocabulary of values for slot S is defined as RS = {Sold} ⋃{N EW, NU L L}, where
Sold = {s0, s1, ...sk} refers to the set of standard values forwhich there is some labeled
data in training set. N EW refers to a new slot value. It will be assigned to an utterance
providing a new slot value for slot S which is outside Sold , and NU L L refers to no
value in an utterance. For a user input xi , the aim of the model is to map the xi into
one of values in RS . Since there is no training data for a new slot value (if we have
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some training samples for a value, it belongs to Sold ), classification based models on
the dataset are unable to address the problem, while sequence taggers need another
step to normalize the labels.

We describe our attention based joint model, followed by the negative sampling
methods.

2.1 Attention Based Joint Model

A sequence tagger and a classifier complement each other. A sequence tagger rec-
ognizes units of a slot value in an utterance, while a classifier map an utterance as a
whole into a slot value. In order to benefit from both of them, we combine them into
a joint model.

Specifically, we adopt the bi-directional LSTM [2] as a basic structure. The output
of each timestep is used to output a slot tag by a softmax operation on a linear layer
as shown in Eq.1:

ŝt = softmax(Wsht + bs) (1)

ht = (
−→
ht ,

←−
ht ) refers to the hidden state of time t by concatenating the hidden state in

forward and backward direction. In each direction of LSTM, like in forward LSTM,
hidden state

−→
ht is a function of the current input and the inner memory, as defined

in Eq.2 −→
ht = f (

−−→
ht−1, wt ,

−−→
Ct−1) (2)

where wt denotes the input word at time t and
−−→
Ct−1 is the previous cell state. We

compute function f using the LSTM cell architecture in [16]. So as on backward
direction.

The hidden state of the last timestep T is used to output the class label according
to Eq.3:

ŷ = softmax(WchT + bc) (3)

We further combine them by attention mechanism [13]. Figure1 illustrates the
procedure (Fig. 1).

Upon attention mechanism, the model automatically focuses on locations of
important information and constructs a context vector H which is defined in Eq.4.

H =
T∑

t

αtvt (4)

where vt = (et , ht) concatenates word embeddings and hidden states of LSTM and
αt is defined in Eq.5.
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Fig. 1 In this figure, attention based joint model combines sequence tagging and classifying and
adopts attentionmechanism for further improvements. Legend in the right corner shows themeaning
of operations

αt = exp(qt )
∑T

k exp(qk)
(5)

Our model computes qt by an align function in Eq.6 which is the same way as [9]:

qt = (tanh(Wvt))�hT (6)

It is regarded as a similarity score of the utterance representation hT and the
information vt of each timestep.

Finally we concatenate context vector H and the sentence embedding hT , and
feed it into a softmax layer as shown in Eq.7 to predict the class label of standard
slot values.

ŷ = softmax(W(H, hT ) + b) (7)

All parameters are learned simultaneously to minimize a joint loss function shown
in Eq.8, i.e. the weighted sum of two losses for sequence tagging and classification
respectively.

L = γ Ltagging + (1 − γ )Lclassi f ication (8)

Ltagging = 1

N

N∑

i

1

Ti

Ti∑

t

L(ŝit , s
i
t ) (9)
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Lclassi f ication = 1

N

N∑

i

L( ŷi , yi ) (10)

γ is a hyperparameter to balance the sequence tagging and classifying module. N in
Eq.9 refers to the size of training data and Ti is the length of the i-th input. L(·) is
cross-entropy loss function.

2.2 Negative Sampling

Model fails in recognizing new slot values without training data for them as men-
tioned before. If we regard all the samples for new slot values of a specific slot as
the negative samples of existing ones, construction of samples for new slot values
can then convert to the construction of negative samples of old ones.

As mentioned in Sect. 1, a new slot value is still a value of the same slot. It should
share some important similarities with other known slot values. Here we think the
similarities are hidden in contexts of the value, i.e. the contexts are shared among
different values of a same slot. It is therefore a possible way to construct a negative
sample by just replacing the slot values in a positive sample with a non-value. But
there are so many choices for non-value, how to choose a proper one?

Mikolov et al. [6] have already used negative sampling in CBOW and Skip-gram
models. They investigated a number of choices for distribution of negative samples
and found that the unigram distribution U (word) raised to the 3/4rd power (i.e.,
U (word)3/4/Z ) outperformed significantly the unigram and the uniform distribu-
tions. Z is the normalization constant and U (word) is the word frequency in another
word, which is calculated by U (word) = count (word)/ |Data|. We use the same
method but leave the word frequency alone. In our work a negative sample is a com-
plete slot value that sometimes consists of several words, different from the negative
samples of a single word in [6]. That results in repeating sampling until a segment
of the same length as the existing value is formed. Figure2 shows the construction
of a negative example for Service dataset.

Fig. 2 Negative sampling for service dataset. Lower part is a translation of the example
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3 Experiments Setting

3.1 Dataset

We evaluate our model on two dataset: Dialogue State Tracking Challenge (DSTC)
and a dataset from an after-sale service dialogue system of an enterprise (Service).

DSTC is an English dataset from a public contest [12] and we use DSTC2 and
DSTC3 together. It collects 5510 dialogues about hotels and restaurants booking.
Each of the utterance in dialogues gives the standard slot values, according to which
slot tags can be assigned to word sequence. Based on the independency assumption,
we build datasets for each slot: keep all B- or I- tags of the slot labels and reset the
rest to ‘O’. However we find out that not all slots are suitable for the task, since there
are too few value types of the slot. At last we choose the dataset for slot ‘food’ only
in our experiments.

Service is a Chinese dialogue dataset which is mainly about consultation for cell
phones and contains a single slot named ‘function’. It has both sequence tags and
slot values on each utterance.

We divide two datasets into training, dev and test set respectively, and then con-
struct some negative samples into training set for both of them. All of the utterances
corresponding to infrequent slot values in training set are put into test set to form
corpus of new slot values. These values thus have no samples in training data. Table1
shows the statistics of the final experimental data and Table2 tells about the diversity
of slot values.

Table 1 Statistics of two dataset

Corpus DSTC Service

Train Dev Test Train Dev Test

Original data Old 2805 937 917 3682 514 1063

New 0 113 275 0 15 64

Null 2244 840 953 427 64 109

Negative samples 561 0 0 736 0 0

Overall size 5610 1890 2145 4845 593 1236

Table 2 Value types

Corpus DSTC Service

Train Dev Test Train Dev Test

Old 66 64 65 80 55 67

New 0 21 21 0 13 44
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3.2 Evaluation Measurements

We takeweighted F1 score as the evaluation criterion in our experiments. It is defined
as in Eqs. 11 and 12.

F1 =
N∑

i

ωi F1si (11)

with

ωi = nsi

n
, F1si = 2

Psi × Rsi

Psi + Rsi

(12)

where n refers to the size of the test set and nsi denotes the size of class si . P and R
is precision score and recall score defined in [8].

We also evaluate on the sub-dataset of old values by Eq.13.

F1old =
k∑

i=0

ωold
i F1si (13)

where ωold
i = nsi

nold
.

For sequence tagging we still consider F1 score as criterion which can be calcu-
lated by running the official script conlleval.pl1 of CoNLL conference.

3.3 Baseline

There are no previous models and experimental results reported especially on new
slot values recognition.We compare ourmodel to existing two types ofNLUmethods
for the task.

(1) The pipeline method:labeling the words with slot value tags first and then
normalizing them into standard values. Here, a bi-directional LSTM as same as that
in our model is used for tagging, and the fuzzy matching2 is then used to normalize
extracted tags like that in [15]. The model is denoted by LSTM_FM.

(2) The classification: classifying the utterance to standard values directly. A bi-
directional LSTM is used to encode user input, a full-connected layer is then used
for the classification. The model is denoted by LSTM_C.

1https://www.clips.uantwerpen.be/conll2000/chunking/output.html.
2http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python.

https://www.clips.uantwerpen.be/conll2000/chunking/output.html
http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python
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3.4 Hyperparameters

We adopt bi-directional LSTM as the basic structure. Hyperparameter γ is 0.1. The
longest input is 30, size of LSTM cell is 64, and dimension of word embedding is
100. We use minibatch stochastic gradient descent algorithm with Adam to update
parameters. Learning rate is initialized as 0.005. Each batch keeps 512 pieces of
training data. We choose the model performs best in dev set as the test one.

4 Result and Analyses

4.1 Comparisons Among Different Models

We evaluate our model on two dataset described in Sect. 3.1. Our model can output
both classification results of a utterance and the labeled tags in a utterance. Tables3
and 4 shows the results of classification and labeling respectively.

As we can see in Table3, our model outperforms both baseline models signifi-
cantly in classification task. It achieves 13.44 and 16.17% improvements compared
to LSTM_FM and LSTM_C model on DSTC dataset, and achieves 8.55 and 5.85%
improvements on Service dataset. Especially, it shows big advantage on new slot
values recognition, where the F1 scores achieve at least 20% raises on both DSTC
and Service data.

Similar to the performance in the classification, our model also achieves best
results in slot value tagging as we can see in Table4. It performs significant better
than the pipelinemethod, especially for the newvalue.Wealso give the tagging results
of LSTM_FM trained by adding negative samples used in our model (denoted by
LSTM_FM_NS in Table4).We find negative samples are helpful to NEW slot values
significantly, but they hurt the performance of old values. We give more details of
negative samples and attention mechanism in our model and baseline models in next
subsection.

Table 3 Classification results of different models

DSTC Service

All NEW Sold NULL All NEW Sold NULL

LSTM_FM 0.8491 0.3063 0.9670 0.8923 0.8981 0.5693 0.9320 0.5693

LSTM_C 0.8290 0.0000 0.9249 0.9761 0.9210 0.0000 0.9720 0.9643

AJM_NS
(ours)

0.9632 0.8621 0.9738 0.9822 0.9749 0.7759 0.9881 0.9633
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Table 4 Tagging results of different models

DSTC Service

All NEW Sold All NEW Sold

LSTM_FM 0.8546 0.2363 0.9837 0.8850 0.2615 0.9269

LSTM_FM_NS 0.8289 0.2844 0.9709 0.8386 0.4853 0.8655

AJM_NS (ours) 0.9024 0.5684 0.9946 0.9132 0.3399 0.9573

Table 5 Comparison inside the model with F1 scores for classification

DSTC Service

All NEW Sold NULL All NEW Sold NULL

Full (AJM_NS) 0.9632 0.8621 0.9738 0.9822 0.9749 0.7759 0.9881 0.9633

Attention only (JM_NS) 0.9515 0.8129 0.9739 0.9699 0.9700 0.7207 0.9862 0.9585

NS only (AJM) 0.8247 0.0000 0.9426 0.9492 0.9234 0.0000 0.9761 0.9511

Table 6 Confusion matrix of DSTC

DSTC

NEW Sold NULL NEW Sold NULL

NEW 0 184 91 NEW 225 33 17

Sold 0 916 1 ⇒ Sold 9 908 0

NULL 0 9 944 NULL 13 4 936

4.2 Analyses

In order to analyze our model, we compare it to the model dropping out attention
mechanism only and the other dropping negative samples only.We refer to the former
model as JM_NS and the latter as AJM.

From Table5 we can find out that the one dropping out negative samples (AJM)
failed in dealing with new slot values recognition. It shows that the negative sampling
is the key for the success in new slot values recognition. The negative samples actually
enables themodel to distinguish old andnew slot values. Formore details, the changes
of confusion matrices are shown in Tables6 and 7. The left part of ‘⇒’ in the table is
the confusion matrix of the model without negative samples(AJM), and the right part
is from the original full model (AJM_NS). With the training of negative samples,
classification results related to NEW value change better significantly, while change
little on other classes, i.e. negative samples bring less damage to other classes.

We also add same negative samples for training other models. The result in Table8
shows that LSTM_C_NS(LSTM_C with negative samples) now achieve good per-
formance of recognizing new slot values. As for LSTM_FM_NS, the F1 score drops
a lot for old values while for new slot values it raises up on the contrary. It shows
that, although negative samples still work, they damage other classes significantly
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Table 7 Confusion matrix of Service

Service

NEW Sold NULL NEW Sold NULL

NEW 0 55 9 NEW 45 17 2

Sold 0 1063 0 ⇒ Sold 4 1057 2

NULL 0 2 107 NULL 3 1 105

Table 8 Classification results based on negative samples

DSTC Service

All NEW Sold NULL All NEW Sold NULL

LSTM_FM_NS 0.8572 0.3536 0.9286 0.9241 0.8642 0.6203 0.9009 0.6488

LSTM_C_NS 0.9543 0.8261 0.9637 0.9822 0.9684 0.7103 0.9825 0.9815

JM_NS 0.9515 0.8129 0.9739 0.9699 0.9700 0.7207 0.9862 0.9585

AJM_NS 0.9632 0.8621 0.9738 0.9822 0.9749 0.7759 0.9881 0.9633

Fig. 3 Comparison between the full model (AJM_NS) and the one dropping out attention mecha-
nism (JM_NS). The heatmap in full model is the visualization of weights for different words. The
deeper color means a larger weight

in pipeline model. We can also find out that our model AJM_NS still beats the rest
models on the whole dataset even if all of them use negative samples.

When we abandon attention mechanism (JM_NS), the model is slightly inferior
to the full one (AJM_NS), i.e. the attention mechanism can further improve the
performance by focusing on the important subsequences. Since it introduces the
original word embeddings at the same time, it corrects some mistakes in the model
dropping out attention mechanism (JM_NS) in which the final label is wrongly
classified even with correct sequence tags. We visualize a sample of attention in
Fig. 3.

5 Conclusion

In lots of industrial or commercial applications, it is necessary for a NLU module
to not only fill the slot with predefined standard values but also recognize new slot
values due to the diversity of users linguistic habits and business update.
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The paper proposes an attention based joint model with negative sampling to
satisfy the requirement. The model combines a sequence tagger with a classifier
by an attention mechanism. Negative sampling is used for constructing negative
samples for training the model. Experimental results on two datasets show that our
model outperforms the previous methods. The negative samples contributes to new
slot values identification, and the attention mechanism improves the performance.

We may try different methods of negative sampling to further improve the perfor-
mance in following works, such as introducing prior knowledge. At the same time,
scenario of multiple slot in an utterance will also be explored as it happens a lot in
daily life.
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