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PREFACE

The Janos Bolyai Mathematical Society and the Alfréd Rényi Institute of
Mathematics organized the conference Horizons of Combinatorics during
the period July 17-21, 2006 at Balatonalmadi (Lake Balaton, Hungary).
The Hungarian conferences in combinatorics have the “tradition” not to
be organized with regular frequency, and having all different names. Yet,
this conference was, in a certain sense, a continuation of the conferences
organized in January, 1996, and January, 2001.

The present volume is strongly related to this conference. We have
asked our main speakers to summarize their recent works in survey papers.
Since many of them reacted positively, we are able to present the reader
with this collection of papers written by excellent authors. Unlike many of
our previous volumes that needed several years of preparation the current
volume appears 18 months after the conference.

Let us briefly introduce the content.

The paper of Addario-Berry and Reed draws a nice picture from an ob-
servation of Bertrand (which is called the First Ballot Theorem) to recently
obtained results on sums of identically distributed random variables and to
analyzing random permutations of sets of real numbers.

V. Csiszar, Rejt6 and Tusnddy study some aspects of stochastic methods
in modern combinatorics, from a rather new perspective.

The survey of Egawa illustrates three different types of proofs for theo-
rems establishing the existence of a 2-factor.

The paper of Fox and Pach deals with special classes of graphs defined by
geometric methods. For these classes, the authors answer in the affirmative
the following question of Erdés and Hajnal: “Is it true that for every graph
G there exists a constant ¢ = ¢(G) such that if a graph H on n vertices does
not contain an isomorphic copy of G (as an induced subgraph) then H has
a complete or empty subgraph of size n¢?”

Ron Graham, the leading expert in Ramsey theory has collected a variety
of problems and recently obtained related results in the theory which make
progress on some of the presented problems.
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Katona surveys (mostly quite recent) results in Sperner theory. The
maximum number of subsets is searched under conditions excluding con-
figurations which can be expressed by merely inclusions. A new method,
which is actually an extension of Lubell’s chain method, is illustrated in
detail.

Miklés discusses the results and relations between the (maximum) num-
ber of subsums of a finite sum with some additional properties assumed and
extremal sets of vertices of the hypercube in the sense that their span (either
over GF'(2) or over R) does not contain certain (forbidden) configurations
from the hypercube.

Recski’s paper surveys some, partly new, combinatorial results concern-
ing the rigidity of tensegrity frameworks. Issues related to computational
complexity are also emphasized.

Seress presents several constructions of polygonal and near-polygonal
graphs. Possible classifications of these graphs are also discussed.

The paper of Soukup presents generalizations of several well known
theorems in the theory of finite graphs, finite partially ordered sets, etc.
to graphs with infinitely many vertices, partially ordered sets with infinitely
many elements, and so on. The paper accurately illustrates, that such
generalizations are sometimes straightforward, sometimes hard to obtain,
sometimes true in “small” infinite sets but fail in the higher infinity, or
sometimes simply not true.

Tokushige surveys Frankl’s random walk method in the theory of inter-
secting families and explains its usage with many examples.

Vu's survey discusses some basic problems concerning random matrices
with discrete distributions. Several new results, tools and conjectures have
been presented.

December, 2007 The editors
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BALLOT THEOREMS, OLD AND NEW

L. ADDARIO-BERRY and B. A. REED

“There is a big difference between a fair game and a game it’s wise to play.”

- [7l.

1. A BRrIEF HISTORY OF BALLOT THEOREMS

1.1. Discrete time ballot theorems

We begin by sketching the development of the classical ballot theorem as
it first appeared in the Comptes Rendus de I’Academie des Sciences. The
statement that is fairly called the first Ballot Theorem was due to Bertrand:

Theorem 1 ([8]). We suppose that two candidates have been submitted
to a vote in which the number of voters is u. Candidate A obtains n votes
and is elected; candidate B obtains m = p — n votes. We ask for the
probability that during the counting of the votes, the number of votes for
A is at all times greater than the number of votes for B. This probability

Is (2n — p)/p = (n—m)/(n+m).

Bertrand’s “proof” of this theorem consists only of the observation that
if P, m counts the number of “favourable” voting records in which A obtains
n votes, B obtains m votes and A always leads during counting of the votes,
then

Pn+1,m+1 = Pn+1,m + Pn,m+1,

the two terms on the right-hand side corresponding to whether the last vote
counted is for candidate B or candidate A, respectively. This “proof” can
be easily formalized as follows. We first note that the binomial coefficient
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Bpm = (n+m)!/nlm! counts the total number of possible voting records in
which A receives n votes and B receives m, Thus, the theorem equivalently
states that for any n > m, By m — Pnm, which we denote by A, ,n, equals
2mBy, ;m/(n+m). This certainly holds in the case m = 0 as Bpo = 1 = Py,
and in the case m = n, as P, , = 0. The binomial coefficients also satisfy
the recurrence Bpy1m+1 = Bnyim + Bnm+1, thus so does the difference
Ay m. By induction,

Aan-l,m-H = An+1,m + An,m+1

2m 2(m+1)

= — 1,m+1
n+4+m4 g nrbmil

as is easily checked; it is likely that this is the proof Bertrand had in mind.

After Bertrand announced his result, there was a brief flurry of research
into ballot theorems and coin-tossing games by the probabilists at the
Academie des Sciences. The first formal proof of Bertrand’s Ballot Theorem
was due to André and appeared only weeks later [3]. André exhibited a
bijection between unfavourable voting records starting with a vote for A
and unfavourable voting records starting with a vote for B. As the latter
number is clearly By ;,—1, this immediately establishes that By m — Pam =
2By m-1 = 2mBp m/(n +m).

A little later, [5] asserted but did not prove the following generalization
of the classical Ballot Theorem: if n > km for some integer k, then the
probability candidate A always has more than k-times as many votes as
B is precisely (n — km)/(n + m). In response to the work of André and
Barbier, Bertrand had this to say:

“Though 1 proposed this curious question as an exercise in
reason and calculation, in fact it is of great importance. It is
linked to the important question of duration of games, previously
considered by Huygens, [de] Moivre, Laplace, Lagrange, and
Ampere. The problem is this: a gambler plays a game of chance
in which in each round he wagers %’th of his initial fortune.
What is the probability he is eventually ruined and that he
spends his last coin in the (n + 2u)’th round?” [6]

He notes that by considering the rounds in reverse order and applying
Theorem 1 it is clear that the probability that ruin occurs in the (n 4 2u)’th
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round is nothing but % ("22“)2"(2“+"). By informal but basic computa-
tions, he then derives that the probability ruin occurs before the (n+2u)’th

round is approximately 1 — Y= i 50 for this probability to be large, 1 must

be large compared to n? (Bertrand might have added Pascal, Fermat, and
the Bernoullis [16, pp. 226 228] to his list of notable mathematicians who
had considered the game of ruin; [4, pp. 98-114] gives an overview of prior
work on ruin with an eye to its connections to the ballot theorem.)

Later in the same year, he proved that in a fair game (a game in which, at
each step, the average change in fortunes is nil) where at each step, one coin
changes hands, the expected number of rounds before ruin is infinite. He did
so using the fact that by the above formula, the probability of ruin in the £’th
round (for ¢ large) is of the order 1/t3/2, so the expected time to ruin behaves
as the sum of 1/t/2, which is divergent. He also stated that in a fair game
in which player A starts with a dollars and player B starts with b dollars,
the expected time until the game ends (until one is ruined) is precisely ab
[7). This fact is easily proved by letting e, , denote the expected time until
the game ends and using the recurrence e, p = 1+ (€414 + €4,p~1)/2 (with
boundary conditions e;1p0 = €pq+s = 0). Expanding on Bertrand’s work,
Rouché provided an alternate proof of the above formula for the probability
of ruin [24]. He also provided an exact formula for the expected number of
rounds in a biased game in which player A has a dollars and bets ag dollars
each round, player B has b dollars and bets by dollars each round, and in
each round player A wins with probability p satisfying app > bo(1 — p) [25].

All the above questions and results can be restated in terms of a random
walk on the set of integers Z. For example, let Sy = 0 and, for ¢ > 0,
Si+1 = Si £ 1, each with probability 1/2 and independently of the other
steps — this is called a symmetric simple random walk. (For the remainder of
this section, we will phrase our discussion in terms of random walks instead
of votes, with X;11 = S;+1 — S; constituting a step of the random walk.)
Then Theorem 1 simply states that given that S; = h > 0, the probability
that §; > 0 for all 2 = 1,2,...,¢t (i.e. the random walk is favourable for A)
is precisely h/t. Furthermore, the time to ruin when player A has a dollars
and player B has b dollars is the exit time of the random walk S from the
interval [a, —b]. The research sketched above constitutes the first detailed
examination of the properties of a random walk Sy, S1, ..., S, conditioned
on the value S,, and the use of such information to study the asymptotic
properties of such a walk.
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In 1923, Aeppli proved Barbier’s generalized ballot theorem by an argu-
ment similar to that used by André’s. This proof is presented in [4, pp. 101-
102], where it is also observed that Barbier’s theorem can be proved using
Bertrand’s original recurrence in the same fashion as above. A simple and
elegant technique was used in [9] to prove Barbier’s theorem; we use it to
prove Bertrand’s theorem as an example of its application, as it highlights
an interesting perspective on ballot-style results.

We think of X = (Xi,...,Xn4m,X1) as being arranged clockwise
around a cycle (so that X, ym+1 = X1). There are precisely n + m walks
corresponding to this set, obtained by choosing a first step X;, so to es-
tablish Bertrand’s theorem it suffices to show that however Xi,..., X, 1m
are chosen such that S, = n — m > 0, precisely n — m of the walks
Xit1,.- -, Xn4m, X1,..., X; are favourable for A. Let Sj; = Xj11 4+ + X
(this sum includes Xn4m if ¢ < j). We say that Xj,..., X; is a bad run if
Sij = 0 and Sy; <0 forall / € {i+1,...,5} (this set includes n + m if
i > j). In words, this condition states that i is the first index for which the
reversed walk starting with X; and ending with X, is nonnegative. It is
immediate that if two bad runs intersect then one is contained in the other,
so the maximal bad runs are pairwise disjoint. (An example of a random
walk and its bad runs is shown in Figure 1).

[ * [

[~
[~

Fig. 1. On the left appears the random walk corresponding to the voting sequence
(1,-1,-1,1,1,-1,-1,1,1, 1), doubled to indicate the cyclic nature of the argument.
On the right is the reversal of the random walk; the maximal bad runs are shaded grey

If X; =1 and S;; = 0 for some j then X; begins a bad run, and since
Sp =311 Xi > 0,if X; = —1 then X; ends a bad run. As S;; =0 for a
maximal bad run and X; = 1 for every X; not in a bad run, there must be
precisely n — m values of ¢ for which X; is not in a bad run. If the walk
starting with X; is favourable for A then for all i # j, Sj; is positive, so X;
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is not in a bad run. Conversely, if X; is not in a bad run then X; =1 and
for all j # 7, S3; > 0, so the walk starting with X is favourable for A. Thus
there are precisely (n — m) favourable walks corresponding to &', which is
what we set out to prove.

With this technique, the proof of Barbier’s theorem requires nothing
more than letting the positive steps have value 1/k instead of 1. This proof
is notable as it is the first time the idea of cyclic permutations was applied
to prove a ballot-style result. This “rotation principle” is closely related
to the strong Markov property of the random walk: for any integer ¢ > 0,
the random walk S; — Sy, Sp1 — S, St42 — S, ... has identical behavior to
the walk Sp, 51,52 and is independent of Sp, S1,...,S;. (Informally, if we
have examined the behavior of the walk up to time S, we may think of
restarting the random walk at time ¢, starting from a height of S;; this will
be important in the generalized ballot theorems to be presented later in the
paper.) This proof can be rewritten in terms of lattice paths by letting votes
for A be unit steps in the positive z-direction and votes for B be unit steps
in the positive y-direction. When conceived of in this manner, this proof
immediately yields several natural generalizations {9, 15, 23].

Starting in 1962, Lajos Takécs proved a sequence of increasingly general
ballot-style results and statements about the distribution of the maxima
when the ballot is viewed as a random walk (28, 29, 30, 31, 32, 33, 36].
We highlight two of these theorems below; we have not chosen the most
general statements possible, but rather theorems which we believe capture
key properties of ballot-style results.

A family of random variables X;,..., X, is interchangeable if for all
(ri,...,7n) € R™ and all permutations o of {1,...,n}, P{X; < nVl <
i < n} = P{Xi 1oVl €4 < n}. We say Xi,...,Xn is cyclically
interchangeable if this equality holds for all cyclic permutations o. A family
of interchangeable random variables is cyclically interchangeable, but the
converse is not always true. The first theorem states:

Theorem 2. Suppose that X1,..., X, are integer-valued, cyclically inter-
changeable random variables with maximum value 1, and for 1 < i < n, let
S; = X1+ -+ X;. Then for any integer 0 < k < n,

P{Si>0V1§i_<_n|Sn=k}=§.

This theorem was proved independently in [10] and [39] - we note
that it can also be proved by Dvoretzky and Motzkin's approach. (As
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a point of historical curiosity, Takécs’ proof of this result in the special
case of interchangeable random variables, and Dwass’ proof of the more
general result above, appeared in the same issue of Annals of Mathematical
Statistics.) Theorem 2 and the “bad run” proof of Barbier’s ballot theorem
both suggest that the notion of cyclic interchangeability or something similar
may lie at the heart of all ballot-style results.

Theorem 3 ([36], p. 12). Let X1, Xs,... be an infinite sequence of iid
integer random variables with mean u and maximum value 1 and for any
t21,let S;=X1+---+ X;. Then

g if u>0,

P{Sn>0forn=1,2,...} = {
0 if u<0.

The proof of Theorem 3 proceeds by applying Theorem 2 to finite subse-
quences Xi, Xo,..., Xy, s0 this theorem also seems to be based on cyclic in-
terchangeability. Takécs has generalized these theorems even further, prov-
ing similar statements for step functions with countably many discontinu-
ities and in many cases finding the exact distribution of max?_,(S; — 1).

(Takdcs originally stated his results in terms of non-negative integer ran-
dom variables — his original formulation results if we consider the variables
(1 - X1),(1 = X3),... and the corresponding random walk.) Theorem 3
implies the following classical result about the probability of ever returning
to zero in a biased simple random walk:

Theorem 4 ([11], p. 274). In a biased simple random walk 0 = Ry, Ry, . ..
in which P{Ri+1 - R, = 1} =p> 1/2, P{Ri+1 - R, = —1} =1 —p, the
probability that there is no n > 1 for which R, = 0 is 2p — 1.

Proof. Observe that the expected value of R; — R;_; is 2p — 1 > 0, so if
Ry = —1 then with probability 1, R; = 0 for some i > 2. Thus,

P{R, #0foralln>1} =P{R, > 0 for all n > 1}.

The latter probability is equal to 2p — 1 by Theorem 3. =

We close this section by presenting the beautiful “reflection principle”
proof of Bertrand’s theorem. We think of representing the symmetric simple
random walk as a sequence of points (0, So), (1,51), ..., (n, S,) and connect-
ing neighbouring points. If §; = 1 and the walk is unfavourable, then letting
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k be the smallest value for which Sy = 0 and “reflecting” the random walk
S0, ..., Sk in the z-axis yields a walk from (0,0) to (n,t) whose first step is
negative — this is shown in Figure 2. This yields a bijection between walks
that are unfavourable for A and start with a positive step, and walks that
are unfavourable for A and start with a negative step. As all walks starting
with a negative step are unfavourable for A, all that remains is rote calcu-
lation. This proof is often incorrectly attributed to [3], which established
the same bijection in a different way — its true origins remain unknown.

-

f/ ON

Fig. 2. The dashed line is the reflection of the random walk from (0,0) to the first visit
of the z-axis

1.2. Continuous time ballot theorems

The theorems which follow are natural given the results presented in Sec-
tion 1.1; however, their statements require slightly more preliminaries.
A stochastic process is simply a nonempty set of real numbers T and a
collection of random variables {X;, t € T} defined on some probability
space. The collection of random variables {X},...,X,} seen in Section 1.1
is an example of a stochastic process for which T = {1,2,...,n}. In this
section we are concerned with stochastic processes for which T' = [0,r] for
some 0 < r < oo or else T = {0, ).

A stochastic process {X;, 0 < t < r} has (cyclically) interchangeable
increments if for all n = 2,3,..., the finite collection of random variables
{X,t/n—X,(t_l) /it =1,2,... ,n} is (cyclically) intechangeable. A process
{Xi, t > 0} has interchangeable increments if for all r > 0 and n > 0,
{X,.t/n - Xpt-1)/ms t = 1,2,. ..,n} is interchangeable, and is stationary
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if this latter collection is composed of independent identically distributed
random variables. As in the discrete case, these are natural sorts of prereq-
uisites for a ballot-style theorem to apply.

There is an unfortunate technical restriction which applies to all the
ballot-style results we will see in this section. The stochastic process
{X:, t € T} is said to be separable if there are almost-everywhere-unique
measurable functions X+, X_ such that almost surely X_ < X; < X for
all t € T, and there are countable subsets S_, ST of T such that almost
surely Xt = sup,cg+ Xt and X_ = inf;eg X;. The results of this section
only hold for separable stochastic processes. In defense of the results, we
note that there are nonseparable stochastic processes {X;, 0 <t < r} for
which sup{X; —t, 0 £t < r} is non-measurable. As the distribution of this
random variable is one of the key issues with which we are concerned, the
assumption ‘of separability is natural and in some sense necessary in order
for the results to be meaningful. Moreover, in very general settings it is
possible to construct a separable stochastic process {Y; | t € T'} such that
for all t € T, Y; and X, are almost surely equal (see, e.g., [12, Sec. IV.2]); in
this case it can be fairly said that the assumption of separability is no loss.

The following theorem is the first example of a continuous-time ballot
theorem. A sample function of a stochastic process is a function z, : T — R
given by fixing some w € Q and letting z,(t) = X (w).

Theorem 5 ([34]). If {X:, 0 <t < r} is a separable stochastic process with
cyclically interchangeable increments whose sample functions are almost
surely nondecreasing step functions, then

t—s

if 0<s<t,
P{X;—Xo<tfor0<t<r|X,—-Xo=s}=
0 otherwise.

This theorem is a natural continuous equivalent of Theorem 2 of Section
1.1; it can be used to prove a theorem in the vein of Theorem 3 which applies
to stochastic processes {X;, t > 0}. Takdcs’ other ballot-style results for
continuous stochastic processes are also essentially step-by-step extensions
of his results from the discrete setting; see [34, 35, 36, 38].

In 1957, Baxter and Donsker derived a double integral representation for
sup{X;—t, t > 0} when this process has stationary independent increments.
Their proof proceeds by analyzing the zeros of a complex-valued function
associated to the process. They are able to use their representation to
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explicitly derive its distribution when the process is a Gaussian process,
a coin-tossing process, or a Poisson process. This result was rediscovered
by Takdcs, who also derived the joint distribution of X, and sup{X; — ¢,
0 <t < r} for r finite, using a generating function approach [37]. Though
these results are clearly related to the continuous ballot theorems, they
are not as elegant, and neither their statements nor their proofs bring to
mind the ballot theorem. It seems that considering separable stationary
processes in their full generality does not impose enough structure for it to
be possible to prove these results via straightforward generalization of the
discrete equivalents.

A beautiful perspective on the ballot theorem appears by considering
random measures instead of stochastic processes. Given an almost surely
nondecreasing separable stochastic process {X;, 0 < ¢t < r}, fixing any
element w of the underlying probability space 2 yields a sample function z,.
By our assumptions on the stochastic process, almost every sample function
z,, yields a measure p,, on [0, 7], where p,[0,b] = z,(b) — z,(a). This allows
us to define a “random” measure p on [0,7]; p is a function with domain
Q, p(w) = py, and for almost all w € Q, p(w) is a measure on [0,r]. If
I, is a nondecreasing step function, then u, has countable support, so is
singular with respect to the Lebesgue measure (i.e. the set of points which
have positive u,-measure has Lebesgue measure 0); if this holds for almost
all w then y is an “almost surely singular” random measure.

We have just seen an example of a random measure; we now turn to a
more precise definition. Given a probability space S = ({2, ¥, P), a random
measure on a possibly infinite interval 77 C R is a function p with domain
Q x T satisfying that for all € T, u(-,7) is a random variable in &, and
for almost all w € Q, p{w,-) is a measure on T. A random measure y
is almost surely singular if for almost all w € Q, p(w,-) is a measure on
T singular with respect to the Lebesgue measure. (This definition hides
some technicality; in particular, for the definition to be useful it is key that
the set of w for which p is singular is itself a measurable set! See [18] for
details.) A random measure u on R*, say, is stationary if for all ¢, letting
Xii = pl-, (44 1)/t) — p(-,i/t), the family {X;; | : € N} is composed of
independent identically distributed random variables; stationarity for finite
intervals is defined similarly.

This perspective can be used to generalize Theorem 5. Konstantopoulos
has done so, as well as providing a beautiful proof using a continuous analog
of the reflection principle [22]. The most powerful theorem along these lines
to date is due to Kallenberg. To a given stationary random measure p
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defined on T' C R* we associate a random variable I called the sample
intensity of p. (Intuitively, I is the random average number of points in an
arbitrary measurable set B C T of positive finite measure, normalized by
the measure of B. For a formal definition, see [17, Chapter 11].)

Theorem 6 ([18]). Let u be an almost surely singular, stationary random
measure on T = RY or T = (0, 1] with sample intensity I and let X; =
p(-,t) — p(-,0) for t € T. Then there exists a uniform [0, 1] random variable
U independent from I such that

Xy

I
sup — = —  almost surely.
ter t U

It turns out that if T = (0, 1] then conditional upon the event that
X1 = m, I = m almost surely. It follows that in this case P{ Supser 2% <
1] Xl} = max{l — X1,0}. Similarly, if 7 = R* and % — m almost
surely as t — oo, then I = m almost surely, so in this case P{ SUp;er ita <
1} = max{1 — m,0}. This theorem can thus be seen to include continuous
generalizations of both Theorem 2 and Theorem 3.

Kallenberg has also proved the following as a corollary of Theorem 6

(this is a slight reformulation of his original statement, which applied to
infinite sequences):

Theorem 7. If X is a real random variable with maximum value 1 and
{X1,Xa,...,X,} are iid copies of X with corresponding partial sums {0 =
SQ, Sl, ey Sn}; then

. S,
P{S;>0vV1<i<n]|S,}>—.
n
It is worth comparing this theorem with Theorem 2; the theorems are
almost identical, but Theorem 7 relaxes the integrality restriction at the
cost of replacing the equality of Theorem 2 with an inequality.

1.3. Outline

To date, Theorem 7 is the only ballot-style result which has been proved for
random walks that may take non-integer values. Paraphrasing Harry Kesten
[20], the goal of our research is to move towards making ballot theorems part
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of “the general theory of random walks” — part of the body of results that
hold for all random walks (with independent identically distributed steps),
regardless of the precise distribution of their steps. We succeed in proving
ballot-style theorems that hold for a broad class of random walks, including
all random walks that can be renormalized to converge in distribution to a
normal random variable. A truly general ballot theorem, however, remains
beyond our grasp.

In Section 2 we discuss in what sense existing ballot theorems such as
those presented in Section 1 are optimal, and what sorts of “general ballot
theorems” it makes sense to search for in light of this optimality. In Section 3
we demonstrate our approach in a restricted setting and prove a weakening
of our main result. This allows us to highlight the key ideas behind our
general ballot theorems without too much notational and technical burden.
In Section 4, we sketch the main ideas required to strengthen the presented
result. Finally, in Section 5 we address the limits of our approach and
suggest some avenues for future research.

2. GENERAL BALLOT THEOREMS

The aim of our research is to prove analogs of the discrete-time ballot the-
orems of Section 1 for more general random variables. The Theorems of
Section 1.1 all have two restrictions: (1) they apply only to integer-valued
random variables, and (2) they apply only to random variables that are
bounded from one or both sides. (In the continuous-time setting, the re-
striction that the stochastic processes are almost surely integer-valued, in-
creasing step functions is of the same flavour.) In this section we investi-
gate what ballot-style theorems can be proved when such restrictions are
removed.

The restrictions (1) and (2) are necessary for the results of Section 1.1
to hold. Suppose, for example, that we relax the condition of Theorem 2
requiring that the variables are bounded from above by +1. If X takes every
value in N with positive probability, then P{S; > 0V1<i<n| S, =n} <
1, so the conclusion of the theorem fails to hold. For a more explicit
example, let X be any random variable taking values £1, 44 and define the
corresponding cyclically interchangeable sequence and random walk. For
S3 = 2 to occur, we must have { X1, X9, X3} = {4, ~1, —1}. In this case, for
S; > 0,1=1,2,3 to occur, X; must equal 4. By cyclic interchangeability,
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this occurs with probability 1/3, and not 2/3, as Theorem 2 would suggest.
This shows that the boundedness condition (2) is required. If we relax
the integrality condition (1), we can construct a similar example where the
conclusions of Theorem 2 do not hold.

Since the results of Section 1.1 can not be directly generalized to a
broader class of random variables, we seek conditions on the distribution of
X so that the bounds of that section have the correct order, i.e., so that
P{Si>0V1<i<n|S, =k} =06(k/n). (When we consider random
variables that are not necessarily integer-valued, the right conditioning will
in fact be on an event such as {k < S,, < k+ 1} or something similar.) How
close we can come to this conclusion will depend on what restrictions on X
we are willing to accept. It turns out that a statement of this flavour holds
for the mean zero random walk SO = S,—-nEX as long as there is a sequence
{an},>q for which (S, — nEX)/a, converges to a non-degenerate normal
distribution (in this case, we say that X is in the range of attraction of
the normal distribution and write X € D; for example, the classical central
limit theorem states that if E{X?} < oo then we may take a, = y/n for
all n.) For the purposes of this expository article, however, we shall impose
a slightly stronger condition than that stated above.

From this point on, we restrict our attention to sums of mean zero
random variables. We note this condition is in some sense necessary in
order for the results we are hoping for to hold. If EX # 0 - say EX >0 ~
then it is possible that X is non-negative, so the only way for S, = 0 to occur
isthat X; = =X, =0,andso P{S; >0V1<i<n|S,=0}=0,and
not ©(1/n) as we would hope from the results of Section 1.

3. BALLOT THEOREMS FOR CLOSELY FOUGHT ELECTIONS

One of the most basic questions a ballot theorem can be said to answer is:
given that an election resulted in a tie, what is the probability that one of
the candidates had the lead at every point aside from the very beginning
and the very end. In the language of random walks, the question is: given
that S, = 0, what is the probability that S does not return to 0 or change
sign between time 0 and time n? Erik Sparre Andersen has studied the
conditional behavior of random walks given that S, = 0 in great detail, in
particular deriving beautiful results on the distribution of the maximum, the
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minimum, and the amount of time spent above zero. Much of the next five
paragraphs can be found in [1], for example, in slightly altered terminology.

We call the event that S, does not return to zero or change sign before
time n, Lead,,. We can easily bound P{Lead, | S, = 0} using the fact that
Xi,..., X, are interchangeable. If we condition on the multiset of outcomes
{X1,..., Xn} = {xo(l),...,ma(n)}, and then choose a uniformly random
cyclic permutation o and a uniform element ¢ of {1,...,n}, then the inter-
changeability of X1,..., X, implies that (.’IZU(,'), o Ta(n)r Ta(1)y - - - ,xo(i_l))
has the same distribution as if we had sampled directly from (X1,..., X,).

Letting s; = Zi—:i Ty(k), in order for Lead, to occur given that S, =0,
it must be the case that s; is either the unique maximum or the unique
minimum among {si,...,Sn}. The probability that this occurs is at most
2/n as it is exactly 2/n if there are unique maxima and minima, and less if
either the maximum or minimum is not unique. Therefore,

| no

(1) P{Lead, | S, =0} < —.

)

3

On the other hand, the sequence certainly has some maximum (resp. mini-
mum) s;, and if X1 = x; then S; is always non-positive (resp. non-negative).
Denoting this event by Nonpos,, (resp. Nonneg,), we therefore have

1
and P{Nonneg, | S, =0} > =

3|

(2) P{Nonpos,, | S, =0} >

If S, = 0 then the (n — 1) renormalized random variables given by X =
Xir1+X1/(n—1) satisfy (n—1)S,_; = (n—1) L5 X{ = (n-1) T, Xi =
0. If X; > 0 and none of the renormalized partial sums are negative, then
Lead,, occurs. The renormalized random variables are still interchangeable
(see {1, Lemma 2] for a proof of this easy fact), so we may apply the second
bound of (2) to obtain

1

An identical argument yields the same bound for P{Lead, | S, = 0,
X, < 0}, and combining these bounds yields

P{Leadn | Sp = 0} > P{Leady | Sn = 0, X # 0}P{X1 #0| S, = 0}
N 1-P{X,=0]S, =0}

n—1
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As long as P{X, = 0| S, = 0} < 1, this yields that P{Lead, | S, =
0} > a/n for some o > 0. By interchangeability, it is easy to see that
P{X; =0/ S, = 0} is bounded uniformly away from 1 for large n, as long
as Sp = 0 does not imply that X; = --- = X, = 0 almost surely. (Note,
however, that there are cases where P{X; = 0| S, = 0} = 1, for example
if the X; only take values in the non-negative integers and in the negative
multiples of v/2.)

Sparre Andersen’s approach gives a necessary and sufficient, though
not terribly explicit, condition for P{Lead,, | S, = 0} = ©(1/n) to hold.
Philosophically, in order to make ballot theorems part of the “general theory
of random walks”, we would like necessary and sufficient conditions on the
distribution of X; for P{Lead, | S, = k} = ©(k/n) for all k = O(n).
Even more generally, we may ask: what are sufficient conditions on the
structure of a multiset S of n numbers to ensure that if the elements of the
multiset sum to k, then in a uniformly random permutation of the set, all
partial sums are positive with probability of order k/n? In the remainder
of the section, we focus our attention on sets S whose elements are sampled
independently from a mean-zero probability distribution, i.e., they are the
steps of a mean-zero random walk. (We remark that it is possible to apply
parts of our analysis to sets S that do not obey this restriction, but we will
not pursue such an investigation here.) We will derive sufficient conditions
for such bounds to hold in the case that k = O(\/ﬁ); it turns out that
for our approach to succeed it suffices that the step size X is in the range
of attraction of the normal distribution, though our best result requires
slightly stronger moment conditions on X than those of the classical central
limit theorem.

Before stating our generalized ballot theorems, we need one additional
definition. We say a variable X has period d > 0 if dX is an integer random
variable and d is the smallest positive real number for which this holds; in
this case X is called a lattice random variable, otherwise X is non-lattice.
We can prove the following:

Theorem 8. Suppose X satisfies EX = 0, Var{X} > 0, E{X?"*} < o0
for some a > 0, and X is non-lattice. Then for any fixed A > 0, given
independent random variables X1, Xo, ... distributed as X with associated
partial sums S; = Z}zl X, for all k such that 0 < k = O(y/n),

k+1
P{k<S, <k+A, Si>0v0<i<n}:@(—i—).

n3/2



Ballot Theorems, Old and New 23

Theorem 9. Suppose X satisfies EX = 0, Var{X} > 0, E{X?%%} < oo for
some a > 0, and X is a lattice random variable with period d. Then given
independent random variables X1, X, ... distributed as X with associated
partial sums S; = 3 %_) X, for all k such that 0 < k = O(y/n) and such
that k is a multiple of 1/d,

P{S,=k §>0Y0<i<n}= e(kjﬂl)

From these theorems, we may derive “true” (conditional) ballot theo-
rems as corollaries, at least in the case that k = O(y/n). The following
result was proved in [27], and is the tip of an iceberg of related results. Let
® be the density function a M (0,1) random variable.

Theorem 10. Suppose S, is a sum of independent, identically distributed
random variables distributed as X with EX = 0, and there is a constant
a such that S,/a\/n converges to a N'(0,1) random variable. If X is non-
lattice let B be any bounded set; then for any h € B and x € R

h®(z/ay/mn)
ay/n

Furthermore, if X is a lattice random variable with period d, then for any
z € {n/d|ne€L}

P{|S, —z| < h/2} = +0(1/vn).

¥(z/aym)
Tavn

In both cases, \/ﬁo(l / \/ﬁ) — 0 as n — oo uniformly over all x € R and
h € B.

P{S, =z} = +0(1/vn).

Together with Theorem 8 this immediately yields:

Corollary 11. Under the conditions of Theorem 8,
. k+1
P{S,->OV0<z<n|k§Sn§k+A}=(—)(T).

Similarly, combining Theorem 9 with Theorem 10, we have
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Corollary 12. Under the conditions of Theorem 9,
k+1
P{5i>ovo<z'<n|sn=k}=e<—1>
n

As we remarked above, the approach we are about to sketch can also
be used to prove a ballot theorem under the weaker restriction that X is in
the range of attraction of the normal distribution, at the cost of replacing
the bound @(%) by the bound F%; for the sake of brevity and clarity
we will not discuss the rather minor modifications to our approach that
are needed to handle this case. Furthermore, for the purposes of this
expository article, we shall not prove Theorems 8 or 9 in their full generality
or strength, instead restricting our attention to a special case which allows
us to highlight the key elements of our proofs. Finally, we shall provide a
detailed explanation of only the upper bound, after which we shall briefly
discuss our approach to the lower bound. We will prove:

Theorem 13. Suppose X satisfies EX =0, Var{X} > 0, |X| < C, and
X is non-lattice. Then for any fixed A > 0, given independent random
variables X;, Xs, ..., distributed as X with associated partial sums S; =

;:1 X;, forall0 <k = o(y/n/logn),

/ 1
P{kSSnSkf"i'A,Si>0V0<i<n}:o<w)

n3/2

Of course, a conditional ballot theorem that is correspondingly weaker
than Corollary 11 follows by combining Theorem 13 with Theorem 10. We
remark that in cases where Theorem 7 applies, it provides a lower bound
on P{k< S, <k+ A, S; >0V 0<i<n} of the same order as the upper
bound of Theorem 13. From this point forward, X will always be a random
variable satisfying the conditions in Theorem 13, and X1, Xo,..., will be
independent copies of X with corresponding partial sums S1, 52, ...

To begin providing an intuition of our approach, we first remark that if
S; > 0 V0 < i < n is to occur, then for any 7, letting T' be the first time
t > 1 that S; > 7 or S; < 0, we have either Sy > 0 or T > n. (We will
end up choosing the value r so that T = o(n) except with negligibly small
probability, so to bound the previous probability we shall essentially need
to bound the probability that St > 0, i.e., that the walk “stays positive”.
We will see shortly that Wald’s identity implies that P{Sy > 0} = O(1/r).

We may impose a similar constraint on the “other end” of the random
walk S, by letting S’ be the negative reversed random walk given by S; = 0,
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and for i > 0, Sj,; = S — Xp_; (it will be useful to think of S! as
being defined even for ¢ > n, which we may do by letting Xg, X_1,...
be independent copies of X). If §; >0V0<i<nand k< S, <k+C
are to occur, then letting 77 be the first time ¢ that S; < —(k + A) or
S; > r— (k+ A), it must be the case that either S7, > 0 or T’ > n. (Again,
we will choose 7 so that T” = o(n) with extremely high probability.)

Finally, in order for k < §,, < k+ A to occur, the two ends of the random
walk must “match up”. We may make this mathematically precise by noting
that as long as T < n — T", we may write S, as St + (Sp—_17 — S1) — Sp,
and may thus write the condition k < S, <k + A as

k+ Sp — 87 < (Sp_v — Sr) < k+ A+ Sp — Sp.

If T+ T is at most n/2, say, then S,,_ — Sr is the sum of at least n/2
random variables. In this case, the classical central limit theorem suggests
that S,,_7v — S7 should “spread itself out” over a range of order 1/n, and
essentially this fact will allow us to show that the two ends “meet up” with

probability O(l /v/n )
3.1. Staying positive

To begin formalizing the above sketch, let us first turn to bounds on the
probabilities of the events Sp > 0 and S/, > 0.

Lemma 14. Fixr > 0 and s > 0, and let T, ; be the first time t > 0 that
either Sy > r or Sy < —s. Then P{ S, , >0} < (s+C)/(r +s+C).

Proof. We first remark that ET; ; is finite; this is a standard result that can
be found in, e.g., {11, Chapter 14.4], and we shall also rederive this result a
little later. Thus, by Wald’s identity, we have that ESt,, = ET, ;EX; =0,
and letting Pos, denote the event {STr,s > 0} ; we may therefore write

(3) 0 = ESy,, = E{ Sr,, | Pos; } P{Pos,} + E{ 57, , | Pos, } P{Pos,}.

By definition E{St | Pos,} > r, and by our assumption that X has absolute
value at most C, we have E{Sy | Pos,} > ~(s + C). Therefore

0 > rP{Pos,} — (s + C)P{Pos,} = rP{Pos,} — (s + C)(1 — P{Pos,}),

and rearranging the latter inequality yields that P{Pos,} < (s.+ C)/(r +
s+C). »



26 L. Addario-Berry and B. A. Reed

As an aside, we note that may easily derive a lower bound of the same
order for P{Pos,} in a similar fashion; we first observe that E{Sr, |
Posr} < r+ C. Similarly, E{STT,S | Wsr} < —s, and using the fact
that X has zero mean and positive variance, it is also easy to see that there
is € > 0 such that in fact E{S7,, | Pos,} < —max{e,s}. Combining (3)
these two bounds, we thus have

0 < (r 4+ C)P{Pos, } — max{e, s}P{Pos,}
= (r + C)P{Pos,;} — max{e, s} (1 — P{Pos,}),

so P{Pos,} > max{e,s}/(r + C + max{e,s}). Lemma 14 immediately
yields the bounds we require for P{Sy > 0} and P{S’, > 0}; next we show
that for a suitable choice of 7, with extremely high probability, both T" and
T' are o(n).

3.2. The time to exit a strip

For r > 0, we consider the first time ¢ for which |S;| > r, denoting this time
T,.. We prove

Lemma 15. There is B > 0 such that for all r > 1, ET, < Br? and for all
integers k > 1, P{T, > kBr?} < 1/2*.

This is an easy consequence of a classical result on how “spread out”
sums of independent identically distributed random variables become (which
we will also use later when bounding the probability that the two ends of
the random walk “match up”). The version we present can be found in {19]:

Theorem 16. For any family of independent identically distributed real
random variables X1, Xs,... with positive, possibly infinite variance and
associated partial sums S1, 852, ..., there is a constant ¢ depending only on
the distribution of X such that for all n,

supP{zr < S, <z +1} <c¢/Vn.

z€R
Proof of Lemma 15. Observe that the expectation bound follows directly
from the probability bound, since if the probability bound holds then we
have

ET, < ZP{T >4} < Z[BTQ]P{T > i[Br?]} < Z

3=0

fBT21

Br®,
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which establishes the expectation bound with a slightly changed value of B.
It thus remains to prove the probability bound. By Theorem 16, there is
¢ > 0 (and we can and will assume ¢ > 1) such that

[2r]

(4) P{|Spzscrrz)| <2r} < Y P{i < Spyggeare < i+ 1}
i={-2r]

v [128¢2r?]

the last inequality holding as ¢ > 1 and r > 1. Let t* = [128¢?r?] - then
P{T, > t*} < 1/2. We use this fact to show that for any positive integer k&,
P{T, > kt*} < 1/2*, which will establish the claim with B = 128¢2 + 1, for
example. We proceed by induction on k, having just proved the claim for
k=1. We have

< (4r +1) <%,

P{T, > (k+1)t*} =P{T, > (k+ 1)t*NT > kt}

=P{T, > (k+ 1)t* | T, > kt*} P{T} > kt}
1 * *
:é%-P{TT>(k+1)t | To > kt*},

by induction. It remains to show that P{ T > (k+1)t" | T, > kt*} <1/2.
If T > kt* then by the strong Markov property we may think of restarting
the random walk at time kt*. Whatever the value of Sy, if the restarted
random walk exits [—2r, 2r] then the original random walk exits [-r, 7], so
this inequality holds by (4). This proves the lemma. =

This bound on the time to exit a strip is the last ingredient we need; we
now turn to the proof of Theorem 13.

3.3. Proof of Theorem 13

Fix A > 0 as in the statement of the theorem. For r > 1 we denote by 7} the
first time ¢ that |S;| > 7. We let S” be the negative reversed random walk
given by Sy =0, and for i > 0, S}, = 5] — X,,_; (again as above, we define
S; for i > n by letting Xo, X_;,... be independent copies of X), and let T
be the first time ¢ that |S;| > r. We choose B such that for all ¥ > 1 and
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and for all integers k > 1, P{T,. > kBr?} < 1/2¥ and P{T! > kBr?} < 1/2*
- such a choice exists by Lemma, 15.

Choose r* = l_\/n/QBlogn_, - then with k = [2logn] < 2logn + 1, it
is the case that

kBn (2logn+1)n
kB(r*)? <
) S Blogn < olgn <

n
47

so P{T;» > n/4} < 1/2% < 1/n? and similarly P{T/. > n/4} < 1/n2.
Next let 7" be the first time ¢ that Sy > r* or S; < 0, and let 7’ be the
first time ¢ that S; > r* — (k+ A) or S} < —(k + A). It is immediate that
T < T;-. Furthermore, since k = o(/n/logn), (k + A) < r* for n large
enough, so r* > r* —(k+A) > 0 > —(k+A) > —r*; it follows that 7’ < T'..
These two inequalities, combined with the bounds for T,+ and 7., yield

n 1 ;TN 1

5) P{rzits; wmd P{rzij<g

Let E be the event that £ < S, <k+ A,and S; >0forall0<i<n
- we aim to show that P{E} = O((k + l)logn/n3/2). In order that F
occur, it is necessary that either T' > n/4 or 7’ > n/4 (we denote the union
of these two events by D), or that the following three events occur (these
events control the behavior of the beginning, end, and middle of the random
walk, respectively):
Ey: Sr>0and T <n/4,
Ey: S5 >0and T < n/4,
Ej5: letting A = S{n/4j - S[n/4ja we have k + A < Sn—[n/4j - S[n/4j <

k+A+ A

It follows that
P{E} <P{D} + P{Ey, Ey, E3}.

Furthermore, P{D} < P{T > n/4} + P{T" > n/4} < 2/n? by (5), so to
show that P{E} = O(logn/n%?), it suffices to show that P{Ey, Ey, F3} =
O(log n/n%/%); we now demonstrate that this latter bound holds, which will
complete the proof.

The events £y and E; are independent, as Ej is determined by the
random variables Xl,...,X[n/4J, and FEy is determined by the random
variables Xn—[n /4]+1> - - -, Xn. Furthermore, in the notation of Lemma 14, T
is an event of the form T} ; with r = r*, s = 0; it follows that P{Sr > 0} <
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C/(r* + C). Since S’ has step size —X and | — X| < C, we may also apply
Lemma 14 to the walk S’ with the choice r = r* —k+C, s = k+C, to
obtain the bound P{S}, > 0} < (k+ 2C)/(r + k + 2C). Therefore

(6) P{E1, Ey, Es} = P{E3 | E1, EL}P{E1}P{Es}
< P{Eg | El,Ez}P{ST > O}P{S:Ir/ > 0}

C(k+2C
< P{E3 | By, Ea}- r*(r*(-i- k+ ;C)

2C%(k +1)
(r)?

< P{E;; I E],EQ} .

To bound P{E3 | E1, E2}, we observe that
(7) P{Eg ! El,Eg} < SUHPKP{E;g | E],EQ,A = CL‘}
ze€

= sugP{k—i— T < Sp_nja) — Sinja) Sk+a+A| BBy A= :E}
x€

Furthermore, the event that k + 2 < S,_ /4] — Sin/4) < k+ 2+ A is inde-
pendent from E}, E9, and from the event that A = x, as the former event is
determined by the random variables X, /4] 41, - vy X In/4)» and the latter
events are determined by the random variables X1, ..., X|n/4), Xn—|n/a)+1,

.., Xn. It follows from this independence, (7), and the strong Markov
property that

(8) P{E_?, l El,Eg} S S\GJEI;P{]C +x S Sn—[n/4] - S[n/4J S k+x+ A}
z

= supP{k t+z< Sn—?[n/4j <k+z+ A}
zeR

< (A+1)supP{k+2 < S,y gnsy Sk+z+ 1},
TeR .

the last inequality holding by a union bound. By Theorem 16, thereis ¢ > 0
depending only on X, such that

2
supP{x < Sn—2[n/4j <z+ 1} < < \/_C

< k)
zeR Jn—=2[n/4] ~ Vn
and it follows from this fact and from (8) that

\/ic(A +1)

P{E; | By, By} < Y



