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Preface

The development of simulation software is an important aspect of modern scientific
computing, especially in the geosciences. Developing complex numerical code
requires a large time investment and a range of knowledge spanning several aca-
demic disciplines. Arriving at a physical description of a complex physical system,
such as a coupled atmosphere, ocean, and land model, demands acute awareness of
domain sciences: meteorology, oceanography, biochemistry, ecology, and rheol-
ogy. Discretising the governing partial differential equations to produce a stable
numerical scheme requires expertise in mathematical analysis, and its translation
into efficient code for massively parallel systems demands advanced knowledge in
low-level code optimisation and computer architectures. Therefore, development of
such software is a multidisciplinary effort and its design must enable scientists
across several disciplines to collaborate effectively.

Software projects involving automatic code generation have become increas-
ingly popular in recent years, as these help create a separation of concerns between
different aspects of development. This allows for agile collaboration between
computer scientists with expertise in hardware and software, computational scien-
tists with expertise in numerical algorithms, and domain scientists such as meteo-
rologists, oceanographers, and climate scientists.

The finite element method is a standard mathematical framework for computing
numerical solutions of partial differential equations. It has been widely used in
engineering applications for many decades, due to its ease of use on unstructured
grids and in complicated geometries. It has become increasingly popular in fluids
and solids models within geosciences, and its formulation is highly amenable to
code-generation techniques. A weak formulation of the relevant PDEs, together
with a mesh and appropriate discrete function spaces, is enough to characterise the
problem completely.

The models we present in this book use ‘compatible’, or ‘mimetic’, finite element
discretisations. While their use in fluids problems is relatively new, compared to the
more standard continuous and discontinuous Galerkin methods, their use in other
applications can be traced back to the late 1970s. In a geophysical context, these
discretisations are a generalisation of the C-grid horizontal variable staggering to a
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finite element setting. They therefore inherit the C-grid’s properties such as good
representation of near-grid-scale waves.

The topics in this book are non-exhaustive; the purpose of this text is to provide
the reader with an idea for how one might use Firedrake as a base for their own
numerical codes. The book is organised in the following way. To establish context,
the reader is provided with a gentle introduction to modeling geophysical flows in
Chap. 1. This includes summaries of common model hierarchies and desirable
properties of numerical models for operational use. Chapter 2 presents the appli-
cation of finite element modeling for two- and three-dimensional systems. Full
discretisations are presented using the framework of compatible finite element
methods. Using the Firedrake finite element library is a central aspect of this book,
and therefore Chap. 3 is devoted to introduce the reader to basic concepts and
examples needed to implement the discretisations summarised in Chap. 2. Both
Chaps. 4 and 5 provide numerical implementations of examples using Firedrake in
two and three dimensions respectively. In particular, Chap. 5 discusses efficient
algorithms for solving the resulting discrete systems, which are essential for
real-world operational settings.
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London, UK David A. Ham
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Chapter 1 ®)

Check for

Geophysical Fluid Dynamics
and Simulation

In this chapter we describe various models for the atmosphere; they will be dis-
cretised in the rest of the book. We start by considering models with the fewest
approximations and work our way down to simplified models. Model hierarchies
have formed the backbone of geophysical fluid dynamics: simpler models are more
tractable and easier to analyse, whilst more complex models bring us closer to mod-
elling the real physical system. Moving up and down the hierarchy allows us to
trace physical phenomena to mathematical calculations on simpler models. Since
the inception of numerical computer simulation, model hierarchies have also been
useful as a way to trade off model accuracy with computational cost.

1.1 Hierarchies of Models

The first computer weather forecast on the ENIAC (one of the world’s first digital
computers) by Charney, von Neumann and coworkers solved a single layer quasi-
geostrophic model! (Lynch, 2008). Subsequently, as computer power increased, it
became possible to move up the hierarchy, making fewer model approximations in
more numerically intensive calculations. Numerical weather predictions were made
with multilayer shallow water models, hydrostatic compressible Euler models, and
finally the non-hydrostatic compressible Euler models which represent the state of
the art today (Kalnay, 2003; Bauer et al., 2015; Staniforth and Wood, 2008). Model
hierarchies are also very useful in the development of numerical models. One can
move down the hierarchy to isolate specific aspects of the model to examine their
numerical treatment in a less computationally intensive setting, and then move back
up to use this insight. In the development of atmospheric dynamical cores, it is very

I We will not cover the quasi-geostrophic model in this book. It is an approximation that filters out
acoustic and internal gravity waves, hence allowing a larger timestep, which made the computation
feasible on the ENIAC.
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2 1 Geophysical Fluid Dynamics and Simulation

standard to start with the shallow water equations to focus on horizontal discretisa-
tion aspects before moving up the hierarchy.

The hierarchy of models we will build up in this chapter is shown in Figure
1.1. This is just one choice of hierarchy, since for example one can apply the
hydrostatic approximation directly to the compressible Euler equations without
making Boussinesqg/anelastic approximations. Similarly, we do not consider quasi-
geostrophic approximations which are valid for rapidly rotating systems; these
approximations can be made at any step of our hierarchy.

Governing equations:
Full, three-dimensional compressible Euler system.

Boussinesg/anelastic:
Assumption: small variations in density.
Impact: no acoustic waves.

Hydrostatic:
Assumption: fluid is in a thin layer.
Impact: No vertical acceleration term, vertical veloc-
ity becomes diagnostic from the continuity equation.

Shallow water system
Assumption: columnar motion (horizon-
tal velocity is independent of height).
Impact: equations become two-dimensional, prognos-
tic variables are horizontal velocity and layer height.

Fig. 1.1 A hierarchy of models illustrating a successive application of various approximations to
yield simplified models

1.1.1 The Compressible Euler System

We start by presenting the compressible Euler equations, which have the fewest
approximations amongst our hierarchy. We assume that the air is dry (no moisture),
inviscid (no viscous forces), and adiabatic (no sources or diffusion of temperature).
The governing equations for a dry, inviscid, adiabatic, compressible fluid in a rotating
reference frame with angular velocity £ may be written in the form
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Du 1
22 20 xu=--Vp-VO, 1.1
Dt+ Xu » p (1.1)
% 9 (up)=0 (1.2)
ot =5 '
Do
Do _,, 13
Ds (1.3)
p=P.T), (1.4)

where: u is the fluid velocity, p is the fluid density, p is the pressure, and @ is the
geopotential comprising the gravitational and centrifugal potentials (often neglected
as it is small compared to the gravitational potential). We use the potential temper-
ature 6, defined as the temperature an air parcel would attain if moved adiabatically
to a reference pressure pg. The ideal gas laws allow us to compute this explicitly:

T_9 - T("R) : (1.5)
P PR p

where pr is a chosen reference pressure, and k = R/c), is the ratio of the gas constant
R and the specific heat at constant pressure c;,. The payoff for this rather complicated
formulation is that the potential temperature is constant along Lagrangian trajectories
in the absence of diabatic processes.

Given some velocity field u, we denote the material derivative by % For a field
F, D - is given by the instantaneous time rate of change of F, plus a contribution
from the spatial variation of F as a result of being moved by u,

DF _0F

—=—+(u-V)F. 1.6

or - TV (1.6)
If the material derivative is zero, then the field is materially conserved following the
motion of the fluid. Thus we interpret the above equations as material derivatives of
various fluid quantities, especially after noticing that

ap Dp
=—+V. =—+pV-u. 1.
0 6t+ (up) t+p u 1.7

Equation (1.4) closes the system of equations by relating pressure to the other
thermodynamic variables. In the case of the atmosphere, the equation of state for an
ideal gas is typically used, i.e.,

P(p,T) = pRT, (1.8)

where R is the gas constant for dry air.
It is fairly common to use an alternative formulation of the pressure gradient term

1
;Vp = ¢, VI, (1.9)
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where I is the Exner pressure given by the equation of state

Rog\ ™5
M= (i@) . (1.10)
Pr

One of the reasons for making this change is that it is then fairly simple to incorporate
the thermodynamic effects of moisture into the pressure gradient term. The situation
is more complicated in the case of the ocean, where the equation of state additionally
depends on salinity. In this book we shall concentrate on the dry adiabatic case, but
the techniques developed here are directly extensible to model the moist atmosphere,
and the ocean.

These equations also need boundary conditions. In this book we shall mostly
restrict ourselves to slip boundary conditions u - n = 0 where n is the vector normal
to the boundary. Another important boundary condition is the free surface boundary
condition, p = p4 (where p4 is an external reference pressure). In this case, the
boundary surface must move with the velocity u at the boundary.

We note for later that (1.2) is an expression of local mass conservation; integration
over a control volume V leads to

d
—/pdx+/ u-ndS=0, (1.11)
dr Jy %

where n is the outward pointing unit normal vector to the boundary 9V of V. This
shows that the rate of change of total mass in V is balanced by fluxes through the
boundary 9V.

At this point, it is worth discussing various approximations to the Coriolis term
2Q x u. For a model on the sphere, © is aligned with the polar axis. A common
approximation is the traditional approximation, under which the vertical part of this
force is neglected (since it is small compared to the gravitational force). For a coordi-
nate system whose origin is at the centre of the sphere, we write # = x /| x| for the unit
vector pointing away from the origin. Then the traditional approximation replaces £
with f#, where f = Q- 7. Under this approximation, the Coriolis term vanishes at
the equator and is maximum at the poles. We call f the Coriolis parameter.

For both mathematical simplicity and in the study of various models, a patch of
the planetary surface can further be approximated by a plane that is tangent at one
point. We consider two common treatments of the Coriolis parameter:

1. f-plane approximation: f = fj is taken to be constant-valued. This approximation
is used frequently in the case of highly idealised flows. A notable consequence
is that Rossby waves, which depend on variations in f, do not occur in models
using this approximation.

2. B-plane approximation: Since f depends on variations in latitude, an f-plane
approximation may not be appropriate when considering flows over large length
scales. The B-plane approximation improves on this by considering leading-order

variations: f = f(y) = fo+ By.



