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The Japanese Association for Evolutionary Economics (JAFEE) always has adhered 
to its original aim of taking an explicit "integrated" approach. This path has been 
followed steadfastly since the Association’s establishment in 1997 and, as well, since 
the inauguration of our international journal in 2004. We have deployed an agenda 
encompassing a contemporary array of subjects including but not limited to: 
foundations of institutional and evolutionary economics, criticism of mainstream 
views in the social sciences, knowledge and learning in socio-economic life, 
development and innovation of technologies, transformation of industrial 
organizations and economic systems, experimental studies in economics, agent- 
based modeling of socio-economic systems, evolution of the governance structure of 
firms and other organizations, comparison of dynamically changing institutions of 
the world, and policy proposals in the transformational process of economic life. In 
short, our starting point is an "integrative science" of evolutionary and institutional 
views. Furthermore, we always endeavor to stay abreast of newly established methods 
such as agent-based modeling, socio/econo-physics, and network analysis as part of 
our integrative links.

More fundamentally, “evolution” in social science is interpreted as an essential 
key word, i.e., an integrative and /or communicative link to understand and re-domain 
various preceding dichotomies in the sciences: ontological or epistemological, 
subjective or objective, homogeneous or heterogeneous, natural or artificial, selfish or 
altruistic, individualistic or collective, rational or irrational, axiomatic or psychological-
based, causal nexus or cyclic networked, optimal or adaptive, micro- or macroscopic, 
deterministic or stochastic, historical or theoretical, mathematical or computational, 
experimental or empirical, agent-based or socio/econo-physical, institutional or 
evolutionary, regional or global, and so on. The conventional meanings adhering to 
various traditional dichotomies may be more or less obsolete, to be replaced with 
more current ones vis-à-vis contemporary academic trends. Thus we are strongly 
encouraged to integrate some of the conventional dichotomies.

These attempts are not limited to the field of economic sciences, including 
management sciences, but also include social science in general. In that way, 
understanding the social profiles of complex science may then be within our reach. 
In the meantime, contemporary society appears to be evolving into a newly emerging 
phase, chiefly characterized by an information and communication technology 
(ICT) mode of production and a service network system replacing the earlier 
established factory system with a new one that is suited to actual observations. In 
the face of these changes we are urgently compelled to explore a set of new properties 
for a new socio/economic system by implementing new ideas. We thus are keen to 
look for “integrated principles” common to the above-mentioned dichotomies 
throughout our serial compilation of publications. We are also encouraged to create 
a new, broader spectrum for establishing a specific method positively integrated in 
our own original way.

More information about this series at http://www.springer.com/series/11930

http://www.springer.com/series/11930


Stanislaw Raczynski

Interacting Complexities  
of Herds and Social 
Organizations
Agent Based Modeling



ISSN 2198-4204     ISSN 2198-4212 (electronic)
Evolutionary Economics and Social Complexity Science
ISBN 978-981-13-9336-5    ISBN 978-981-13-9337-2 (eBook)
https://doi.org/10.1007/978-981-13-9337-2

© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, express or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims 
in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 
Singapore

Stanislaw Raczynski
Facultad de Ingeniería
Universidad Panamericana
Ciudad de México, México

https://doi.org/10.1007/978-981-13-9337-2


v

Preface

According to John von Neumann, “by a model is meant a mathematical construct 
which, with the addition of certain verbal interpretations, describes observed phe-
nomena. The justification of such a mathematical construct is solely and precisely 
that it is expected to work — that is, correctly to describe phenomena from a reason-
ably wide area.” Humans always (sometimes unconsciously) have used models cre-
ated in their brains. When our technical skills have grown, the models acquired the 
form of physical, scale models, drawings, and finally sophisticated logical and 
mathematical constructions. The common concept of modeling is defined as a sci-
entific activity, the aim of which is to make a particular part or feature of the world 
easier to understand.

The complexity of the real world can be modeled to some extent. There are many 
definitions of complexity, recently related to “system of systems” structures. Note 
that a system that contains a great number of sub-systems or items or a huge number 
of differential equations is not necessarily complex. The complexity lies in the way 
the components interact with each other and the diversity of system components. In 
such systems, the simulation results may provide information about the behavior of 
the whole system, which is not the sum of individual behavior patterns. This is also 
interpreted as nonlinearity. This book is focused on this kind of modeling and simu-
lation experiments.

Analog and digital computers gave us a powerful tool for model building and 
analysis. At the very beginning of the computer era, the differential equations have 
been solved on analog machines, helping scientists and engineers to design mecha-
nisms, circuits, and complex devices. The field of model applications has grown 
over the decades, including not only the works of engineering and exact sciences but 
also the models of animal and human societies.

At the very beginning, model builders have been looking for some kinds of alge-
braic, ordinary, or partial differential equations to describe real system behavior. 
The most known and explored field is the System Dynamics (SD) approach that 
mainly uses models in the form of ordinary differential equations. However, it 
should be noted that this is not the only way to build models. A strange conviction 
aroused among the modelers that everything in the real world can be described by 
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differential equations. In general, this is not true. Although the SD methodology is 
still widely used and useful, there are other ways for model building, like fuzzy 
logic, differential inclusions, discrete event simulation, and agent based models, 
among others.

The topic of this book is agent based modeling. The rapid growth of the compu-
tational capacity of new computers permits us to create thousands of objects in 
computer memory and make them interact with each other. In agent based models, 
the objects are equipped with certain artificial intelligence, can optimize their 
behavior, and take decisions. Some systems can be modeled both using differential 
equations and agent based approach. The results of these two methods are frequently 
quite different, for example, results of the Lotka-Volterra prey-predator model and 
the prey-predator agent based model. Here, we will not suggest which of these mod-
els is valid or not. These are just different modeling methods that produce results of 
different kind. Undoubtedly, agent based modeling is more flexible and can reflect 
more behavioral patterns of the individuals, providing the insight on the macro- 
behavior of the system. In Chap. 1, there are comments on some agent based model-
ing tools. The other chapters contain examples of applications to artificial societies 
and competing populations of individuals and the growth, interactions, and decay of 
organizations and other applications. For reader’s convenience, a short recall about 
object- and agent-based modeling is repeated in each chapter. Thus, each chapter 
can be read as independent unit. In Chap. 9, you can find a description of an experi-
mental software package that uses the classic continuous system dynamics graphi-
cal user interface (GUI) that is used to construct the model. However, the transparent 
simulation engine that runs behind this GUI is discrete event simulation. This way, 
we can compare the results of the conventional system dynamics packages with 
these provided by discrete event simulation. The relevant differences between these 
two simulation paradigms are pointed out.

Mexico City, Mexico Stanislaw Raczynski 

Preface



vii

Acknowledgements

I would like to express my gratitude to the Editors of the journals listed below for 
the permission to use the updated versions of my articles, as follows:

Simulating self-organization and interference between certain hierarchical struc-
tures. Nonlinear Dynamics, Psychology, and Life Sciences, 2014, Vol 18, no 4, 
used in Chap. 2 of this book,

A Self-destruction game, Nonlinear Dynamics, Psychology, and Life Sciences, 
2006, Vol 10, no 4, used in Chap. 7 of this book,

The spontaneous rise of the herd instinct: agent-based simulation, Nonlinear 
Dynamics, Psychology, and Life Sciences, to appear, used in Chap. 5 of this 
book.

Simulation of the dynamic interactions between terror and anti-terror organiza-
tional structures, Journal of Artificial Societies and Social Simulation, Vol. 7, no. 
2, used in Chap. 3 of this book.

Influence of the gregarious instinct and individuals’ behavior patterns on macro 
migrations: simulation experiments, Journal of Human Behavior in the Social 
Environment, Vol. 28, no 2, used in Chap. 6 of this book. Visit the journal home 
page at www.tandfonline.com.

Stanislaw Raczynski



ix

Contents

 1   Agent-Based Models: Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1
 1.1    General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1
 1.2    Discrete Event Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    2

 1.2.1    GPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    4
 1.2.2    Arena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    4
 1.2.3    SIMIO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    5
 1.2.4    Simula  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    5
 1.2.5    PASION, PSM++, and BLUESSS . . . . . . . . . . . . . . . . . . . .    6

 1.3    Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   12
 1.4    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   16

 2   Simulating Self-Organization and Interference Between Certain 
Hierarchical Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   19
 2.1    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   19
 2.2    The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   21

 2.2.1    General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   21
 2.2.2    Interaction Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   23

 2.3    Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   25
 2.4    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   27
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   28

 3   Interactions Between Terror and Anti- terror Organizations . . . . . . . .   31
 3.1    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   31
 3.2    The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   33

 3.2.1    Interactions Between Structures  . . . . . . . . . . . . . . . . . . . . .   36
 3.2.2    Simulation Tool and Model Implementation . . . . . . . . . . . .   37
 3.2.3    Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . .   40

 3.3    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   45
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   45



x

 4   Organization Growth and Decay: Simulating Interactions  
of Hierarchical Structures, Corruption and Gregarious Effect . . . . . .   47
 4.1    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   47
 4.2    Agent-Based Modeling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   49
 4.3    Simulation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   51
 4.4    The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   52

 4.4.1    The Individuals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   52
 4.4.2    Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   54
 4.4.3    Auxiliary Control Process . . . . . . . . . . . . . . . . . . . . . . . . . .   55

 4.5    Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   55
 4.5.1    Experiment 1: Criterion Function Zero . . . . . . . . . . . . . . . .   57
 4.5.2    Experiment 2: Change Criterion – Size . . . . . . . . . . . . . . . .   58
 4.5.3    Experiment 3: Corruption Level  . . . . . . . . . . . . . . . . . . . . .   59
 4.5.4    Experiment 4: Accumulated Corruption  . . . . . . . . . . . . . . .   59
 4.5.5    Experiment 5: Criterion – Grow Rate (Herd Instinct) . . . . .   61

 4.6    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   63
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   63

 5   The Spontaneous Rise of the Herd Instinct: Agent-Based  
Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   67
 5.1    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   67
 5.2    Agent-Based Modeling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   69

 5.2.1    General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   69
 5.2.2    BLUESSS Simulation Package . . . . . . . . . . . . . . . . . . . . . .   70

 5.3    The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   71
 5.3.1    Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   71
 5.3.2    Event: Search for Food  . . . . . . . . . . . . . . . . . . . . . . . . . . . .   73

 5.4    Simulations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   75
 5.4.1    Gregarious Factor, Search for Food . . . . . . . . . . . . . . . . . . .   75
 5.4.2    The Influence of the Threat . . . . . . . . . . . . . . . . . . . . . . . . .   76

 5.5    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   79
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   80
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   81

 6   Influence of the Gregarious Instinct and Individuals’ Behavior  
Patterns on Macro Migrations: Simulation Experiments . . . . . . . . . . .   83
 6.1    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   83
 6.2    Object- and Agent-Based Models  . . . . . . . . . . . . . . . . . . . . . . . . . .   84
 6.3    The Simulation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   85
 6.4    The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   86
 6.5    Simulations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   89
 6.6    Similarity to the Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   94
 6.7    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   95
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   96

Contents



xi

 7   Simulating Our Self-Destruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   97
 7.1    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   97
 7.2    The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   99
 7.3    Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
 7.4    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105

 8   Prey-Predator Models Revisited: Uncertainty, Herd Instinct, 
Fear, Limited Food, Epidemics, Evolution, and Competition . . . . . . . .  107
 8.1    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
 8.2    Continuous Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

 8.2.1    Simple Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
 8.2.2    Uncertainty and Differential Inclusions . . . . . . . . . . . . . . . .  110

 8.3    Agent-Based Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112
 8.3.1    General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112
 8.3.2    Simulation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
 8.3.3    The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

 8.4    Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115
 8.4.1    Entity Attributes, More Detail . . . . . . . . . . . . . . . . . . . . . . .  115
 8.4.2    Results: Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116
 8.4.3    Chase and Escape Direction Enabled  . . . . . . . . . . . . . . . . .  118
 8.4.4    Food, Chase/Escape Enabled . . . . . . . . . . . . . . . . . . . . . . . .  119
 8.4.5    Gregarious Instinct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
 8.4.6    Fear, Food, and Energy  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
 8.4.7    Epidemics, Disaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
 8.4.8    Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
 8.4.9    Variance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

 8.5    Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
 8.6    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

 9   Discrete Event Simulation vs Continuous System Dynamics . . . . . . . .  133
 9.1    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133
 9.2    The DESD Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135
 9.3    Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

 9.3.1    A Simple Birth-Death Process . . . . . . . . . . . . . . . . . . . . . . .  136
 9.3.2    Prey-Predator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138

 9.4    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

  References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

  Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   149

Contents



1© Springer Nature Singapore Pte Ltd. 2020 
S. Raczynski, Interacting Complexities of Herds and Social Organizations, 
Evolutionary Economics and Social Complexity Science 19, 
https://doi.org/10.1007/978-981-13-9337-2_1

Chapter 1
Agent-Based Models: Tools

1.1  General Remarks

The methodological focus of this book is the object- and agent-based simulation. 
No state equations or system dynamics schemes are used. Recall that in the discrete 
object-based modeling, we create objects that behave according to the user-defined 
rules and execute their events in discrete moments of the model time. The agent- 
based models manage objects called agents, which are equipped with certain “intel-
ligence.” They can take decisions, optimize their actions, and interact with each 
other and with the environment. Agent-based models (ABMs) are a type of 
microscale models that simulate the simultaneous operations and interactions of 
multiple agents in an attempt to recreate and predict the appearance of global com-
plex phenomena.

The individuals in ABM models may be of different types. Although the rules of 
behavior are the same for individuals of the same type, the behavior is not identical 
for all of them. This modeling method has many applications, mainly in ecology, 
biology, and social sciences. A key notion is that simple behavioral rules (micro 
model) generate complex (macro) behavior. An important central tenet is that the 
whole is greater than the sum of the parts. Individual agents are typically character-
ized as rational. They are presumed to be acting in what they perceive as their own 
interests, such as reproduction, economic benefit, or social status, using heuristics 
or simple decision-making rules (Railsback et al. 2006; Bandini et al. 2009). Note 
the main difference between object-oriented and simulation package. The latter, in 
addition to object creation, provides (or should provide) a “clock” mechanism that 
automatically manages the model time and event execution. The ABM modeling is 
supported by many programming and simulation tools. Let us list only some of 
the most popular tools: SWARM developed in 1994 by the Santa Fe Institute 
(Swarm Development Group, 2001), Ascape developed in 2001 (Parker 2001), 
Breve-2.7.2 (Klein 2002), Recursive Porous Agent Simulation Toolkit released in 
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2003 (Michael et al. 2006), Cormas developed in 2004 by VisualWorks (Bommel 
et  al. 2015), MASON (Luke et  al. 2005), MASS package (Tatai et  al. 2005), 
FLAME (Coakley et al. 2006; Holcombe et al. 2013), MATSim of EHT Zürich 
(Bazzan and Klugl 2009), and SOARS developed in 2010 (Tanuma et al. 2005, 
2006), among others.

ABMs are widely used in modeling of the organization dynamics. An example of 
an agent-oriented model, called the BC model, can be found in the article by Krause 
(2000). In that model, the agent’s attributes include “opinions,” and the interaction 
between agents depends on the distance between their opinions in a nonlinear way. 
These interactions can result in an action being taken by the agent. Other examples 
of models of social structures based on the concept of opinion interactions can be 
found in Latane and Nowak (1997) and Galam  and Wonczak (2000). A similar 
approach is presented by Chatterjee  and Seneta (1977) and Cohen et  al. (1986). 
These works refer to the dynamics of forming of social groups in accordance with 
the existing agents’ attributes (opinions). Some quite interesting results, more 
closely related to the terrorism problem, are described by Deffuant et al. (2002).

Some more general concepts of “computational sociology” and agent-based 
modeling (ABM) can be found in the article of Macy and Willer (2002). Other gen-
eral recommended readings in the field are Bak (1997), Cioffi-Revilla (1998), Gotts 
et al. (2003), Axelrod (1997), Epstein and Axtell (1996), and Holland (1998). An 
interesting contribution to a model of the structure of the Osama bin Laden organi-
zation is included in a Vitech Corporation page (link: see Long 2002). Other (ABM)-
oriented approach can be found in Crowder et al. (2012) and Hughes et al. (2012). 
In these publications we can find discussions about the potential advantages of the 
ABM approach through a range of examples and through the identification of 
opportunities in the field of organizational psychology.

Another approach is used by Lustick (2000), where the agents interact on a land-
scape. It is shown that macro-patterns emerge from micro-interactions between 
agents. An important conclusion is that such effects are more likely when a small 
number of exclusivist individuals are present in the population. The simulations of 
other mechanisms of clustering in agent-oriented models are described by Younger 
(2003), who deals with the creation of social structures in the process of food and 
material storage.

1.2  Discrete Event Simulation

Recall that by the model time, we understand the time variable that is controlled by 
the simulation program during the simulation run. The real time represents the time 
of our (or computer) physical clock. For example, simulating the movement of a 
galaxy, we can simulate several millions of model time years. On a fast computer, 
his simulation may take several minutes in the real time.

1 Agent-Based Models: Tools
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There are many real systems, where we can define the processes named events 
that consist in changing the state of the system. For example, the events may describe 
the start or the end of a service process and a birth or death of a model entity or 
 taking place in a waiting line. In many situations such events can be considered to 
be executed in a very small interval of time, compared to the total length of model 
simulation time. The discrete event simulation means that we suppose that the 
model events are discrete, i.e., they are accomplished within model time interval of 
length zero. This model simplification makes the simulations very fast.

The Discrete Event Specification (DEVS) formalism is used to describe models 
in discrete event simulation. In the DEVS formalism, an “atomic” model M is 
defined as follows:

 

M X S Y

S S Q S S Q Y

=
® ´ ® ®
, , , , , ,

,
int ext

int ext

s s l t
s s l: , : , :  

(1.1)

where X is the input space, S is the system state space, Y is the output space, σint is 
the internal state transition function, σext is the external transition function, and Q is 
the “total state.”

Atomic models can be coupled to form a coupled model. The coupled models 
can also be coupled in hierarchical way to form more complex models. The coupled 
DEVS model is as follows:

 
coupledDEVS X Y D M I Z j selectself self i i iº , , , , , , ,{ } { } { }

 

The subindex self-denotes the coupled model itself. D is a set of unique compo-
nent references. The set of components is:

 
M i Di Î{ }

 

The select component defines the order of execution for simultaneous events that 
may occur in the coupled model. This component must be added to the model to 
avoid ambiguities in the simulation algorithm and to make the model implementation- 
independent. There is a huge research done on the select algorithms because the 
treating of the simultaneous events is rather difficult task.

To treat complex models with variable structure, the Dynamic Structure Discrete 
Event System Specification (DSDEVS) is used. We will not discuss the DSDEVS 
formalism here. The use of the DEVS formalism is relevant in big models, where 
the time of execution, hierarchical model building, and portability are important 
factors.

By time and event management (TEM), we understand the time clock and event 
queue management (inside the “simulation engine”), including the basic queuing 
model operations provided by the simulation package. The object behavior model-
ing (OBM) is a set of additional items like user-defined distributions and logical 
functions, nontypical operations, object attributes, and the general object behavior.

1.2 Discrete Event Simulation
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Let us start with GPSS (General Purpose Simulation System), omitting earlier 
tools like the forgotten but very nice language of the 1950s CLS (control and simu-
lation language).

1.2.1  GPSS

This language, developed primarily by Geoffrey Gordon at IBM around 1960 
(Gordon 1975), has contributed important concepts to every discrete event simula-
tion language developed ever since. This is an old tool, but it is still used and works 
perfectly. In fact, GPSS is an object-oriented tool, although it does not fit into the 
modern object-oriented paradigms. The objects in GPSS are called transactions. 
These are moving items that appear, go through the fixed model facilities, and dis-
appear. GPSS World has been extended by PLUS, the Programming Language 
Under Simulation. The TEM level instruction set of GPSS is simple and easy to use. 
It can be dominated by anyone in few hours of learning and running example queu-
ing models. The OBM level mechanisms are not so easy. Recall that the new ver-
sions of GPSS have an embedded language PLUS. If the user wants to equip objects 
(transactions) with any additional properties and individual, nonstandard behavior, 
he must learn PLUS and dominate the information about the SNAs (standard 
numeric attributes). The PLUS manual is a whole chapter of the GPSS manual or a 
separate document of about 60 pages. The SNA documentation occupies also sev-
eral dozen pages, including great number of attributes and additional items. Using 
all this stuff, the user can simulate more advanced models, but the created objects 
can hardly be considered as “intelligent.”

1.2.2  Arena

Arena modeling system from Systems Modeling Corporation is a nice and widely 
used simulation tool. It is equipped with a graphical user interface (GUI) and ani-
mation mechanisms (see Kelton et al., 2004). The TEM level of Arena permits to 
quickly create a queuing or manufacturing discrete event models, needs no coding, 
and results in clear flowcharts of the model. The OBM level is somewhat more 
complicated. Arena is built on the SIMAN (Pedgen et  al. 1995) simulation lan-
guage. So, first of all, the user must learn SIMAN to be able to manage user-defined 
logics, statistics, and/or a nonstandard object behavior. The Arena entities (moving 
objects) can be equipped with time attributes, cost attributes, entity-type variable, 
group member variables, and other. The specification of the attributes and other 
Arena pre-defined variables takes about 30 pages in the Arena documentation. 
Again, if the user wants to create and manage a little bit more complicated object 
behavior, he/she must learn SIMAN and dominate dozens of pages of the Arena 
manual.

1 Agent-Based Models: Tools
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1.2.3  SIMIO

This is a multi-paradigm software delivered by SIMIO LLC. SIMIO® is created by 
a team of simulation software developers led by Dennis Pedgen and Sturrok (2010).

Compared to Arena, SIMIO is a step forward in creating models with intelligent 
objects. The object definition in SIMIO is more general. Objects may be fixed facili-
ties or moving dynamic objects named entities. The user can define his/her own 
objects, store and reuse them, or use the objects from the standard library. These 
may be fixed (server, machine), link (a pathway for entities), node (link intersec-
tions), entity (dynamic object, like client in a shop), or transporter (it can pick up 
and drop entities at nodes).

The user defines the object properties. They may be of different types such as 
strings, numbers, selections from a list, and expressions. The properties are edited 
in multiple edition windows. There are many ways to define a SIMIO model. A 
programmer familiar with an object-oriented language like C++ or Delphi can 
understand and dominate the SIMIO modeling in reasonable time and effort. SIMIO 
creators claim that the process-based objects in SIMIO are both simpler and more 
powerful than the code-based objects in other modeling tools. SIMIO offers both 
TEM and OBM facilities, although they are not clearly separated from each other.

1.2.4  Simula

We must mention here Simula, its mostly known version 67 (Dahl and Nygaard 
1967). Although it is a tool developed more than 50 years ago, it is still perhaps one 
of the most advanced and elegant object-oriented languages. In fact, Simula itself is 
just object-oriented and not a simulation language. The modeling facilities have 
been added to the language as a part of its standard class library and are encapsu-
lated in the Process class. Any object that inherits the Process class properties can 
use the clock mechanism and event scheduling. The object behavior management is 
coded directly in the language. As for an old software, it originally had no GUI and 
other graphical facilities. The language is rather difficult to learn and needs previous 
training in Algol.

If we define the “intelligence” as the ability to make decisions due to a more 
sophisticated algorithms or equip the objects with some kind of artificial intelli-
gence, only an advanced object-oriented algorithmic languages provide such fea-
tures. Simula has this capacity. Perhaps this is the reason why Simula is still quite 
popular among the computer science researchers.

Anyway, if someone wants to create an object-oriented simulation package with 
intelligent objects, he/she finally must create a new high-level object-oriented algo-
rithmic language. The question is: Isn’t it better to take a known, complete, widely 
known, used, and advanced language and add to it the time and queuing manage-
ment layer (TEM)?

1.2 Discrete Event Simulation


