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PREFACE

The Janos Bolyai Mathematical Society and the Alfred Renyi Institute of
Mathematics organized tIle conference Horizons of Combinatorics during
the period July 17-21, 2006 at Ba싫onalmadi (Lake Balaton, Hungary).
The Hungarian conferences in combinatorics have the “tradition" not to
be organized with regular frequency, and having all different names. Yet,
this conference was, in a certain sense, a continuation of the conferences
organized in January, 1996, and January, 2001.

The present volume is strongly related to this conference. We have
asked our main speakers to summarize their recent works in survey papers.
Since many of them reacted positively, we are able to present the reader
with this collection of papers written by excellent authors. Unlike many of
our previous volumes tllat needed several years of preparation the current
volume appears 18 months after the conference.

Let us briefly introduce the content.

The paper of Addaric• Berry and Reed draws a nice picture from an ob
servation of Bertrand (which is called the First Ballot Theorem) to recently
obtained results on sunlS of identically distributed randoln variables and to
analyzing random permutations of sets of real numbers.

v. Csiszar, Rejto and Tusnady study some aspects of stochastic methods
in modern combinatorics, from a rather new perspective.

The survey of Egawa illustrates three different types of proofs for theo
rerns establishing the existence of a 2-factor.

The paper of Fox and Pach deals with special classes of graphs defined by
geometric lnethods. For these classes, the autho :r:s answer in the affirmative
the following question of Erdos and Hajllal: “Is it true that for every graph
G there exists a constant c = c(G) such that if a graph H on n vertices does
not contain all isomorphic copy of G (as an induced subgraph) thell H has
a complete or empty subgraph of size n C?"

Ron Graham, the leading expert in Ramsey theory has collected a variety
of problelTIs alld recently obtained related results in the theory whicll make
progress on some of the presellted problellls.
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Katona surveys (mostly quite recent) results in Sperner theory. The
maximum number of subsets is searched under conditions excluding con
figurations which can be expressed by merely inclusions. A new method,
which is actually an extension of Lubell ’s chain method, is illustrated in
detail.

Miklos discusses the results and relations between the (maximum) num
ber of subsums of a finite sum with some additional properties assumed and
extremal sets of vertices of the hypercube in the sense that their span (either
over GF(2) or over 1R) does not contain certain (forbidden) configurations
from the hypercube.

Recski ’s paper surveys some, partly new, combinatorial results concern
ing the rigidity of tensegrity frameworks. Issues related to computational
complexity are also emphasized.

Seress presents several constructions of polygonal and near-polygonal
graphs. Possible classifications of these graphs are also discussed.

The paper of Soukup presents generalizations of several well known
theorems in the theory of finite graphs, finite partially ordered sets, etc.
to graphs with infinitely many vertices, partially ordered sets with infinitely
many elements, and so on. The paper accurately , illustrates, that such
generalizations are sometimes straightforward, sometimes hard to obtain,
sometimes true in “small" infinite sets but fail in the higher infinity, or
sometimes simply not true.

Tokushige surveys Frankl ’s random walk method in the theory of inter
secting families and explains its usage with many examples.

Vu’s survey discusses some basic problems concerning random matrices
with discretedistributions. Several new results, tools and conjectures have
been presented.

December, 2007 The editors
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Horizons of Combinatorics
Balatonalmadi
pp.9-35.

BALLOT THEOREMS, OLD AND NEW

L. ADDARIO-BERRY and B. A. REED

“There is a big difference between a fair game and a game it 닝 wise to play. "
- [7].

1. A BRIEF· HISTORY OF BALLOT THEOREMS

1.1. Discrete time ballot theorems

We begin by sketching the development of the cIa않ical ballot theorem as
it first appeared in the Comptes Rendus de l'Academie des Sciences. The
statement that is fairly called the first Ballot Theorem was due to Bertrand:

Theorem 1 ([8]). 짜 suppose that two candidates have been submitted
to a vote in which the number of voters is μ . Candidate A obtains π votes
and is elected; candidate B obtains m = μ - n votes. V\상 ask for the
probability that during the counting of the votes, the number of votes for
A is at all times greater than the number of votes for B. This probability
is (2n- μ)/μ = (n - m)/(n + m).

Bertrand’s “proof" of this theorem consists only of the observation that
if Pn ,m counts the number of “favourable"voting records in which A obtains
n votes, B obtains m votes and A always leads during counting of the votes,
then

Pn+l ,m+l = Pn+1,m + Pn,m+l ,
the two terms on the right-hand side corresponding to whether the last vote
counted is for candidate B or candidate A, respectively. This “proof" can
be easily formalized as follows. We first note that the binomial coefficient
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Bπ ，m = (n+m)!jπ!m! counts the total number of possible voting records in
which A receives η votes and B receives m , Thus, the theorem equivalently
states that for any n 2 η1 ， Bn ,m - Pn,1n , which we denote by ~n，m ， equals
2mBn,mj(n+m). This certainly holds in the case m = 0 as Bn ,o = 1 = Pn ,o,
and in the case m = n , as Pn ,n = O. The binomial coefficients also satisfy
the recurrence Bπ+l ，m+l = Bn+1,m, + Bn,m+l , thus so does the difference
~n，m. By induction,

~n+l ，1n+l = ~n+l ，m + ~n，1n+l

2(m + 1)
Bn+1,m + _~\:-- . ,-I.. Bn,m+l

2(m + 1) n

- n + m + 2Dπ+1 ，1n+l ，

as is easily checked; it is likely that this is the proof Bertrand had in mind.

After Bertrand announced his result, there was a brief flurry of research
into ballot theorems and coin-tossing games by the probabilists at the
Academie des Sciences. The first formal proof of Bertrand ’s Ballot Theorem
was due to Andre and appeared only weeks later [3]. Andre exhibited a
bijection between unfavourable voting records starting with a vote for A
and unfavourable voting records starting with a vote for B. As the latter
nUlnber is clearly B n,m-l , this inlnlediately establishes tllat Bn ,m - Pn,1n =

2Bn,m-l = 2r11Bn,mj(n + m).

A little later, [5] asserted but did not prove the following generalization
of the classical Ballot Theoreln: if n > k r1l for some integer k , then the
probability candidate A always has more than k-times as many votes as
B is precisely (n - km)j(n + m). In response to the work of Andre and
Barbier, Bertrand had this to say:

“Though I proposed this curious question as an exercise in
reason and calculation, in fact it is of great importance. It is
linked to tIle iInportant question of duration of ganles, previously
considered by Huygens, [de] Moivre, Laplace, Lagrange, and
Ampere. The problem is this: a gambler plays a game of chance
in which in each round he wagers 웅 ’th of his initial fortune
What is the probability he is eventually ruined and that he
spends his last coin in the (η +2μ)’th round?" [6]

He notes that by considering the rounds in reverse order and applying
Theorem 1 it is clear that the probability that ruin occurs in the (n + 2μ) ’th
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round is 110thing but 감꿇(n~2μ)2-(2μ+n). By informal but basic computa
tions, he thell derives that the probability ruin occurs before the (n + 2μ) ’th

‘ I f) /'fT"η

round is approximately 1- ~옳i파 , so for this probability to be large, μ must

be large cOlllpared to n2 . (Bertralld might have added Pascal, Fermat, and
the Bernoullis [16, pp. 226-228] to his list of notable mathematicians who
had considered the game of ruill; [4, pp. 98-114] gives an overview of prior
work on ruin with an eye to its connections to the ballot theorelll.)

Later in the same year, he proved that in a fair game (a game in which, at
each step, the average change in fortunes is nil) where at each step, Olle coin
changes hands, tIle expected nUlllber of rounds before ruin is infinite. He did
so using the fact tIlat by the above forlllula, tIle probability of ruin in tIle t ’tIl
roulld (for t large) is ofthe order 1/t3/ 2, so the expected time to ruill behaves
as the SUIll of 1/t1/ 2, which is divergent. He also stated that in a fair game
in which player A starts with a dollars and player B starts with b dollars,
the expected tinle until the gallle ends (until one is ruined) is precisely ab

[7]. This fact is easily proved by lettillg ea ,b denote the expected time until
the game ends and using the recurrence ea ,b == 1 + (ea-l ,b + e a,b-l)/2 (with
boundary conditions ea+b,O == eO,a+b == 0). Expanding on Bertrand’s work,
Rouche provided an alternate proof of tIle above formula for tIle probability
of ruill [24]. He also provided an exact forlllula for the expected 11umber of
rounds in a biased game in which player A has α dollars and bets ao dollars
each round, player B has b dollars and bets bo dollars each round, and in
each round player A WillS with probability p satisfying aop > bo(l - p) [25].

All the above questions alld results can be restated in terms of a random
walk on the set of integers Z. For example, let So == 0 and, for i 으 0,
Si+l == Si 士 1, each with probability 1/2 and independently of the other
steps - this is ca삶，1파l

this section, we will pIlrase our discussion in ternlS of random walks instead
of votes, with X i+1 == Si+l - Si constituting a step of the random walk.)
Then Theorem 1 silllply states tIlat given that St == h > 0, the probability
that Si > 0 for all i == 1,2, ... ,t (i.e. tIle randolll walk is favourable for A)
is precisely hit. Furthermore, the time to ruin when player A has a dollars
and player B has b dollars is the exit time of the randolll walk S from the
interval [a ,-b]. The research sketched above constitutes the first detailed
examination of the properties of a randolll walk So ,S1 ,... ,Sn conditioned
on the value S，η , and the use of SUCll illfornlation to study the asymptotic
properties of such a walk.
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In 1923, Aeppli proved Barbier’s generalized ballot theorem by an argu
ment similar to that used by Andre ’s. This proof is presented in [4, pp. 101
102], where it i엄s a싫1꿇Iso observed that Barb
Be앙rtrar끄nd’s or야rl핑gina싫1 recurrence in the same fashion as above. A simple and
elegant technique was used in [9] to prove Barbier’s theorem; we use it to
prove Bertrand’s theorem as an example of its application, as it highlights
an interesting perspective on ballot-style results.

We think of λ’ = (X1,... ， Xπ+m ， Xl) as being arranged clockwise
around a cycle (so that Xn+~빠I = X I) . There are precisely π + m walks
corresponding to this set, obtained by choosing a first step Xi , so to es
tablish Bertrand’s theorem it suffices to show that however Xl ,.'" X，η+m

are chosen such that Sπ = π - m > 0, precisely n - m of the walks
Xi+l ,... ,X n+m ,Xl ,... ,Xi are favourable for A. Let Sij = Xi+l + ... + X j

(this sum includes X n+m if i < j). We say that Xi ,... ,X j is a bad run if
Sij = 0 and Silj < 0 for all i' E {i + 1,... ,j} (this set includes n + m if
i > j). In words, this condition states that i is the first index for which the
reversed walk starting with X j and ending with Xi+l is nonnegative. It is
immediate that if two bad runs intersect then one is contained in the other,
so the maximal bad runs are pairwise disjoint. (An example of a random
walk and its bad runs is shown in Figure 1).

h

.
/\ /\ x

/ \/ \/
/\ ./J.\ /

、、v 、、v n
‘a

‘

/ 、 ~
、!/ 1 v

/" .. 、.~

/ 、.. 끼...,
t、

‘a

Fig. 1. On the left appears the random walk corr않ponding to the voting sequence
(1 , -1 , -1 , 1,1, -1 , -1 ,1,1,1), doubled to indicate the cyclic nature of the argument.

On the right is the reversal of the random walk; the maximal bad runs are shaded grey

If Xi = 1 and Sij = 0 for some j then Xi begins a bad run, and since
Sπ = ε품1 Xi > 0, if Xi = -1 then Xi ends a bad run. As Sij = 0 for a
maximal bad run and Xi = 1 for every Xi not in a bad run, there must be
precisely n - m values of i for which Xi is not in a bad run. If the walk
starting with Xi is favourable for A then for all i 1= j , Sij is positive, so Xi
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is not in a bad rUll. COllversely, if Xi is not in a bad rUll then Xi = 1 and
for all j =I i, 5’lij > 0, so the walk starting with Xi is favourable for A. Thus
there are precisely (n - m) favourable walks correspondil1g to X , which is
what we set out to prove.

With this tecllnique, the proof of Barbier’s theoreln requires nothing
lllore tIlan lettillg tIle positive steps have value 11k instead of 1. This proof
is notable as it is tIle. first tinle the idea of cyclic permutationswas applied
to prove a ballot-style result. This “rota꾀on principle" is closely related
to the strong Markov property of the randoln walk: for allY integer t 으 0,
the random walk 8t - 8t ,8t+1 - 8t ,8t+2 - 8t ,... llas identical behavior to
the walk 80,81,82 alld is independent of 80,81,... ,8t . (Informally, if we
have exa111ined tIle beIlavior of the walk up to thne 5, we lnay think of
restarting the random walk at time t , starting from a height of St; this will
be importallt in the generalized ballot theorelTIS to be presellted later ill the
paper.) TIlis proof can be rewrittel1 in terll1S of lattice pαths by letting votes
for A be unit steps in the positive x-direction alld votes for B be unitsteps
in the positive ν-direction. Whe밍1끄1 conceive얹d of i파11 t뻐hi뼈s Ina없nner‘， tlli엄s proof
illllllediately yields sev맨폈e앉ral natural gener‘'al꿇1

Starting in 1962’ Lajos Takacs proved a sequence of increasingly general
ballot-style results and statenlents about tIle distr‘ibutioll of the 111axima
when the ballot is viewed as a ranφ111 walk [28, 29, 30, 31, 32, 33, 36].
We highlight two of these theorems below; we have not chosen the most
general statenl밍lts possible, but ratIler theor‘elliS wI1icIl we believe capture
key properties of ballot-style results.

A family of randolll variables Xi ,.'" X n is interchangeable if for all
(rl ,"" rn ) E }Rn and all permutations a of {I,... ,n} , P{Xi 으 ri냥1 으

'i ::; n} = P{Xi 으 r a(i)γ1 으 i ::; n,}. We say Xl ,"" X n is cνclically
interchangeable if this equality holds for all cyclic perll1utatiolls U. A family
of illterchangeable randoln variables is cyclically interchangeable, but the
converse is not always true. The fir‘st theoreln states:

Theorem 2. Suppose that Xl ,... ,Xn are integer-valued, cyclically inter
changeable random variables with maximum value 1, and for 1 ::; i ::; n , let
Si = Xl + ···+ Xi. Then for any integ'er 0 ~ k ::; n ,

P{Si > 0 γl~i~nl 닭 = k} = §
This theorem was proved indepelldently in [10] and [39] - we note

that it can also be proved by Dvoretzky alld Motzkin’s approach. (As
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a point of historical curiosity, Takacs’ proof of this result in the special
case of intercllangeable random variables, and Dwass’ proof of the more
general result above, appeared in the same issue of Annals of Mathematical
Statistics.) Theorem 2 and the “bad run" proof of Barbier’s ballot theorem
both suggest that the notion of cyclic interchangeability or something similar
may lie at the heart of all ballot-style results.

Theorem 3 ([36] , p. 12). Let Xl ,X2 ,... be an in펴nite sequence of iid
integer random variables with mean μ and maximum value 1 and for any
t 으 1, let Si = Xl +···+Xi. Then

、 l μ if μ > 0,
P{Sn > 0 for n = 1,2,... } = ~

lO if μ ~ O.

The proof of Theorem 3 proceeds by applying Theorem 2 to finite subse
quences Xl ,X2 ,... ,X n ,so this theorem also seems to be based on cyclic in
terchangeability. Takacs has generalized these theorems even further, prov
ing similar statements for step functions with countably many discontinu
ities and in many cases finding the exact distribution of max쏟1 (Si - i).

(Takacs originally stated his results in terms of non-negative integer ran
dom variables - his origil1al formulation results if we consider the variables
(1 - Xl) ,(1 - X2) ,... alld the correspollding random walk.) Theorem 3
implies tIle following classical result about the probability of ever returning
to zero in a biased simple randoln walk:

Theorem 4 ([11] , p. 274). In a biased simple random walk 0 = Ro,R1 ,'"
in which P{Ri+1 - Ri = I} = p > 1/2, P{Ri+1 - Ri = -I} = 1 - p, the
probability that there is no n 으 1 for which Rn = 0 is 2p - 1.

Proof. Observe tllat the expected value of Ri - Ri-1 is 2p - 1 > 0, so if
R1 = -1 thell with probability 1, Ri = 0 for some i 즈 2. Thus,

P{Rn 폼 ofor all n 즈 I} = P {Rn > 0 for all n 으 I}.

The latter probability is equal to 2p - 1 by Theorem 3. •

We close tllis section by presenting the beautiful “reflection principle"
proof of Bertrand’s theoreln. We tllink of representing the symmetric simple
random walk as a sequence of points (0,80) ,(1,81) ,... ,(n,S，π) and connect
ing lleighbouring POilltS. If 81 = 1 alld the walk is unfavourable, then letting
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k be the smallest value for which Sk = 0 and “reflecting" the random walk
So,···,Sk in the x-axis yields a w~lk from (0,0) to (n,t) whose first step is
negative - this is shown in Figure 2. This yields a bijection between walks
that are unfavourable for A and start with a positive step, and walks that
are unfavourable for A and startwith a negative step. As all walks starting
with a negative step are unfavourable for A, all that remains is rote calcu
lation. This proof is often incorrectly attributed to [3], which established
the same bijection in a different way - its true origins remain unknown.

닙냐
.、

•• I I
i ‘· “ i

、 ! .산“ i
?? ; 약ii ↓ ....•i*

.“‘‘i“““‘“‘’‘~.싸‘;““““““‘

Fig. 2. The dashed line is the reflection of the random walk from (0,0) to the first visit
of the x-axis

1.2. Continuous time ballot theorems

The theorems which follow are natural given the results presented in Sec
tion 1.1; however, their statements require slightly more preliminaries.
A stochastic process is simply a nonempty set of real numbers T and a
collection of random variables {Xt , t E T} defined on some probability
space. The collection of random variables {Xl ’ ‘ •• ,Xn } seen in Section 1.1
is an example of a stochastic process for which T = {1,2,... ,n.}. In this
section we are concerned with stochastic processes for which T = [0; r] for
some 0 < r < ∞ or else T = [0 ，∞).

A stochastic process {Xt , 0 으 t ~ r} has (cyclically) interchangeable
increments if for all π = 2,3, , the finite collection of randonl variables
{Xrt/π - Xr(t-l)/η ， t = 1,2, ,n} is (cyclic빼ly) intechangeable. A process
{Xt , t 으 O} has interchangeable increments if for all r > 0 and n > 0,
{Xrt/ n - Xr(t-l)/m t = 1,2,... ,n} is interchangeabie, and is stationary
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if this latter collection is COlllposed of independent identically distributed
random variables. As in the discrete case, these are natural sorts of prereq
uisites for a ballot-style theoreln to apply.

There is all unfortullate technical restriction which applies to all the
ballot-style results we will see in this section. The stochastic process
{Xt , t ε T} is said to be sepαrable if there are allTIost-everywhere-unique
measurable functions X+ ,X_such that almost surely X - ::; X t ::; X+ for
all t ε T , and there are countable subsets S_ ,S+ of T such that almost
surely X+ = SUPtES+ X t and X_ = inftεs- Xt· The results of this section
only hold for separable stochastic processes. In defense of the results, we
note that tllere are nonseparable stochastic processes {Xt , 0 ::; t ::; r} for
which sup{X t - t, 0 으 t ~ r} is non-measurable. As the distribution of this
randoln variable is one of the key issues with which we are concerned, the
assunlptioll ·of separability is natural and in SOlne sense necessary in order
for the results to be lneaningful. Moreover, in very general settings it is
possible to construct a separable stochastic process {yt I t ε T} such that
for all t ε T , yt and X t are allll0st surely eq뻐1 (see, e.g. , [12, Sec. IV.2]); ill
this case it call be fairly said that tIle assunlption of separability is no loss.

The followillg theo!‘enl is the fir‘st exanlple of a continuous-tinle ballot
theorenl. A sample function of a stochastic process is a function xω :T • R
given by fixing SOl11e ω ε n and letting xω (t) = Xt (ω) .

Theorem 5 ([34]). If {Xt , 0 즈 t 쓰 r } is a separable stochastic process with
cyclically interchangeable increments whose sample functions are almost
surely nondecreasing step functions, then

if 0 ::; s 으 t ,

otherwise.

This theorem is a natural cOlltinuous equivalent of Theorenl 2 of Section
1.1; it call be used to prove a theorenl in the vein of Theoreln 3 which applies
to stochastic processes {Xt , t 즈 O}. Takacs ’ other ballot-style results for
continuous stochastic processes are also essentially step-by-step extensions
of his results fronl tIle discrete setting; see [34, 35, 36, 38].

In 1957,Baxter and Donsker d당rived a double integral representation for
sup{Xt-t, t 즈 O} wIlen this process h짧 stationary independent increments.
Their proof proceeds by analyzing the zeros of a cOlnplex-valued function
associated to the process. They are able to use their representation to
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explicitly derive its distribution when theprocess is a Gaussian process,
a coin-tossing process, or a Poisson process. This result w잃 rediscovered
by Takacs, Wll0 also derived tIle joint distribution of X r and sup{X t -t,°~ t ~ r} for r finite, using a generatillg functioll approach [37]. Though
these results are clearly related to the continuous ballot theorems, they
are 110t as elegant, and 11either tIleir statements nor their proofs bring to
mind the ballot tlleore1n. It seems that considering separable stationary
processes ill their full generality does not impose enough structure for it to
be possible to prove these results via straightforward generalization of the
discrete equivalents.

A beautiful perspective 011 the ballot theorem appears by considering
random measures instead of stochastic processes. Given an almost surely
nondecreasing separable stocllastic process {Xt , °으 t ~ r} , fixing any
element ω of the underlying probability space n yields a sample function xω ·

By our assumptions on the stochastic process, almost every sample function
$ω yields a measure μω on [0,r ], where μω [O ， b] = xω (b) -xω(a). This allows

us to define a “random" llleasure μ on [0,채0， μ(ω) == μω ， alld for almost all ω E 0 , μ(ω) is a measure on [0,r]. If

$ω is a 110ndecreasing step function, the11 μω has countable support, so is
S'lng따r with respect to tIle Lebesgue measure (i.e. the set of points which
have positive μ띠-measure has Lebesgμe 1neasure 0); if this holds for a싫lm.os

all ω then μ is an “alnlost surely singular" random measure.

Wehave just seen an example of a randolll measure; we now turn to a
more precise definition. Given a probability space S == (0,~， P) ， a random
measure on a possibly infinite interval T c IR is a function μ with domain
α x T satisfying tllat for all rET, μ(" r) is a randolll variable in S, and
for almost all ω E 0 , μ(ω ， .) is a measure on T. A random measure μ

is almost surely singular if for almost all ω E α， μ(ω ， .) is a measure on
T sillgular with respect to the Lebesgue nleasure. (This definition hides

some technica1ity; illpanicu1aLtheset of ω for Wllicll μ is sillgular is itself a lnea잃S하밟u따1
detail파ils.) A random measure μ 011 lR+, say, is stationary if for all t , letting
Xt ,i == μ(' ， (i + l)lt)- μ(.껴It) ， the family {Xt ,i liE N} is composed of
independent ide11tically distributed random variables; stationarity for finite
intervals is defined simila페y.

This perspective can be used to generali
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defined on T 드 IR+ we associate a random variable I called the sample
intensity of μ. (Intuitively, I is the randonl average number of points ill an
arbitrary me잃urable set BeT of positive finite measure, normalized by
the measure of B. For a formal definition, see (17, Chapter 11].)

Theorem 6 ([18]). Let μ be an almost surely singular, stationary random
measure on T == jR+ or T == (0, 1] with sample intensity I and let X t ==
μ(- ， t) - μ(· ， 0) for t E T. Then there exists a uniform [0,1] random variable
U independent from I such that

Xf I
p - ~" == : T almost surely.

tεT t U

It turns out that if T - (0,1] then conditional upon the event that
Xl == m , I == n~ almost surely. It follows that in this case P{ SUPtεT 환 s
1 I Xl} == nlax{l - Xl ,O}. Similarly, if T == jR+ and 뽕환L • n1 a삶lmost

S하u뼈l

1} == max{1 - n1ι’ 0아}. This theorelll can thus be seen to include continuous
generalizations of both Theorenl 2 and Theorenl 3.

Kallenberg has also proved the following as a corollary of Theorem 6
(this is a slight reformulation of his original statement, which applied to
infinite sequences):

Theorem 7. If X- is a real random variable with maximum value 1 and
{Xl ,X 2, ,X n } are iid copies of X with corresponding partial sums {O ==
So ,Sl , ,S，싸 ， then

P{Si>뻐 <i 으 n ISn} 으 줬

It is worth comparing this theorem with Theorem 2; the theorenls are
ahnost identical, but Theorem 7 relaxes the integrality restriction at the
cost of replacing the equality of Theorem 2 with an inequality.

1.3. Outline

To date, Theorem 7 is the only ballot-style result which has been proved for
random walks that may take non-integer values. Paraphrasing Harry Kesten
[20] , the goal of our research is to 1110Ve towards 111aking ballot theorems part
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of “the general theory of random walks" - part of the body of results that
hold for all random walks (with independent ident파tica파 distributed steps잉)，

regardless of the precise d빼i엄stI피r괴-ib뼈ut꾀ion 0아f their steps. We succeed in proving
ballot-style theorems that 110ld for a broad class of random walks, including
all random walks that call be renormalized to converge in distribution to a
normal random variable. A truly general ballot theorem, however, remains
beyond our grasp.

In Section 2 we discuss in what sense existing ballot theorems such as
those presented in Section 1 are optimal, and what sorts of “general ballot
theorems" it makes sense to search for in light of tllis optinlality. In Section3
we delllollstrate our approach in a restricted setting and prove a weakening
of our main result. This allows us to highlight the key ideas behind our
general ballot theorems without too much notational and techllical burden.
In Section 4, we sketch the main ideas required to strengthen the presented
result. Finally, ill Section 5 we address the linlits of our approach and
suggest some avellues for future research.

2. GENERAL BALLOT THEOREMS

The aim· of our researcll is to prove analogs of the discrete-time ballot the
orems of Section 1 for more general random variables. The Theorems of
Section 1.1 all have two restrictions: (1) they apply only to integer-valued
random variables, and (2) they apply only to random variables that are
bounded from Olle or both sides. (Ill tIle continuous-time setting, the re
striction that thestochastic processes are almost surely integer-valued, in
creasing step functions isof the same flavour.) In this section we investi
gate what ballot-style theorems can be proved whell such restrictions are
rellloved.

The restrictions (1) and (2) are necessary for the results of Section 1.1
to hold. Suppose, for example, that we relax the condition of Theorem 2
requiring that the variables are bounded fronl above by +1. If X takes every
value in N with positive probability, then P {8i > 0\1'1 ~ i ~ n I Sn = n} <
1, so the COllClusioll of the tlleorelll fails to 11old. For a more explicit
example, let X be allY ralldom variable taking values 土1 ， 土4 and defille the
corresponding cyclically iIlterchangeable sequence and random walk. For
83 = 2 to occur, we lllust have {Xl ,X 2,X 3 } = {4,:-1,-I}. In this case, for
Si > 0, i = 1,2,3 to occur, Xl must equal 4. By cyclic interchangeability,
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this occurs with probability 1/3, and not 2/3, as Th.eorem 2 would suggest.
This shows that the boundedness condition (2) is required. If we relax
the integrality condition (1) , we can construct a similar example where the
conclusions of Theorem 2 do not hold.

Since the results of Section 1.1 can not be directly generalized to a
broader class of randonl variables, we seek conditions on the distribution of
x so that the bounds of that section have the correct order, i.e. , so that
P{Si > 0 냥 1 .::; i ::; n I Sn = k} = 8(k/π). (When we consider random
variables that are not necessarily integer-valued, the right conditioning will
in fact be onan event such as {k :::; Sn < k + I} or something similar.) How
close we can come to this cOllclusion will depend on what restrictions on X
we are willill,g to accept. It turns out that a statement of this flavour holds
for the mean zero random walk S~ = S，η -nEX as long 앓 there is a sequence
{αn}π>0 for which (Sn - ηEX)/αn converges to a non-degenerate normal
distribution (in this case, we say that X is in the range of attraction of
the normal distribμtion and write X ε V; for exanlple, the classical central
limit theorem states tllat if E{X 2 } < ∞ then we may take an == ν죠 for
all π.) For the purposes of this expository article, however, we shall impose
a slightly stronger conditiol1 than that stated above.

From this POillt on, we restrict our attention to sums of mean zero
random variables. We note this condition is in some sense necessary in
order for the results we are hoping for to hold. If EX =j= 0 - say EX > °
then it is possible that X is non-negative, so the only wayfor S，π == 0 to occur
is that Xl = ... = X n = 0, alld so P{Si > °닝 1 ::; i 으 n I Sn == O} = 0, and
not 8(1/n) as we would hope from the r~sults of Section 1.

3. BALLOT THEOREMS FOR CLOSELY FOUGHT ELECTIONS

One of the most basic questions a ballot theorem can be said to answer is:
given that an election resulted in a tie, what is the probability that one of
the candidates had the lead at every point aside from the very beginning
and the very end. In the language of random walks, the question is: given
that Bn = 0, what is the probability that S does not return to °or change
sign between time °and time η? Erik Sparre Andersen has studied. the
conditional behavior of randoln walks given that Bn == 0 in great detail, in
particular deriving beautiful results on the distribution of the maximum, the
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minimum, alld the amount of time spent above zero. Much of the 11ext five
paragraphs can be found in [1] , for example, in slightly altered terminology.

We call the event that Sη does not return to zero or change sign before
tilne η， Leadn· We can easily bOUlld P{Leadn I Sn = O} using the fact that
Xl , ,X n are intercllangeable. If we cOlldition on the 11lultiset of outcomes
{X1, ,X n } = {자(1) ， ... ,Xσ(n)} ， alld then choose a uniformly random
cyclic permutation a and a uniforln element i of {I,... ,η} ， then the inter
cllallgeab~lityof Xl ,... ,X n ilnplies that (:자(i) ， ... ,짝(n) ， Xσ(1) ， ... ,자(i-I) )
11as the sallle distribution as if we hadsanlpled directly froIn (Xl ,... ,X n ).

Letting sj = x:i;} $o(k) ’ in order for Leadn to occur given that Sn = 0,
it must be the case that Si is either the unique maximum or the unique
minimum among {Sl ,"" sn}. The probability that this occurs is at most
2/n as it is exactly 2/n if there are unique maxima alld minima, and less if
either the maximum or 11linimum is not unique. Therefore,

、‘l,
l
/

-/
I
l‘
、

P{Leadn t 닭 = 0} s §
On the other hand, tIle sequence certaillly has some maximum (resp. mini
Inurn) Si , and if Xl = Xi then Sj is always non-positive (resp. non-negative).
Denoting this event by Nonposn (resp. Nonnegn), we therefore have

(2) P{Nonposn IS.η = O} ~ 조 and P{Nonnegn I Sn = O} ~ 조.
n

If Sn = 0 then the (n - 1) rell0rmalized random variables given by X: =
X i+1+X1 /(π-1) satisfy (n-1)S~_1 = (η-1) ε델1

1 X: = (n-1) ε뜸1 Xi =
O. If Xl > Oand 110ne of the renormalized partial sums are negative, then
Leadn occurs. The renormalized random variables are still interchangeable
(see [1 , Lemma 2] for a proof of this easy fact) , so we may apply the second
bound of (2) to obtaill

P{Leadn I Sn = 0, Xl > O} 으 n f l

An identical argument yields the same bound for P {Leadn I Sn = 0,
Xl < O} , and combining these bounds yields

P{Leadn I Sn = O} ~ P{Leadn I Sn = 0, Xl=!- O}P{XI =!- 0 I Sn = O}

> 1 - P {X I = 0 I Sn = O}
n-l
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As long as P{X1 == 0 I Sn == O} < 1, this yields that P{Leadn I Sn ==
O} 으 α/n for some a > o. By interchangeability, it is easy to see that
P {Xl == 0 I Sn == O} is bounded uniforlnly away from 1 for large n , as long
as Sn == 0 does not ilnply that Xl == ... == X n == 0 almost surely. (Note,
however, that there are cases wl1ere P{X1 == 0 I Sn == O} == 1, for exalnple
if the Xi only take values in the non-negative integers and in the negative
lnultiples of ν2.)

Sparre Andersen ’s approach gives a necessary and sufficient, though
not terribly explicit, condition for P{Leadn I Sn == O} == 8(1/n) to hold.
Philosophically, in order to make ballot theorems part of the “general theory
of random walks" , we would like necessary and sufficient conditions on the
distribution of Xl for P {Leadn I Sn == k} == θ(k/η) for all k == O(η) .
Even more generally, we 111ay ask: what are sufficient conditions 011 the
structure of a multiset S of η llumbers to ensure that if the elements of the
multiset SUlll to k, then in a uniforlnly randolll pern1utation of the set, all
partial SUlns are positive with probability of order kin,? In the relnainder
of the section, we focus our attention on sets S whose ele111ents are sampled
independently from a mean-zero probability distribution, i.e., they are the
steps of a mean-zero random walk. (We remark that it is possible to apply
parts of our analysis to sets S that do not obey this restriction, but we will
not pursue such an investigation here.) We will derive s떼?μ:tl뀔컨cient cond퍼ition

for such bounds to hold in the case that k == 0 (ν균 ); it turns out that
for our approach to succeed it suffices that the step size X is in the range
of attraction of the norlllal distribution, though our best result requires
slightly stronger Il10111ent conditions on X than those of the classical central
limit theorem.

Before stating our generalized ballot theorems, we need one additional
definition. We say a variable X has period d > 0 if dX is an integer random
variable and d is the s111allest positive real nUlnber for which this holds; in
this case X is called a lattice randolll variable, otherwise X is ηon-lαttice.

We can prove the following:

Theorem 8. Suppose X satisfies EX == 0, Var{X} > 0, E{X2+α} < ∞
for some a > 0, and X is non-lattice. Then for any fixed A > 0, given
independent random variables Xl ,X 2,... distributed as X with associated

partial sums Si == ε}==1 Xj , for all k such that 0 ::; k == 0 (νn) ,

P {k ::; Sn ::; k + A, Si > 0 V 0 < i < n} = e (찮끓)
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Theorem 9. S뼈vose X satis펴es EX = 0, Var{X} > 0, E{X2+Q
} < ∞ for

some Q > 0, and X is a lattice random variable with period d. Then given
independent random variables Xl , X 2 ,. .. distributed as X with associated
partial sums 하 = Ej=l X j , for all k such that 0 으 k = O(ν균 ) and such
that k is a multiple of l/d,

P{닭 = k , Si > 0 닝 O<i< η}=e(찮끓)

From these theorems, we nlay derive “true" (conditional) ballot theo
rems 잃 corollaries, at Ie잃t in the case that k = O( J잠 ). The following
result was proved in [27] , and is the tip of an iceberg of related results. Let
φ be the density function a N(O ,1) random variable.

Theorem 10. Suppose Sn is a sum of independent, identically distributed
random variables distributed as X with EX = 0, and there is a constant
a such that Sn/a、/감 converg'es to a N(O ,1) random variable. If X is non
lattice let B be any bounded set; then for any h E B and x E R

hφ (x/aν감)
p{JS.η -xJ 으 h/2} = ._- '= 걷 + 0(1/ν감)

Furthermore, if X is a lattice random variable with period d, then for any
$ ε {n/d In ε Z} ,

φ(x/aνn)
P{Sn = $} = - r + o(I/ν감).

In both cases,젊0(1/、;n) • o as n • ∞ uniform깐 over all x E 1R and
hε B.

Together with Theorem 8 this immediately yields:

Corollary 11. Under the conditions of Theorem 8,

P{Si > °난 o< i < n I k '5: Sn '5: k + A} = e (k $1)
Similarly, combining Theorem 9 with Theorem 10, we have
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Corollary 12. Under the conditions of Theorem 9,

/ k+l \
P {8i > 0 V 0 < i < η |유 ==k}== θ ( 샤 )

As we remarked above, the approach we are about to sketch can also
be used to prove a ballot theorenl under the weaker restriction that X is in
the range of attraction of the normal distribution, at the cost of replacing
the bound e(빨) by the bound ~짧1); for the sake빼revity and clarity
we will not discuss the rather minor modifications to our approach that
are needed .to handle this case. Furthermore, for the purposes of this
expository article, we shall not prove Theorenls 8 or 9 in their full generality
or strength, instead restricting our attention to a special case which allows
us to highlight the key elements of our proofs. Finally, we shall provide a
detailed explanation of only the upper bound, after which we shall briefly
discuss ·our approach to the lower bound. We will prove:

Theorem 13. Suppose X satis펴es EX == 0, Var{X} > 0, IXI < C , and
X is non-lattice. Then for any fixed A > 0, given independent random

variables Xl ,X 2,... , distrib uted as X with associated partial sums 8 i ==

ε;==1 X j , for all 0 ::; k == o( 、Inj log.n ),

.. r\ ((k + 1) logη\
P{k ::; 8n ~ k + A,8 i > 0 닝 O<i< η} == 0 ( 잊 /0 l

\ nUl ‘ /

Of course, a conditional ballot theorem that is correspondingly weaker
than Corollary 11 follows by combining Theorem 13 with Theorem 10. We
remark that ill cases where Theorell1 7 applies, it provides a lower bound
on P{k ~ 8n :::; k + A, 8 i > 0 γ o< i < n} of the saIne order as the upper
bound of Theorem 13. From this point forward, X will always be a random

variable satisfying , the conditions in Theorf,'m 13, and Xl ,X 2,... , will be
independent copies of X with corγesponding partial sμms 81,82,.

To begin providing an illtuition of our approach, we first remark that if
Si > 0 γO<i< η is to occur, then for any r , letting T be the first time
t 으 1 that St > r or St 으 0, we have either ST > 0 or T > n. (We will
elld up choosing the value r so that T == o(띠 exceptwith 'negligibly slnall
probability, so to bound the previous probability we sllall esselltially 11eed
to bound the probability that ST > 0, i.e. , that the walk “stays positive" .
We will see sllortly that Wald’s idelltity ilnplies that P{8T > O} == O(ljr).

We 11lay ill1pose a silnilar constraint on the “other end" of the random
walk S , by letting S'be tIle negative reversed randomwalk given bySb= 0,
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and for i > 0, S~+1 = S~ - X n- i (it will be useful to think of S~ as
being defined eveIl for i > n , which we Illay do by lettingXo,X-I ,...
be independent copies of X). If Si > 0 닝O<i< η and k ::; Sn 즈 k+C
are to occur, then letting T' be the first tiIlle t that 칙 으 ...... (k + A) or
칙 > r - (k + A) , it Illustbe the case that either 'S，운， > 0 or T' > n. (Again,
we will choose r so tllat T' = o(n) witll extreIllely 11igh probability.)

Finally, in order for k ::; Sn :::; k +A to occur, the two ends of the random
walk must “match up". We may Inake this Inatllelnatically precise by noting
that as 1011g as T < n - T' , we nlay write Sn as ST + (Sn-T' - ST) - s，운l ’

and may thus write the condition k 으 Sn :::; k +A as

k+S운， - ST ::; (S，π-T' - ST) ::; k + A + S운， -ST·

If T +T' is at ITIOSt n/2, say, theIl Sη-T' - ST is the SUIll of at least n/2
raIldonl variables. In this case, the classical centrallinlit theorenl suggests
that Sn-T' - ST should “spread itself out" over a range of order νn， and
essentially this fact will allow us to show that the two ends “meet up" with
probability 0 (1/νn).

3.1. Staying positive

To begin formalizing the above sketch, let us first turn to' bOUIlds on the
probabilities of the events ST > 0 and S，운， >.0.

Lemma 14. Fix r > 0 and ~ ~ 0, and let 낀 s be the first time t > 0 that
either St >r or St ::; -so Then P{ STr ,s > o} 으 (s + C)/(r + s + C).

Proof. We first remark that ETr.s is finite; this is a standard re~ult that can
be.found in, e.g. , [11 , Chapter 14.4) , and we shall also rederive this result a
littl~ later. Thus, by Wald’s ideIltity, we 11ave that ESTr.s = E파，sEX1 = 0,
and lettiIlg Posr deIlote the event {STr ,s > o} ; we Illay therefore write

(3) 0 = ESTr,s = E{월， s IPosr} P{Posr} + E{월， S I륨Sr} P{Posr}

By definition E{ST IPosr} ~ r , and by our assumption that X has absolute
value at mpst C , we have E{ST I Posr} ~ -(8 +C). Therefore

O즈 rP{Posr} - (8 + C)P{효딜} = r'P {Posr} - (8 + C) (1 - P {Posr}) ,

and rearranging the latter inequality‘ yields that P {Posr} 으 (8,+ C)/(r +
8+C).•
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As an aside, we note that nlay easily derive a lower bound of tIle same
order for P{Posr } in a siInilar fashion; we first observe that E{ S따， s I
Posr } < r + C. Silnilarly, E{ 월，s I짧} :::; -8, and using the fact
that X has zero mean and positive variance, it is also easy to see that there
is c > 0 such that in fact E{ ST" ,s I Po파} 으 -lnax{c,s}. CombiniIlg (3)
these two bounds, we thus have

26

o< (r + C)P{Posr } - lnax{c,8}P{POSr }

= (r + C)P{POSr } - nlax{c,s} (1 - P{Posr }) ,

so P{Posr } 으 max{c,8}/{r + C + nlax{c,s}). Lemma 14 immediately
yields the bOUllds we require for P {Sr > O} and P {S，운， > OJ; next we show
that for a suitable choice of r , with extremely high probability, both T and
T' are o(n).

3.2. The time to exit a strip

For r 으 0, we consider the first till1e t for which 1St I으 r , denoting this time
낀. We prove

Lemma 15. There is B > 0 such that for all r ~ 1, ETr :::; Br2 and for all
integers k· 2: 1, P{낀 2: kBr2} 으 1/2k .

This is all easy consequence of a classical result on how “spread out"
sums of independent identically distributed random variables become (which
we will also use later when bounding the probability that the two ends of
the random walk “match up"). The version we present can be found in [19]:

Theorem 16. For any 찮mi1y of independent identically distributed real
random variables Xl ,X2 ,. .. with positive, possibly infinite variance and
associated partial sums 81,82,... , there is a constant c depending only on
the distribution of Xl such that for all η，

supP{:τ 으 Sn 으 x + I} 으 c/ν감.
xEIR

Proof of Lemma 15. Observe that the expectation bound follows directly
from the probability bound, since if the probability bound holds then we
llave

B
이
/
‘歸

-
깡

∞
ε

샘

<
-E낀 ::;~그 P{파 으 j} :::;εrBr2 1P { 깐 > irBr21}
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which establishes the expectatioll bound with a slightly changed value of B.
It thus remains to prove the probability bound. By Theorem 16, there is
c > 0 (and we can and will aSSU111e c > 1) such that

(4) P{ISr128c2r211 ~ 2r} ~ ε P{썩 하128c2r21 ~ i + 1}

~ (4r + 1) C < }
、Ir128c2r2 1

the last inequality holding as c > 1 and r > 1. Let t* == r128c2r 21- then
P{파 > t*} :s 1/2. We use this fact to show that for any positive integer k,
P{견 > kt*} 으 1/2k , which will establish the claim with B == 128c2 + 1, for
example. We proceed by inductioll on k, having just proved the claim for
k == 1. We have

P{ Tr > (k + l)t*} == P{ 낀 > (k + 1)t* n T > kt}

== P{ 낀 > (k + l)t* ITr > kt*} P{Tr > kt}

= 옳 P{견 > (k + l)t* I파 > kt*} ,

by induction. It remains to show that P {따 > (k+1)t* I낀 > kt*} :s 1/2.
If 낀 > kt* then by the strong Markov property we may think of restarting
the random walk at tilne kt*. Whatever the value of Skt* , if the restarted
random walk exits [-2r,2r] tllen the original random walk exits [-r,r], so
this inequality holds by (4). This proves the lemma. •

This bound on the tinle to exit a strip is the last ingredient we 11eed; we
now turn to the proof of Theoreln 13.

3.3. Proof of Theorem 13

Fix A > 0 as in the statelnent of the theorem. For r 으 1 we denote by Tr the
first time t that ISt I 으 r.' We let S' be the negative reversed random walk
given by Sb == 0, and for i > 0, S~+l == S~ - X n - i (agaill as above, we define
S~ for i > η by letting X o,X-I ,... be illdependent copies of X) , and let 압
be the first time t that I칙 I ~ r. We chooseB such that for all r 2:: 1 and
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and for all integers k ~ 1, P{Tr 으 kBr2
} :::; I/2k and P{앞 으 kBr2

} 으 I/2k

- such a choice exists by LelTIma 15.

Choose r* = l 、/n/9B log n J- then with k == r210g 벼 < 210gn + 1, it
is the case that

kBn _ (210g η + l)nkB(T*)2 < < ~~ 1Ub n T .J.) < -;-,
- 9Blog η 910g η

so P{깐* 즈 n/4} 으 1/2k 으 1/η2 ， and similarly P {뀔* 으 n/4} :::; 1/η2

Next let T be the first time t that St > r* or St ~ 0, and let T' be the
first time t that S~ > r* - (k + A) or S~ :::; -(k + A). It is immediate that
T< 따*. Furthermore, since k == o( 、!n/logn) ， (k + A) < r* for n large
enough, so r* > r*-(k+A) > 0> -(k+A) > -r*; it follows that T' < 압* .
These two inequalities, combined with the bounds for 낀* and T;* , yield

(5) p{r 으 $} s 옳 and p{r' 으 ~} 으 옳

Let E be the event that k ~ Sn ~ k + A , and Si > 0 for all 0 < i < n
- we aim to show that P{E} == O((k + 1)log ηjn3/2 ). In order that E
occur, it is necessary that either T 으 n/4 or T' 으 n/4 (we denote the union
of these two events by D) , or that the following tllree events occur (these
events control the behavior of tIle beginning, end, and middle of the random
walk, respectively):

E I : ST > 0 and T < n/4,
E2: 괜I > 0 alld T' < n/4,
E3 : letting ~ _= S[n/4j - Sln/4j , we have k + ~ ~ Sn-ln/4j - Sln/4j ~

k+~+A.

It follows that

P{E} ~ P{D} + P{EI ,E2,E3 }.

Furthermore, P {D} 으 P{T 즈 η/4} + P{T' ~ π/4} 으 2/η2 by (5) , so to
show that P{E} == O(log n/n3/ 2), it su퍼ces to show that P{El' E2 ,E3 } ==
O(logπ/η3/2); we now delllonstrate that this latter bound holds, which will
complete the proof.

The events EI and E2 are independent, as E1 is determined by the
random variables Xl , ,X ln/4j , and E2 is determined by the random
variables Xn- ln/4J+I , ,X n . FurtherlTIOre, in the notation of Lemma 14,T
is all event of the form 낀 s with r == r* , s == 0; it follows that P{ST > O} 으
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C/(r* 十 C). Since 8' has step size - X and I- X I < C, we may also apply
Lemma 14 to the walk S' with the choice r == r* - k + C, s = k + C, to
obtain the bound P{S，운I > O} ~ (k + 2C)/(r + k + 2C). Therefore

(6) P{EI,E2 ,E3} == P{E3 lEI ,E2}P{EI}P{E2}

~ P{E3 1 E I , E2}P{Sr > O}P{S운，> O}

C(k + 2C)
으 P{E3 lEI ,E2} ·

r*(r* + k + 2C)

2C2(k + 1)
< P{E3 lEI ,E2} .

(r*)

To bound P {E3 I E I ,E2} , we observe that

(7) P{E3 1E I,E2} 으 SUpP{E31 E I ,E2 ,D. == x}
xEIR

== supP{k + x 으 Sn-Ln/4j - Sln/4j 으 k+x+AIEI ,E2, D. ==x}
xε ll{

Furthermore, the event that k + x 으 Sn-Ln/4j --Sln/4j 으 k + x + A is inde
pendent from EI ,E2 , and from the event that D. = x , as the former event is
determined by the random variables Xln/4J+I ,... ,Xn-ln/4J' and the latter
events are determined by the random variables Xl ,·· ., X ln/4J,Xn-ln/4J+I ,
.. ,X n . It follows from this independence, (7) , and the strong Markov

property that

(8) P{E3 lEI ,E2} ~ supP{k + x ~ Sn-Ln/4J - 8Lπ/4J 으 k + x + A}
xεIR -

= supP{k + x 으 Sn-2ln/4J 으 k+x+A}
xE Jl(

으 (A+ l)supP{k+x 으 Sn-2ln/4J :s k + x + I} ,
xEll(

the last inequality holding by a union bound. By Theorem 16, there is c > 0
depending only on X , such that

、 C 、 12c

靈p{x 으 감뀐/4J 으 $ + 1} s t/7l-jl7l/4l 으 t짧，

and it follows from this fact and from (8) that

젊c(A +1)
P{E3 lEI,E2} 으 •


