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Preface

Many real-world systems possess rich multi-level structures and exhibit complex
dynamics. The source of complexity often relates to the presence of a web of
interwoven interactions among elements which have autonomous decision-making
capabilities.

In this book, we report on several recent mathematical models and tools, often
rooted in game theory, for the analysis, prediction and control of dynamical processes
in complex systems. In particular, our aim has been to provide a coherent theoretical
framework for understanding the emergence of structures and patterns in complex
systems. In this context, it is often necessary to account for interactions which may
span various scales in time and space. Also, interactions of various elementsmay act at
different structural and aggregation levels. Because the framework we propose is built
around game theoretical concepts, we have been giving special attention to evolu-
tionary and multi-resolution games. Also, techniques drawn from graph theory, from
statistical mechanics, control and optimization theory have been combined in order to
describe different aspects of the dynamics of complex systems. Finally, specific
attention is devoted to systems that are prone to intermittency and catastrophic events
due to the effect of collective dynamics.

The book is organized in four main parts. Part I is dedicated to the description of
evolutionary gameswhere groups of playersmay interact and individualsmay possess
a state which evolves over time. Part II of the book describes dynamics which relate to
epidemics or information diffusion over networked structures. Part III addresses
games on networks, including several variants of congestion games which relate to
current debates on network neutrality. Finally, intermittency phenomena are studied
for ecology models where abrupt transitions drive repeated reconfigurations of the
system state over time.
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Part I
Multi-Level Evolutionary Games

and Social Values. Innovative Methods
and Models are Mentioned as Well

Rachid El-Azouzi

Complex system is relatively new and broadly interdisciplinary field that deals with
systems composed of many interacting units, often called “agents”. Game theory
offers several successful stories in understanding agents’ interaction due to the fact
that it naturally quantifies rationality, and it can predict the outcome of agent inter-
actions by characterizing stable equilibrium operating points from which no agent
has incentive to deviate. Game theory is relevant for multi-scale complex systems:
one of the features that game theory is meant to model, is the presence of actors
that concurrently participate in the formation of interaction patterns that emerge as
a consequence of their objectives, or based on the objectives of groups or actors. In
the context of complex systems, the potential for contribution of game theory relates
indeed to the possibility of introducing various degrees of correlation among actors
and to capture coupling effects through both utilities and strategies. There already
exist several successful examples where game theory provides deeper understanding
of dynamics and leads to better design of efficient, scalable, and robust networks.
Still, there remain many interesting open research problems yet to be identified and
explored, and many issues to be addressed. Important analysis and applications have
been done in the context of static games [22]. However, some works have been
focused on the human behavior in social networks using game theory [38, 160, 64].
It was also introduced as graphical models in which agents in a system are supposed
to be nodes of a graph, and their interactions and payoff are limited to neighbors
[184]. The emergence of cooperation in graph through game theory has been studied
in several papers [63, 227].

Motivated by the dynamic behavior of most of the long-term systems and the
understanding of prediction, learning and evolution, dynamic game theory becomes
an important tool able to describe strategic interactions among large numbers of
agents. Traditionally, predictions of behavior in game theory are based on some
notion of equilibrium, typically Cournot equilibrium, Bertrand equilibrium, Nash
equilibrium, Stackelberg solution, Wardrop equilibrium or some refinement thereof.
These notions require the assumption of knowledge, which posits that each user
correctly anticipates how other agents will act or react. The knowledge assumption
is too strong and is difficult to justify in particular in contexts with large numbers
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of agents. As an alternative to the equilibrium approach, an explicitly dynamic updat-
ing choice is proposed, a model in which agents myopically update their strategies
in response to their opponents’ current behavior. This dynamic procedure does not
assume an automatic coordination of agent’s actions and beliefs, and it can derive
many specifications of agents’ choice procedures. These procedures are specified
formally by defining a revision of pure strategies called revision protocol. This revi-
sion is flexible enough to incorporate a wide variety of paradigms, including ones
based on imitation, adaptation, learning, optimization, etc. The revision protocols
describe the procedures agents follow in adapting their behavior in the dynamic
evolving environment such as evolving networks. The evolutionary games was first
used by Fisher [103]. This formalism identifies and studies two concepts: the Evolu-
tionary Stability, and the Evolutionary Game Dynamics. The unbeatable strategy has
been defined by Hamilton [130, 131], which is the analogous of strong equilibrium
(resilient against multilateral deviations) in large systems. The biologists Maynard
Smith and Price [248, 245] have defined a weaker of notion of locally unbeatable
strategy, the Evolutionary Stable State or Strategy (ESS). The ESS is characterized by
a property of robustness against invaders (mutations). More specifically, (i) if an ESS
is reached, then the profile of the population does not change in time. (ii) at ESS, the
populations are immune from being invaded by other small population. This notion
is stronger than Nash equilibrium in which it is only requested that a single user
would not benefit by a change (mutation) of its behavior. The ESS concept helps to
understand mixed strategies in games with symmetric payoffs. A mixed strategy can
be interpreted as a composition of the population. An ESS can be also interpreted as a
Nash equilibrium of the one-shot game but a (symmetric) Nash equilibrium may not
be an ESS. As is shown in [245] , ESS has strong refinement properties of equilibria
such as proper equilibrium, perfect equilibrium etc.

In the biological context, replicator dynamics models the change of the profile
of population(s). It describes how the fraction of the population that uses different
actions evolves over time. These equations are obtained by making assumptions on
the way that the probability of using an action increases as a function of the fitness
of an agent using it. This dynamic may answer fundamental questions such as the
lifetime of a certain emergent strategy or behavior and consequently the span of the
influence of such an agent over time even if interactions between components happen
with spatial constraints [205].

In the Part I, we present a novel foundations in evolutionary games: we accounts
for the structure of networks and embed novel dimensions: cooperation levels, ratio-
nality, information availability and the agent’s state. Part I presents several now
contribution with respect to evolutionary games for complex system. In Chap. 2
we provide a new concept to remedy this shortcoming in the standard evolutionary
games in order to cover this kind of behavior. Indeed, in many behaviors, many
phenomena where individuals do care about the benefits of others in group or about
their intentions, can be observed in the real word. Hence, the assumption of self-
ishness becomes inconsistent with the real behavior of individual in a population.
This framework thus excludes species such as bees or ants in which the individual
reproduced (the queen) is not the one that interacts with other individuals. We begin

http://dx.doi.org/10.1007/978-3-030-24455-2_2
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by defining the Group Evolutionary Stable Strategy (GESS), deriving it in several
ways and exploring its major characteristics. The main focus of this work is to study
how this new concept changes the profile of population and to explore the relation-
ship between GESS and Nash equilibrium or ESS.We characterize through the study
of many GESS and we show how the evolution and the equilibrium are influenced by
the size of the group, as well as by their immediate payoff. In Chap. 3, we extend the
theory developed in Chap. 2 to cover several behaviour ranging from altruist behav-
ior to fully non-cooperative behavior. First, we begin by defining this new concept,
driving it in several ways and exploring the implications of the model. The major
focus is to study how the level of cooperation impacts the profile of the population as
well as the global performance of the system. Chapter 4 we extent the evolutionary
games framework by considering a population composed of communities with each
having its set of strategies and payoff function. Assuming the interactions among
the communities occur with different probabilities, we define new evolutionarily sta-
ble strategies (ESS) with different levels of stability against mutations. In particular,
through the analysis of two-community two-strategymodel, we derive the conditions
of existence of ESSs under different levels of stability. We also study the evolution-
ary game dynamics both in its classic form and with de- lays. The delays may be
strategic, i.e. associated with the strategies, spatial, i.e. associated with the commu-
nities, or spatial-strategic. In Chap. 5, we continue the study on evolutionary games
and we tackle the concept of stability of the Evolutionarily Stable Strategy (ESS) in
the continuous-time replicator dynamics subject to random time delays. In fact, in
many examples the interactions between individuals take place instantaneously but
their impacts are not immediate. Their impact may require a certain amount of time,
which is usually random. In this work we study the effect of randomly distributed
time delays in the replicator dynamics. We show that, under the exponential delay
distribution, the ESS is asymptotically stable for any value of the rate parameter. For
the uniform and Erlang distributions, we derive necessary and sufficient conditions
for the asymptotic stability of the ESS. We also study random discrete delays and
we derive a necessary and sufficient delay independent stability condition. Finally,
in Chap. 6, we study the coupled dynamics of the policies and the individual states
inside a population of interacting individuals.We first define a general model by cou-
pling replicator dynamics and continuous-time Markov Decision Processes and we
then consider a particular case of a two-policies and two-states evolutionary game.
We first obtain a system of combined dynamics: the rest-points of this system are
equilibria profile of our evolutionary game with individual state dynamics. Second,
by assuming two different time scales between states and policies dynamics, we can
compute explicitly the equilibria. Then, by transforming our evolutionary game with
individual states into a standard evolutionary game, we obtain an equilibrium profile
which is equivalent, in terms of average sojourn times and expected fitness, to the
previous one.

http://dx.doi.org/10.1007/978-3-030-24455-2_3
http://dx.doi.org/10.1007/978-3-030-24455-2_2
http://dx.doi.org/10.1007/978-3-030-24455-2_4
http://dx.doi.org/10.1007/978-3-030-24455-2_5
http://dx.doi.org/10.1007/978-3-030-24455-2_6


Chapter 1
Altruism in Groups

Ilaria Brunetti, Rachid El-Azouzi and Eitan Altman

Evolutionary Game Theory has been originally developed and formalized by [245],
in order tomodel the evolution of animal species and it has soon become an important
mathematical tool to predict and even design evolution in many fields, others than
biology. It mainly focuses on the dynamical evolution of the strategies adopted in
a population of interacting individuals, where the notion of equilibrium adopted is
that of Evolutionarily Stable Strategy (ESS, [245]), implying robustness against a
mutation (i.e. a change in the strategy) of a small fraction of the population. This
is a stronger condition than the standard Nash equilibrium concept, which requires
robustness against deviation of a single user. On the importance of the ESS for
understanding the evolution of species, Dawkins writes in his book “The Selfish
Gene” [292]: “we may come to look back on the invention of the ESS concept as
one of the most important advances in evolutionary theory since Darwin.” He further
specifies: Maynard Smith’s concept of the ESS will enable us, for the first time, to
see clearly how a collection of independent selfish entities can come to resemble a
single organized whole.

Evolutionary game theory is nowadays considered as an important enrichment
of game theory and it’s applied in a wide variety of fields, spanning from social
sciences [100] to computer science. Some examples of applications in computer
science can be found in multiple access protocols [237], multihoming [236] and
resources competition in the Internet [300].

I. Brunetti · R. El-Azouzi (B)
Computer Science Laboratory (LIA), University of Avignon Computer
Science Laboratory (LIA), Avignon, France
e-mail: rachid.elazouzi@univ-avignon.fr
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6 I. Brunetti et al.

This theory is usually adopted in situations where individuals belonging to a very
large population are matched in random pairwise interactions. In classical evolu-
tionary games (EG), each individual constitutes a selfish player involved in a non-
cooperative game, maximizing its own utility, also said fitness, since in EG it’s
originally assumed that individuals’ utility corresponds to the Darwinian fitness, i.e.
the number of offsprings. The fitness is defined as a function of both the behavior
(strategy) of the individual as well as of the distribution of behaviors among the
whole population, and strategies with higher fitness are supposed to spread within
the population. A behavior of an individual with a higher fitness would thus result
in a higher rate of its reproduction. We observe that since strategies and fitness are
associated to the individual, then classical EG is restricted to describe populations
in which the individual is the one that is responsible for the reproduction and where
the choice of its own strategies is completely selfish. In biology, in some species like
bees or ants, the one who interacts is not the one who reproduces. This implies that
the Darwinian fitness is related to the entire swarm and not to a single bee and thus,
standard EG models excludes these species in which the single individual which
reproduces is not necessarily the one that interacts with other players. Furthermore,
in many species, we find altruistic behaviors, which favors the group the playing
individual belongs to, but which may hurt the single individual. Altruistic behaviors
are typical of parents toward their children: they may incubate them, feed them or
protect them from predator’s at a high cost for themselves. Another example can
be found in flock of birds: if a bird sees a predator, then it gives an alarm call to
warn the rest of the flock to protect the group, but attracting the predators attention
to itself. Also the stinging behavior of bees is another example of altruism, since it
serves to protect the hive but its lethal for the bee which strives. In human behavior,
many phenomena where individuals do care about other’s benefits in their groups
or about their intentions can be observed and thus the assumption of selfishness
becomes inconsistent with the many real world behavior of individuals belonging to
a population.

Founders of classical EG seem to have been well aware of this problem. Indeed,
Vincent writes in [279] “Ants seem to completely subordinate any individual objec-
tives for the good of the group. On the other hand, the social foraging of hyenas
demonstrates individual agendas within a tight-knit social group (Hofer and East
2003). As evolutionary games, one would ascribe strategies and payoffs to the ant
colony, while ascribing strategies and payoffs to the individual hyenas of a pack.”

In the case of ants, the proposed solution is thus tomodel the ant colony as a player.
Within the CEG paradigm, this would mean that we have to consider interactions
between ant colonies. The problem of this approach is that it doesn’t allow to model
behavior at the level of the individual.

In this chapter we present a new model for evolutionary games in which the con-
cept of the agent as a single individual is replaced by that of the agent as a whole
group of individuals. We define a new equilibrium concept, named Group Equilib-
rium Stable Strategy (GESS), allowing to model competition between individuals
in a population in which the whole group shares a common utility. Even if we still
consider pairwise interactions among individuals, our perspective is substantially
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different: we assume that individuals are simple actors of the game, maximizing the
utility of their group instead of their own one. We first define the GESS, deriving it in
several ways and exploring its major characteristics. The main interest of this work
is to study how this new concept changes the profile of population and to explore the
relationship betweenGESS and standardNash equilibrium and ESS.We characterize
the GESS and we show how the evolution and the equilibrium are influenced by the
groups’ size as well as by their immediate payoff. We compute some interesting in
a particular example of a multiple access games, in which the payoff related to local
interactions also depend on the type of individuals that are competing, and not only
the strategy used. In such application, we evaluate the impact of altruism behavior
on the performance of the system.

The chapter is structured as follows. We first provide in Sect. 1.1 the needed back-
ground on evolutionary games. In the Sect. 1.2 we then study the new natural concept
GESS and the relationship between GESS and ESS or Nash equilibrium. The char-
acterization of the GESS is studied in Sect. 1.3. Section1.4 provides some numerical
illustration through some famous examples in evolutionary games. In Sect. 1.5 we
study the multiple access control in slotted Aloha under altruism behavior. The paper
closes with a summary in Sect. 1.6.

1.1 Classical Evolutionary Games and ESS

We consider an infinite population of players and we assume that each individual dis-
poses of the same set of pure strategiesK = {1, 2, ..,m}. Each individual repeatedly
interacts with an other individual randomly selected within the population. Individ-
uals may use a mixed strategy p ∈ �(K), where �(K) = {p ∈ R

m+| ∑i∈K pi = 1},
where each vector p corresponds to a probability measure over the set of actions
K. This serves to represent those cases where an individual has the capacity to pro-
duce a variety in behaviors. A mixed strategy p can also be interpreted as the vector
of densities of individuals adopting a certain pure strategy, such that each compo-
nent pi represents the fraction of the population using strategy i ∈ K. However, in
the original formulation of evolutionary game theory, it is not necessary to make
the distinction between population-level and individual-level variability for infinite
population [245].

Let now focus on the case of monomorphic populations, i.e., on the case in which
individuals use mixed strategy. We define by J (p,q) the expected payoff of a given
individual if it uses a mixed action pwhen interacting with an individual playing the
mixed action q. Actions with higher payoff (or “fitness”) are thus expected to spread
faster in the population. If we define a payoff matrix A and consider p and q to be
column vectors, then J (p,q) = p′Aq and the payoff function J is bilinear, i.e. it is
linear both in p and in q. A mixed action q is said to be a Nash equilibrium if

∀p ∈ �(K), J (q,q) ≥ J (p,q) (1.1)
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As we mentioned above, in evolutionary games the most important concept of equi-
librium is the ESS, introduced by [245] as a strategy that, if adopted by the whole
population, can not be invaded by a different (“mutant”) strategy. More precisely, if
we suppose that the entire population adopt a strategy q and that a small fraction ε of
individuals (mutants) plays another strategy p, then q is evolutionarily stable against
p if

J (q, εp + (1 − ε)q) > J (p, εp + (1 − ε)q) (1.2)

The definition of ESS thus corresponds to a robustness property against deviations by
a (small) fraction of the population. This is an important difference that distinguishes
the equilibrium in a large population as seen in evolutionary games and the standard
Nash equilibrium often used in economic context, where the robustness is defined
against the possible deviation of each single agent. Since in evolutionary games
contextwedealwith very large populations, it ismore likely to expect that somegroup
of individuals may deviate from the incumbent strategy and thus robustness against
deviations by a single userwouldnot be sufficient to guarantee that themutant strategy
will not spread among a growing portion of the population. By defining the ESS
through the following equivalent definition, it’s possible to establish the relationship
between ESS and Nash Equilibrium (NE). The proof of the equivalence between the
two definitions can be found in ([288], Proposition 2.1) or ([135], Theorem 6.4.1,
page 63).

Strategy q is an ESS if it satisfies the two conditions:

• Nash equilibrium condition:

J (q,q) ≥ J (p,q) ∀p ∈ K. (1.3)

• Stability condition:

J (p,q) = J (q,q) ⇒ J (p,p) < J (q,p). ∀p �= q (1.4)

The first condition (1.3) corresponds to the condition for a Nash equilibrium. In
fact, if inequality (1.3) is satisfied, then the fraction ofmutations inwill increase, since
it hasn’t an higher fitness, and thus a lower growth rate. If the two strategies provide
the same fitness but condition (1.4) holds, then a population using q is ”weakly”
immune against mutants using p. Indeed, if the mutant’s population grows, then
we shall frequently have individuals with action q competing with mutants. In such
cases, the inequality in (1.4), J (p,p) < J (q,p), ensures that the growth rate of the
original population exceeds that of the mutants. In this sense an ESS can be seen as
a refinement of the Nash equilibrium.
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1.2 New Natural Concept on Evolutionary Games

In this section we present our new concept for evolutionary games, where we still
consider pairwise interactions among individuals but the actual player of the game is
a whole group of these individuals. We suppose that the population is composed of
N groups, Gi , i = 1, 2, .., N , where the normalized size of each group Gi is denoted
by αi , with

∑N
j=1 αi = 1.

Each individual can meet a member of its own group or of a different one, in
random pairwise interactions, and disposes of a finite set of actions, denoted by
K = {a1, a2, .., aM }. Let pik be the probability that an individual in the group Gi

chooses an action ak ∈ K. Each group i is associated to the vector of probabilities
pi = (pi1, pi2, .., piM )where

∑M
l=1 pil = 1, giving the distribution of actions within

the group. By assuming that each individual can interact with any other individual
with equal probability, then the expected utility of a player (the group) i is:

Ui (pi ,p−i ) =
N∑

j=1

α j J (pi ,p j ), (1.5)

where p−i is the strategies profile of all the other groups (but i) and J (pi ,p j ) is the
immediate expected utility of an individual player adopting strategy pi against an
opponent playing p j .

1.2.1 Group Equilibrium Stable Strategy

The definition of GESS is related to a notion of robustness against deviations within
each group. In this context, there are two possible equivalent interpretations of an
ε−deviation toward pi . If the group Gi plays according to the incumbent strategy qi ,
an ε−deviation, can be thought as:

1. A small deviation in the strategy by all members of a group, shifting to the new
group’s strategy p̄i = εpi + (1 − εqi );

2. The second is a (possibly large) deviation of a fraction ε of individuals belonging
to Gi , playing the mutant strategy pi .

After an ε−deviation under both interpretations the profile of thewhole population
becomes αiεpi + αi (1 − ε)qi + ∑

j �=i α jq j . Then the average payoff of group Gi

after mutation is given by:
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Ui (p̄i ,q−i ) =
N∑

j=1

α j J (p̄i ,p j )

= Ui (qi ,q−i ) + ε2αi�(pi ,qi ) + ε
(
αi (J (pi ,qi )

+ J (qi ,pi ) − 2J (qi ,qi )) +
∑

j �=i

(J (pi ,q j ) − J (qi ,q j )
)

(1.6)

where �(pi ,qi ) := J (pi ,pi ) − J (pi ,qi ) − J (qi ,pi )) + J (qi ,qi ).

Definition 1.1 A strategy q = (q1,q2, ..,qN ) is a GESS if ∀i ∈ {1, . . . , N }, ∀pi �=
qi , there exists some εpi ∈ (0, 1), which may depend on pi , such that for all ε ∈
(0, εpi )

Ui (p̄i ,q−i ) < Ui (qi ,q−i ), (1.7)

where p̄i = εpi + (1 − ε)qi .

From Eq. (1.7), this implies that strategy q is a GESS if the two following conditions
hold:

• ∀pi ∈ [0, 1]M

Fi (pi ,q) := αi�(pi ,qi ) −Ui (pi ,q−i ) +Ui (qi ,q−i ) ≥ 0, (1.8)

• ∃pi �= qi such that:

If Fi (pi ,q) = 0 ⇒ �(pi ,qi ) < 0 (1.9)

Remark 1.1 The second condition (1.9) can be rewritten as

Ui (qi ,q−i ) > Ui (pi ,q−i )

which coincide to the definition of the strict Nash equilibrium of the game composed
by N groups, each of them maximizing its own utility.

1.2.2 GESS and Standard ESS

Here we analyze the relationship between our new equilibrium concept, the GESS
and the standard ESS.

Proposition 1.1 Consider games such that the immediate expected reward is sym-
metric, i.e. J (p,q) = J (q,p). Then any ESS is a GESS.

Proof Let q = (q, .., q) be an ESS. From the symmetry of the payoff function and
Eq. (1.8), we get:
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Fi (pi ,q) = −
(
αi (J (pi , q) + J (q,pi ) − 2J (q, q)

+
∑

j �=i

α j (J (pi , q) − J (q, q)
)

= −2αi (J (pi , q) − J (q, q)) −
∑

j �=i

α j (J (pi , q) − J (q, q))

= −(1 + αi )(J (pi , q) − J (q, q)) ≥ 0

where the second equality follows from the symmetry of J and the last inequality
follows form the fact that q is an ESS and satisfies (1.3). This means that q satisfies
the first condition of GESS (1.8). Assume now that Fi (pi , q) = 0 for some pi �=
q, previous equations imply that J (pi ,q) = J (q,q). Thus the second condition
(1.9) becomes �(pi ,qi ) = J (pi ,q) − J (q,q) < 0 which coincide with the second
condition of ESS (1.4). This completes the proof. �

1.2.3 Nash Equilibrium and GESS

In the classical evolutionary games, the ESS can be seen as a refinement of a Nash
equilibrium, since all ESSs are Nash equilibria while the converse is not true. In order
to study and characterize this relationship in our context, we define the game between
groups. There are N players in which each player has a finite set of pure strategies
K = {1, 2, ..,m}; letUi (qi ,q−i ) be the utility of player i when using mixed strategy
qi against a population of players using q−i = (q1, . . . ,qi−1,qi+1, . . . ,qN ).

Definition 1.2 A strategy q = (q1,q2, ..,qN ) is a Nash Equilibrium if ∀i ∈
{1, . . . , N }

Ui (qi ,q−i ) ≥ Ui (pi ,q−i ) (1.10)

for every mixed strategy pi �= qi . If the inequality is a stric one, then q is a strict
Nash equilibrium.

From the definition of the strict Nash equilibrium, it is easy to see that any strict Nash
equilibrium is a GESS defined in Eq. (1.7). But in our context, we address several
questions on the relationship between the GESS, ESS and the Nash equilibrium
defined in (1.10). For the sake of simplicity, we restrict to the case of two-strategies
games. Before studying them, we introduce here some necessary definitions.

Definition 1.3 • A fully mixed strategy q is a strategy such that all the actions
available for a group have positive probability, i.e., 0 < qi j < 1 ∀(i, j) ∈ I × K.

• A mixer (resp. pure) group i is the group that uses a mixed (resp. pure) strategy
0 < qi < 1 (resp. qi ∈ {0, 1}).

• An equilibrium with mixed and non mixed strategies is an equilibrium in which
there is at least one pure group and a mixer group.
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1.3 Analysis of N-Groups Games with Two Strategies

In this section we present a simple case, with N -groups games disposing of two
strategies. The two available pure strategies are A and B and the payoff matrix of
pairwise interctions is given by:

P =
(
A B

A a b
B c d

)

,

where Pi j , i, j = A, B is the payoff of the first (row) individual if it plays strategy
i against the second (column) individual playing strategy j . We assume that the two
individuals are symmetric and hence payoffs of the column player are given by Pt ,
i.e. the transposed of P . According to the definition of GESS, q is a GESS if it
satisfies the conditions (1.8)–(1.9), which can be rewritten here as:

• ∀pi ∈ [0, 1], i = 1, .., N :

Fi (pi ,q) = (qi − pi )
(
αi (J (qi , 1) − J (qi , 0)) +

N∑

j=1

α j (J (1, q j ) − J (0, q j ))
)

≥ 0
(1.11)

• If F(pi ,q) = 0 for some pi �= qi , then:

(pi − qi )
2� < 0 =⇒ � < 0 (1.12)

where � = a − b − c + d.

1.3.1 Characterization of Fully Mixed GESS

In this sectionwe are interested in characterizing the fullmixedGESSq. According to
(3.4), a full mixed equilibrium q = (q1, . . . , qN ) is a GESS if it satisfies the condition
(3.5) where the equality must holds for all p ∈ [0, 1]. This yields to the following
equation: ∀i = 1, . . . N ,

αi (J (qi , 1) − J (qi , 0)) +
N∑

j=1

α j (J (1, q j ) − J (0, q j )) = 0

which can be rewritten as

http://dx.doi.org/10.1007/978-3-030-24455-2_3
http://dx.doi.org/10.1007/978-3-030-24455-2_3
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αi�qi + b − d + αi (c − d) + �

N∑

j=1

α j q j = 0

This leads to the following expression of the mixed GESS:

q∗
i = d − b + (

(1 + N )αi − 1
)
(d − c)

(N + 1)αi�
; (1.13)

Proposition 1.2 If� < 0 and 0 < q∗
i < 1, i = 1, . . . , N, then there exists a unique

fully mixed GESS equilibrium given by (1.13).

Note that the fully mixed GESS is a strict Nash equilibrium since the condition
(3.5) corresponds to the definition of the strict Nash equilibrium (see Remark 1.1),
under the condition F(p, q1, . . . , qN ) = 0, ∀p ∈ [0, 1].

1.3.2 Characterization of Strong GESS

We say that an equilibrium is a strongGESS if it satisfies the strict inequality (3.4) for
all groups. As we did above for the fully mixed GESS, we explicit here the condition
for the existence of a strong GESS. Note that all groups have to use pure strategy in
a strong GESS. With no loss of generality, we assume that a pure strong GESS can
be represented by nA, where nA ∈ {1, ..., N } denotes that the nA first groups use A
pure strategy and remaining N − nA groups chose strategy B. For example nA = N
(resp. nA = 0) means that all groups choose pure strategy A (resp. B).

Proposition 1.3 If a �= c or b �= d, then every N-player game with two strategies
has a GESS. We distinguish the following possibilities for the strong GESS:

i. If a − c > maxi (αi ) · (b − a) then nA = N is a strong GESS;
ii. If b − d < mini (αi )(d − c) then nA = 0 is a strong GESS;
iii. Let H(na) := ∑nA

j=1 α j (a − c) + ∑N
j=nA+1 α j (b − d). Ifαi (d − c) > H(na) >

αi (b − a) then nA is a strong GESS.

Proof In order to prove that a strategy nA = N is aGESS,we have to impose the strict
inequality, i.e.: ∀pi �= 1 for i ∈ {1, .., nA} and ∀pi �= 0 for i ∈ {nA + 1, .., N }

Fi (pi , 1nA , 0N−nA) > 0

We provide here the necessary conditions of the existence in the case nA = N ; the
other cases straightforward follow from the players’ symmetry assumption.

We now suppose that (nA = N ) is a strong GESS. The inequality (3.4) becomes:
∀pi �= 1, ∀i

http://dx.doi.org/10.1007/978-3-030-24455-2_3
http://dx.doi.org/10.1007/978-3-030-24455-2_3
http://dx.doi.org/10.1007/978-3-030-24455-2_3
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(pi − 1)
(
αi (a − b) +

N∑

j=1

α j (a − c)
)

= (pi − 1)
(
αi (a − b) + a − c)

)
< 0,

Since pi < 1, one has αi (b − a) < a − c ∀i . This completes the proof of (i). To
show conditions of the other strong GESSs, we follow the lines of the proof of (i).�

1.3.3 Characterization of Weak GESS

We define a weak GESS as an equilibrium in which at least one group uses a strategy
that satisfies the condition (3.5) with equality. Here we distinguish two different
situations: the equilibrium with no mixer group and the equilibrium with mixer and
no mixer groups. Conditions for the equilibrium with no mixed strategy are given by
Proposition 1.3 with at the least one group satisfying it with equality and � < 0. In
what follows we thus focus only on the equilibrium with mixer and no mixer groups.
Without loss of generality, we assume that an equilibrium with mixed and non mixed
strategies, can be represented by (nA, nB,q) where nA denotes that group i for
i = 1.., nA (resp. i = nA + 1, .., nA + nB) uses strategy A (resp. B). The remaining
groups N − nA − nB are mixers in which qi is the probability to choose the strategy
A by group i .

Proposition 1.4 Let either a �= c or b �= d and � < 0. (nA, nB,q) is a weak GESS
if:

⎧
⎨

⎩

αi� + d − b + αi (c − d) + �(αnA + y) ≥ 0, i = 1, .., nA

d − b + αi (c − d) + �(αnA + y) ≤ 0, i = nA + 1, .., nB

qi = d−b+αi (d−c)−y�
�αi

, i = nA + nB + 1, .., N
(1.14)

where y = (N−nA−nB )(d−b−∑nA
j=1 α j )+(d−c)

∑N
j=nA+nB+1 α j

�(N−NA−nB+1) .

Proof See technical report �

1.4 Some Examples

In this section we analyze a number of examples with two players and two strategies.

1.4.1 Hawk and Dove Game

One of the most studied examples in EG theory is the Hawk-Dove game, first intro-
duced by Maynard Smith and Price in “The Logic of Animal Conflict”. This game

http://dx.doi.org/10.1007/978-3-030-24455-2_3
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serves to represent a competition between two animals for a resource. Each animal
can follow one of two strategies, either Hawk or Dove, where Hawk corresponds to
an aggressive behavior, Dove to a non-aggressive one. So, if two Hawks meet, they
involve in a fight, where one of them obtain the resource and the other is injured, with
equal probability. A Hawk always wins against a Dove, but there is no fight, so the
Dove looses the resource but it’s not injured, whereas if two Doves meet they equally
share the resource. The payoff matrix associated to the game is the following:

(
H D

H 1
2 (V − C) V

D 0 V/2

)

whereC represent the cost of the fight, and V is the benefit associated to the resource.
We assume that C > V .

In standard GT, this example belongs to the class of anti-coordination games,
which always have two strict pure strategy NEs and one non-strict, mixed strategy
NE. In this case the two strict pure equilibria are (H, D) and (D, H), and the mixed-
one is: q∗ = V

C . The latter is the only ESS: even if the two pure NE are strict, being
asymmetric they can’t be ESSs.We now set V = 2 andC = 3 andwe study theHawk
and Dove game in our groups framework, considering two groups of normalized size
α and 1 − α.

We find that the GESSs and the strict NE always coincides. More precisely we
obtain that:

• for 0 < α < 0.25 the game has one strong GESS (H, D) and a weak GESS
(H, q2);

• for 0.25 < α < 0.37: one weak GESS (H, q2);
• for 0.37 < α < 0.5 one weak GESS, (q∗

1 , q
∗
2 );

We observe that the size of groups has a strong impact on the behavior of players: in
the first interval ofα−values we remark that the GESS is not unique; if the size of the
first group increases (which implies that the second one decreases), the probability
that the second group plays aggressively against the pure aggressive strategy of
the first one increases until we get into the third interval, where both players are
mixers. The mixed equilibrium q∗

1 is decreasing in α: this is because, as we supposed
that an individual can interact with members of its own group, when increasing α,
the probability of meeting an individual in the same group increases and thus the
individual tend to adopt a less aggressive behavior (Fig. 1.1).

1.4.2 Stag Hunt Game

Wenow consider awell-known examplewhich belonging to the class of coordination
games, the Stag Hunt game. The story modeled by this game has been described by
J-J. Rousseau: two individuals go hunting; if they hunt together cooperating, they
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Fig. 1.1 The global level of aggressiveness in the two-groups population for the different GESSs,
as a function of α

can hunt a stag; otherwise, if hunting alone, a hunter can only get a hare. In this case,
collaboration is thus rewarding for players. It serves to represent a conflict between
social and safely cooperation. The payoff matrix is the following:

(
S H

S a b
H c d

)

where S and H stand respectively for Stag and Hare and a > c ≥ d > b. Coor-
dination games are characterized by two strict, pure strategy NEs and one non-
strict, mixed strategy NE, which are, respectively, the risk dominant equilibrium
(H, H), the payoff dominant one (S, S) and the symmetric mixed equilibrium with
q∗
1 = q∗

2 = d−b
a−b−c+d .

We set here a = 2, b = 0, c = 1, d = 1 and we determine the equilibria of the
two groups game as a function of α. We find that the strict GESSs and the strict
NEs don’t coincide, since we obtain strict GESSs but not NEs. The two-groups Stag-
Hunt Game only have the pure-pure strict NE (S, S), for all values of α, while for
the GESSs we obtain that:
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Fig. 1.2 The global level of cooperation in the two-groups population for the different GESSs, as
a function of α

• for 0 < α < 0.5 the game admits two pure-pure strongGESSs: (S, S) and (H, H);
• for 0.25 < α < 0.5 the game admits three pure-pure strong GESSs: (S, S) and

(H, H) and (S, H);
• the game doesn’t admit any strict mixed NE (Fig. 1.2).

1.4.3 Prisoner’s Dilemma

We consider another classical example in game theory, the Prisoner’s Dilemma,
which belongs to a third class of games, the pure dominance class.

The story to imagine is the following: two criminals are arrested and separately
interrogated; they can either accuse the other criminal, either remain silent. If both
of them accuse the other (defect—D), then they will be both imprisoned for 2 years.
If only one accuse the other, the accused is punished with 3 years of jail while the
other is free. If both remain silent (cooperate–C), each of them will serve only one
year in jail. The corresponding payoff matrix is the following:
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Fig. 1.3 Total rate of collaboration for different GESSs as a function of group 1 size α in the
prisoner’s Dilemma

(
C D

C a b
D c d

)

where c > a > d > b.
In standard GT, pure dominance class games have a unique pure, strict and sym-

metric NE, which also is the unique ESS; in the Prisoner’s Dilemma it’s (D, D)

(Fig. 1.3).
We set a = 2, b = 0, c = 3, d = 1 and we study the two-groups corresponding

game. As in the previous example, we find strict GESSs which are not strict NEs. In
particular, we have that:

• (C,C) is always a GESS and a strict NE for all values of α;
• (D, D) is a GESS for all values of α but it is never a strict NE;
• (C, D) (symmetrically (D,C)) is always a GESS and a strict NE for 0.5 < α < 1
(symmetrically 0 < α < 0.5);

• the game doesn’t admit mixed GESSs;

For any value of α, the two groups game thus admits three pure GESSs and two
pure strict NEs.



1 Altruism in Groups 19

1.5 Multiple Access Control

In this section we shortly introduce a possible refinement of our model, which will be
further investigated in future works. The idea is to distinguish between interactions
among members of the same group and of two different ones. We study a particular
example where we modify the group utility function defined in (1.5), supposing that
the immediate payoff matrix depends on the groups the two players belong to (if its
the same one or they belong to two different groups).

The utility function of a group i playing qi against a population profile q−i can
be written as follows:

U (qi,q−i) = αi K (qi,qi) +
∑

j �=i

αi J (qi,qj), (1.15)

where by K (p,q)we denote the immediate expected payoff of an individual playing
p against a member of its own group using q, and by J (p,q) the immediate expected
payoff associated to interactions among individuals of different groups.

We consider a particular application of this model in Aloha system, such that
a large population of mobile phones interfere with each other through local pair-
wise interactions. The population of mobiles is decomposed into N groups Gi ,
i = 1, 2, .., N of normalized size αi with

∑N
j=1 αi = 1 and each mobile can decide

either to transmit (T ) or to not transmit (S) a packet to the receiver within transmis-
sion range. The interferences occur according to the Aloha protocol, which assume
that if more than one neighbor of a receiver transmits a packet at the same time this
causes a collision and the failure of transmission. The channel is assumed to be ideal
for transmission and the only errors occurring are due to these collisions.

We denote by μ the probability that a mobile k has its receiver R(k) in its range.
When the mobile k transmits to the receiver R(k), all the other mobiles within a
circle of radius R centered on R(k) cause interference to k and thus the failure of
mobile’s k packet transmission to R(k).

Amobile belonging to a given group i may use amixed strategypi = (pi , 1 − pi ),
where pi (resp. 1 − pi ) is the probability to choose the action (T ) (resp (S)). Let γ be
the probability that a mobile is alone in a given local interaction; before transmission,
the taggedmobile doesn’t know if there is another transmittingmobilewithin its range
of transmission.

Let P1 (resp. P2) be the immediate payoff matrix associated to interactions among
mobiles belonging to the same group (resp. to two different ones):

P1 ≡
(

T S

T −2δ 1 − δ
S 1 − δ 0

)

, P2 ≡
(
T S

T δ 1 − δ
S 0 0

)

.

where 0 < δ < 1 is the cost of transmitting the package. The definition of the matrix
P1 implies that, when two mobiles of the same group i interfere, any successful
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transmission is equally rewarding for the group i . The resulting expected payoffs of
a mobile playing qi against a member belonging to its own group and to a different
one, using respectively the same strategy qi and a different one q j are, respectively,
the following:

K (qi ,qi ) = μ [qi [γ(1 − δ) + (1 − γ)((1 − δ)(1 − qi ) − 2δqi )]
+(1 − γ)(1 − δ)(1 − qi )qi ]

= μqi [(1 − δ)(2 − γ) − 2(1 − γ)qi ]

J (qi ,q j ) = μqi [γ(1 − δ) + (1 − γ)((1 − δ)(1 − q j ) − δq j ]
= μqi [1 − δ − (1 − γ)q j ]

The expected utility of group i is then given by:

U (qi ,q−i ) = μqi [1 − δ + (1 − γ)(αi (1 − δ − qi ) −
N∑

j=1

α j q j )] (1.16)

By following the same line of analysis followed in Sect. 1.2, the strategy q is a GESS
if ∀i = 1, . . . N the two following conditions are satisfied:

1. F ′
i (pi ,q) ≡ (qi − pi )[1 − δ + (1 − γ)(αi (1 − δ − 2qi ) − ∑N

j=1 α j q j )] ≥ 0
∀pi ,

2. If F ′
i (pi ,q) = 0 for some pi �= qi , then (pi − qi )2(1 − γ)αi > 0 ∀pi �= qi .

We observe that, since the inequality (pi − qi )2(1 − γ)αi > 0 holds for all values of
the parameters, the second condition is always satisfied and thus the first condition
is sufficient for the existence of a GESS. We now characterize the GESSs of the
presented MAC game. With no loss of generality, we reorder the groups so that
α1 ≤ α2 . . . ≤ αN .

Proposition 1.5 In the presented MAC game, we find that:

• The pure symmetric strategy (S, . . . , S) is never a GESS.
• If a group Gi adopts pure strategy S, then at the equilibrium, all smaller groups
also use S.

• If a group Gi adopts pure strategy T , then at the equilibrium, all smaller groups
transmit. If the bigger group GN use strategy T at the equilibrium, then γ > γ̄.

• If a group Gi adopts an equilibrium mixed strategy qi ∈]0, 1[, then if qi > 1−δ
2 ,

at the equilibrium all smaller groups use pure strategy T , whereas if qi < 1−δ
2 ,

smaller groups play S.
• The unique fully mixed GESS of the game is q∗ = (q∗

1 , . . . , q
∗
N ), given by:

q∗
i = (1 − δ)(1 + γ + (1 − γ)(2 + N )αi )

2(N + 2)(1 − γ)αi
(1.17)

under the condition: γ < γ.
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Fig. 1.4 The value of the equilibrium strategy q∗
1 and q∗

2 in a two groups MAC game as a function
of γ for α = 0.4 compared to q∗

std

The thresholds γ and γ̄ are defined as follows:

γ ≡ min
αi

αi (N + 2)(1 + δ) − (1 − δ)

αi (N + 2)(1 + δ) + (1 + δ)
,

γ̄ ≡ max
αi

(

1 − 1 − δ

αi (δ + 1) + 1

)

.

Proof The proof is available in [53]. �

In order to provide a better insight, we consider a two groupsMACgame, inwhichwe
set a low value of the cost of transmission, δ = 0.2, and groups’ sizes α1 = α = 0.4,
α2 = 1 − α = 0.6, and we let vary the value of the parameter γ. We obtain three
different equilibria, depending on the value of γ: a pure GESS q∗

P , a fully mixed
GESS q∗

M and a pure-mixed one q∗
PM . In Fig. 1.4 we plot the fully mixed and the

pure GESS. For γ < γ = 0.3 the game admits a GESS q∗q∗
M = (q∗

1 , q
∗
2 ), whose

components are shown in the plot. Then, for γ = γ̄ > 0.53, q∗q∗
P = (T, T ). We also

represent the value of q∗
std := min(1, 1

1−γ
) − �.We note that fullymixed equilibrium

strategies adopted by the two groups, q∗
1 , q

∗
2 , are both lower then q∗

std .
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Fig. 1.5 The value of the equilibrium strategy q∗
2 of the second group in the pure-mixed equilibrium

(T, qT ) as a function of γ for α = 0.85 compared to q∗
std

In Fig. 1.5 we plot the value of the second mixed component of the pure-mixed
GESS of the game: (T, qT ), which is an equilibrium in the interval 0 ≤ γ < 0.4,
and we compare it to q∗

std . We observe that, for the second group the probability of
transmitting is always lower w.r.t. the standard game.

We denote by pS(p) the probability of a successful transmission in a population
whose profile is p. If N = 2, we obtain that:

pS(p) = μ[γ(αp1 + (1 − α)p2)] + (1 − γ)(2α2 p1(1 − p1)+
+ α(1 − α)((1 − p2)p1 + (1 − p1)p2) + 2(1 − α)2 p2(1 − p2))].

In Fig. 1.6 we represent the value of the equilibrium p∗
S = pS(q∗

M) as a function
of γ for α = 0.4. We observe that, γ < γ, even if at the equilibrium the probability
of the transmission is lower in the groups game.
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Fig. 1.6 The probability pS(q∗
M ) of a successful transmission for the fully mixed GESS in a two

groups MAC game at the equilibrium as a function of γ

1.6 Conclusions

In this work we defined the new concept of the GESS, an Evolutionarily Stable
Strategy in a group-players context and we studied its relationship and the Nash
equilibrium and with the standard ESS. We studied some classical examples of two
players and two strategies games transposed in our group-players framework and we
found that the fact of considering interactions among individuals maximizing their
group’s utility (instead of their own one) impacts individuals’ behavior and changes
the structure of the equilibria. We briefly introduce a refinement of our model, where
we redefine the utility of a group in order to consider different utilities for interactions
amongmembers of the samegroup or of a different one. Through a particular example
in MAC games we showed how the presence of groups can encourage cooperative
behaviors. There are many possible issues to be developed in future studies. We are
currently studying the replicator dynamics in this group-players games, in order to
investigate the existing relationship between the rest point of such dynamics and our
GESS, following the lines off he Folk Theorem of EG. At a more theoretical level,
the concept of group’s utility could be further investigated, and the coexistence of
both selfish and altruistic behaviors among individuals could be taken into account.
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From Egoism to Altruism in Groups

Rachid El-Azouzi, Eitan Altman, Ilaria Brunetti, Majed Haddad
and Houssem Gaiech

This chapter presents a new formulationwhich not only covers the fully non- coopera-
tive behavior and the fully cooperative behavior, but also the fully altruistic behaviour.
To do so, wemake use of the evolutionary game theory which we extend to cover this
kind of behavior. Themajor focus of this work is to study how the level of cooperation
impacts the profile of population as well as the global performance of the system.
Equilibrium of the system through the notion of Evolutionary Stable Strategies and
study the effect of transmission cost and cooperation level. We define and char-
acterize the equilibrium (called Evolutionary Stable Strategy) for these games and
establish the optimal level of cooperation that maximizes the probability of success-
ful transmission. Our theoretical results unveil some behaviors. More specifically,
we show that when all users increase their level of cooperation, then the performance
of the system is not necessary improved. In fact, for some scenarios, the performance
of groups may lead to an improvement by adopting selfishness instead of altruism.
This happened when the density of agents is high. For low density, the degree of
cooperation may indeed improve the performance of all groups. According to the
structure of the ESS, we try to evaluate the performance of the global system in order
to derive the optimal degree of cooperation.

In this chapter, we explore our finding to study multiple access games with a
large population of mobiles decomposed into several groups. Mobiles interfere with
each others through many local interactions. We assume that each mobile (or player)
cooperates with his group by taking into account the performance of his group.
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